References

Capdeville, Y., E. Chaljub, J.P. Vilotte, and J. P. Montagner, Coupling the spectral element method with a modal solution for elastic wave propagation in global earth models, Geophys. J. Int., 152, 34-66, 2002.

Capdeville, Y., B. Romanowicz, and Y. Gung, Global seismic waveform tomography based on the spectral element method, abstract, joint AGU/EGS/EUG Meeting, Nice, April 2003.

Capdeville, Y., An efficient Born normal mode method to compute sensitivity kernels and synthetic seismograms in the Earth, submitted to Geophys. J. Int., 2005.

Faccioli, E., F. Maggio, A. Quarteroni, and A. Tagliani, Spectral-domain decomposition methods for the solution of acoustic and elastic wave equations, Geophysics, 61, 1160-1174, 1996.

Gung, Y., B. Romanowicz, and M. Panning, Anisotropy and lithospheric thickness, Nature, 422, 707-711, 2003.

Komatitsch, D. and J. P. Vilotte, The spectral element method: an effective tool to simulate the seismic response of 2D and 3D geological structures, Bull. Seism. Soc. Am., 88, 368-392, 1998

Li, X.D. and B. Romanowicz, Comparison of global waveform inversions with and without considering cross-branch modal coupling, Geophys. J. Int., 121, 695-709, 1995.

Li, X. D. and B. Romanowicz, Global mantle shear velocity model developed using nonlinear asymptotic coupling theory, J. Geophys. Res., 101, 22,245-22,273, 1996.

Megnin, C. and B. Romanowicz. The 3D shear velocity structure of the mantle from the inversion of body, surface and higher mode waveforms, Geophys. J. Int., 143, 709-728, 2000.

Panning, M. and B. Romanowicz, Inferences on flow at the base of Earth's mantle based on seismic anisotropy, Science, 303, 351-353, 2004.

Berkeley Seismological Laboratory
215 McCone Hall, UC Berkeley, Berkeley, CA 94720-4760
Questions or comments? Send e-mail: www@seismo.berkeley.edu
© 2005, The Regents of the University of California