determining the balance between Si and N uptake by the biological community.

Received 29 July 1997; accepted 21 February 1998.

Acknowledgements. We thank M. Sanderson, C. De La Rocha, Y. Zhang, M. Schwartz, G. Smith, M. Brzezinski, V. Franck, N. Fisher, P. Harrison, D. Kirchman, S. Wilhelm, A. Witter and the captain and crew of the RV M. Brzezinski, V. Franck, N. Fisher, P. Harrison, D. Kirchman, S. Wilhelm, A. Witter and the captain and crew of the RV.

Here we present an analysis of various seismic phases, generated in the Kermadec–Fiji–Tonga zone and recorded at stations in North America, which reveal a region at the base of the mantle beneath the southwest Pacific Ocean where horizontally propagating vertically polarized waves are slower (by at least 10 per cent) than horizontally polarized waves. This observed anisotropy is an order of magnitude larger than that previously thought to exist in the lower mantle, and corresponds to lateral variations in horizontally polarized shear-wave velocity which are also of about 10 per cent. We speculate that this anisotropy may be the result of the mixing and shearing of strongly heterogenei material in the boundary layer.

Figure 1 Geometry of the data set considered. a, Schematic representation of the wave paths of SKS, SKKS, SD and SPAKS. The wave paths of SD for two different positions of the source (stars) differ only at the source side. The lightly shaded area indicates the region where SH is slow, as discussed in the text. The darker, hatched area is the region where SH velocity is elevated or normal, but SV is much slower than SH. b, Surface projections of wave paths superimposed on a tomographic model of SH velocity in D′ (ref. 16). The light-grey zone of the wave path indicates approximately the D′ leg of SD for the shortest distances considered. The white bar corresponds to the kink for SH and SKS, discussed in the text. Red star is location of earthquake source region; yellow triangles and 3/4-letter codes indicate station locations and names, respectively, Inset, close-up look at the source side of the wave-paths. Epicentres of deep Fiji–Tonga events and of shallow Kermadec–Fiji–Tonga events are shown by filled and open stars, respectively. The background tomographic model of S-wave velocity in D′ is from ref. 16. The polygon indicates the zone of ultra-low P-wave velocity in D′ (ref. 18). The barcode indicates amplitudes of shear velocity anomalies at the core–mantle boundary (CMB) in the tomographic models 16,11.

Anisotropic structures at the base of the Earth’s mantle

Lev Vinnik1, Ludovic Breger† & Barbara Romanowicz‡

1 Seismological Laboratory and Department of Geology and Geophysics, University of California, Berkeley, California 94720, USA
2 Institute of Physics of the Earth, Bolshaya Gruzinskaya 10, Moscow CIS

The D′ shell at the base of the Earth’s mantle is thought to be a thermal and compositional boundary layer where vigorous dynamical processes are taking place1–4. An important property of D′ is its seismic anisotropy, expressed as different velocities for horizontally and vertically polarized shear waves that have been diffracted or reflected at the core–mantle boundary15. The nature of this anisotropy has been the subject of debate16–11.

The D′ shell at the base of the Earth’s mantle is thought to be a thermal and compositional boundary layer where vigorous dynamical processes are taking place1–4. An important property of D′ is its seismic anisotropy, expressed as different velocities for horizontally and vertically polarized shear waves that have been diffracted or reflected at the core–mantle boundary15. The nature of this anisotropy has been the subject of debate16–11.

Anisotropic structures at the base of the Earth’s mantle

Lev Vinnik1, Ludovic Breger† & Barbara Romanowicz‡

1 Seismological Laboratory and Department of Geology and Geophysics, University of California, Berkeley, California 94720, USA
2 Institute of Physics of the Earth, Bolshaya Gruzinskaya 10, Moscow CIS

The D′ shell at the base of the Earth’s mantle is thought to be a thermal and compositional boundary layer where vigorous dynamical processes are taking place1–4. An important property of D′ is its seismic anisotropy, expressed as different velocities for horizontally and vertically polarized shear waves that have been diffracted or reflected at the core–mantle boundary15. The nature of this anisotropy has been the subject of debate16–11.
The first part of our analysis is based on the residuals of differential travel times between seismic phases SH_{diff} and SKS/SKKS relative to those for the standard Earth model PREM12 (SH_{diff} are horizontally polarized S waves that have been diffracted at the core–mantle boundary; SKS/SKKS are shown in Fig. 1.) Differential travel times are helpful because they are not sensitive to errors in focal parameters of seismic events and structural complexities in the source region. Contrary to earlier studies13,14, we consider (1) not analysis was performed: RSCP, LMQ, RSNY and GAC (Fig. 1). (2) not the average of slope (the ‘kink’) varies (for example, 116–117 at HRV, 103–104 at RSON, depending on the epicentral distance range of the Kermadec–Fiji–Tonga seismic zone to the given station. Comparable results are obtained for the other stations where a similar analysis was performed: RSCP, LMQ, RSNY and GAC (Fig. 1).

The residuals as a function of epicentral distance show a remarkable trend, consistent from station to station, for shallow and deep events and whether SKS or SKKS is used as reference phase. Figure 2 shows examples for the three best stations. Each panel can be divided into two parts, with rapidly increasing residuals at shorter distances, and slowly rising (or decreasing) residuals at larger distances. To make this trend more visible, we divide each set of measurements into two subsets corresponding to epicentral distances smaller than or equal to, and greater than or equal to, a variable cut-off distance. When the best-fitting position of the cut-off and linear fits on both sides of it are obtained by regression, the average variance reduction is twofold with respect to a single regression line. We note that the epicentral distance of the change of slope (the ‘kink’) varies (for example, 116–117 at HRV, 103–104 at RSON), depending on the epicentral distance range of the Kermadec–Fiji–Tonga seismic zone to the given station. Comparable results are obtained for the other stations where a similar analysis was performed: RSCP, LMQ, RSNY and GAC (Fig. 1).

The features in Fig. 2 cannot be explained by mantle complexity immediately beneath the seismic foci, because the change of slope is present in the data for both deep and shallow events. Therefore, our preferred explanation for the kink is a first-order change in the properties of the lowermost mantle at the source side of the wavepath. Moreover, SKS and SKKS ray-paths are separated in D^\ast by a distance exceeding 10$, and a similar trend in the residuals in Fig. 2 with respect to SKS and SKKS implies that the effect is mainly in the travel times of SH_{diff}. If the position of the kink for every station is inverted for the position of the corresponding border in the D^\ast layer, assuming that SH enters D^\ast at a depth of 300 km above the core–mantle boundary, the estimates for different stations are mutually consistent and correspond to the white bar in Fig. 1b. In experiments with synthetic seismograms, the anomaly of slowness of 1.1 s per degree corresponds to S-wave velocity in D^\ast reduced by $\sim 10\%$ with respect to PREM. The region of anomalously low SH-wave velocity is located to the northeast of the bar (Fig. 1b), whereas SH velocity to the southwest of the bar is either slightly elevated or normal. Qualitatively, this division is confirmed by two recent tomographic models15,16 (Fig. 1b), but the magnitude of the low-velocity anomaly in both models is ~ 3 times smaller than in our data. Robustness of our technique is confirmed by other data17.

The residuals of SKKS–SKS differential travel times relative to PREM, derived from our data (Fig. 3) are positive, with an average value of around 2–3 s. As argued in ref. 18, these positive residuals can only be explained by anomalously low S-wave velocity in the lowermost mantle on the source side, due to the longer paths of SKS relative to SKS. Our data, however, indicate that, on the source side, SKS and SKKS propagate in a region of D^\ast with normal SH velocity (Fig. 1b). As SKS and SKKS are SV polarized, to explain the discrepancy at least partly, we suggest that although SH velocity is normal, SV velocity in the lowermost mantle on the source side is anomalously low. (SV indicates vertically polarized S waves.)

To obtain quantitative estimates of this anisotropy, we assume that the lowermost mantle is intrinsically isotropic, finely layered and horizontally stratified. For long waves, it behaves like a homogeneous transversely isotropic medium with a vertical axis of

![Figure 2 Residuals of SH_{diff}—SKS and SH_{diff}—SKKS differential travel times with respect to those for PREM12, for HRV/WFM, RSON and CCM, and corresponding regression lines. The data labelled ‘shallow’ are for shallow and intermediate events; all others are for deep events. Shallow events broaden the distance interval available for SKS. The slopes of the plots are controlled mainly by the slowness of SH_{diff} and, consequently, by SH velocity at the source side of D^\ast. The slope is negative, positive or equal to zero, if SH velocity is higher, lower or similar to that in PREM. Numerical values of the slopes of the regression lines with their respective confidence intervals are shown in the upper left and lower right corners of each panel. Confidence intervals are usually around $\pm 0.1–0.3$ s per degree, but they exceed ± 1.0 s per degree for deep events at CCM, left of the kink. If the latter data are excluded, the average values of the slopes are 1.12 ± 0.2 and -0.21 ± 0.2 s per degree, left and right of the kink, respectively.](https://example.com/figure2.png)
symmetry. In this medium, SH$_{\text{diff}}$ and SV$_{\text{diff}}$ propagate independently, with the former faster than the latter, which is consistent with the seismic observations. To explain residuals of \sim2 s, SKS and SKKS velocities in a layer 300 km thick should be \sim10\% lower than standard velocity. For the angles of incidence characteristic of SKS and SKKS, the SV velocities are larger than for horizontal propagation. Then the difference between SH and SV velocities for horizontal propagation can be even higher than 10\%. This prediction can be tested by observing propagation of SH$_{\text{diff}}$ and SV$_{\text{diff}}$.

The seismic phase SV$_{\text{diff}}$ is usually weak, and can be easily distorted by effects of azimuthal anisotropy in the mantle outside D* and side refraction of SH$_{\text{diff}}$. To eliminate these effects and to pick arrivals of SV$_{\text{diff}}$ accurately, we have devised a special technique, illustrated in ref. 22 for the records of HRV/WFM and RSON. For the present study, a search for SV$_{\text{diff}}$ has been conducted in the records of the deep Fiji–Tonga events at seismograph stations shown in Fig. 1b. The best data set has been obtained at HRV/WFM, RSON and CCM. Remarkable features of the detected SV$_{\text{diff}}$ signals are their distance-dependent delays relative to SH$_{\text{diff}}$ (Fig. 4). At shorter distances, the slopes of the plots are close to 0.8 per degree, whereas at larger distances they are in the range 1.0–1.6 s per degree. Then anisotropy is weak (not more than a few per cent) in the region of very low SH velocity (northeast of the white bar in Fig. 1b), and \sim13\% in the region of normal SH velocity, southwest of the bar. Anisotropy of \sim15\% is stronger by an order of magnitude than reported elsewhere.

Additional data on the properties of D* beneath the southwest Pacific are provided by the observations of SPdKS (Fig. 1a). This phase propagates as P$_{\text{diff}}$ in D* and as SKS elsewhere. The southwest Pacific is anomalously slow, with a remarkable correlation between the anomalous delays of SPdKS relative to SKS and positive SKKS–SKS residuals, similar to those shown in Fig. 3. An explanation for this phenomenon is partial melting. The anomalously slow P$_{\text{diff}}$ however, propagates on the source side in a medium with normal SH velocity (Fig. 1b), which is hard to reconcile with a strong reduction of S velocity, expected in the case of partial melting. Because, as we have demonstrated, the SKKS–SKS residuals can be related to anisotropy, the correlation between them and SPdKS delays suggests that the delays are affected by anisotropy as well. Moreover, east of the white bar in Fig. 1b, where (according to our data) anisotropy is weak, the layer of low P-wave velocity, if present, is very thin. Assuming that the SPdKS delays are related to anisotropy, we note that the low horizontal P-wave velocity in a fine-layered horizontally stratified medium is possible if the variations of S-wave velocity between the layers are much stronger than those of P-wave velocity. Another possibility to be considered is lattice preferred orientation.

For normal distribution of random variations of S-wave velocity in the stack of thin horizontal layers with mean m and standard deviation σ, the SH/SV velocity ratio for horizontal propagation is expressed as $\frac{\text{SH}/\text{SV}}{\text{SV}} = \sqrt{\frac{1}{2} \left(\frac{\sigma}{m} \right)^2}$. For S-wave anisotropy of 15\%, σ thus evaluated is 28\% of m. It is not possible to explain the variations exceeding a few per cent solely by temperature variations. S-wave velocity can be significantly lowered by partial melting and/or by accumulation of crystalline iron-alloy products of chemical reactions between iron of the outer core and mantle perovskite. Among these possibilities, relatively weak variations of P-wave velocity favour partial melting. The layered structure in D* could be generated by convective mixing and shearing. Then, strong anisotropy in D* should be accompanied by strong wave scattering. The anomalous region of D*, if projected on the surface of the Earth, is close to Polynesia, a region of unusual thermal agitation, where a large-scale thermochemical plume may be present at the top of the lower mantle. The anisotropic region in D* could somehow be related to the same plume.

Comparable magnitudes of lateral heterogeneity and anisotropy suggest that lateral variations of anisotropy can be mistaken for lateral velocity variations, when the models are derived under the assumption of isotropy. Whatever its origin, the observations of strong and laterally variable anisotropy add a new dimension to the question of properties and processes in the D* layer.

Received 27 March 1997; accepted 19 March 1998.

Ediacara-type fossils in Cambrian sediments

Sören Jensen, James G. Gehling† & Mary L. Droser†

Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
* University of South Australia, Warrengi Road, The Levels, South Australia 5095, Australia
† Department of Earth Sciences, University of California, Riverside, California 92521-0423, USA

Fossil assemblages that preserve soft-bodied organisms are essential for our understanding of the composition and diversity of past life. The worldwide terminal Proterozoic Ediacara-type fossils (from ~600–544 Myr BP) are unique in consisting of soft-bodied animals, which are typically preserved as impressions in coarse-grained sediments1–4. These Lagerstätten are also special because they pre-date the major burst of skeletonization, which occurred near the start of the Cambrian period5. Most Ediacara-type fossils are interpreted to be cnidarians, but higher metazoans such as annelids and molluscs may also be represented1–4. However, the unique style of preservation and difficulties in finding convincing morphological homologies with definite animals have led some specialists to prefer non-metazoan interpretations, such as Vendobionta1. In addition, the rarity of Ediacara-type fossils in younger sediments has led to suggestions of a terminal Proterozoic mass extinction6. Here we report typical Ediacara-type frond-like forms from the Uratanna Formation, in the Angepena syncline, northern Flinders Ranges. The simplified litholog (bottom left and right) shows the occurrence of fronds and Kullinella and the distribution of selected trace fossils. The stratigraphical context of the Uratanna Formation and a range of selected faunal elements is shown schematically (top left).

Acknowledgements. We thank M. W. Worsley for reviews. This work was partially supported by NSF.

Correspondence and requests for materials should be addressed to B.R. (e-mail barbara@seismo.berkeley.edu).

Figure 1 Location (marked by an asterisk, top right) and stratigraphic context of Ediacara-type fronds from the Uratanna Formation, in the Angepena syncline, northern Flinders Ranges. The simplified litholog (bottom left and right) shows the occurrence of fronds and Kullinella and the distribution of selected trace fossils. The stratigraphical context of the Uratanna Formation and a range of selected faunal elements is shown schematically (top left). g, grained; vf, very fine; f, fine; m, medium; c, coarse.