Characterization of the spatial and temporal distribution of fault slip and ground subsidence along the Chaman plate boundary with Sentinel-1 InSAR

Kang Wang¹, Yuexin Li¹, Najeeb Ullah², Roland Bürgmann¹, and Roger Bilham³

¹Berkeley Seismological Lab., University of California, Berkeley ²Department of Geology, University of Balochistan, Quetta, Pakistan ³University of Colorado, Boulder

Frequent large earthquakes

Understanding of the spatiotemporal distribution of fault slip and strain across the fault is limited.

Fault creep estimated with Envisat InSAR (2004-2011)

Fattahi and Amelung, 2016

Barnhart, 2017

Frequent large earthquakes

Understanding of the spatiotemporal distribution of fault slip and strain across the fault is limited.

New SAR missions provide new opportunities.

Atmospheric phase delays

- Atmospheric noise is mitigated with ERA-5 weather model for each interferogram
- Using Small Baseline (<=36days) Subset interferograms to solve for time series

Average creep rate along the central Chaman fault

Temporal variation of fault creep

Temporal variation of fault creep

Temporal variation of fault creep

Effect of tropospheric delay on 'creep' estimate

- Center: surface creep time series without correcting for atmospheric delay
- Right: surface creep time series with correcting for atmospheric delay using ERA5 weather model

Seasonal variation of tropospheric delays predicted by ERA-5

• Elevation contrast across the fault causes a difference in tropospheric delay.

Spontaneous creep event

The creep event is unlikely triggered by earthquakes.

Spontaneous creep event

The creep signal looks alike a slow slip event (SSE).

Ground subsidence related to water pumping

Conclusions

- Recent SAR missions provide new opportunities to study the spatiotemporal variation of fault motion.
- Creep rate of the Chaman fault is spatially heterogeneous and temporally non-steady.
- Strain accumulation along the Chaman fault is modulated by a wide spectrum of fault motion behaviors:
 - coseismic slip
 - afterslip
 - spontaneously slow slip events
- Ongoing and future work:
 - strain partitioning across the plate boundary
 - Interplay between seismic-, aseismic fault slip and ground subsidence