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1. Probability. Letlowercase letters such as a, b, etc. denote either statements (which might

be true or false) or events (which might occur or not). We use P(a) to denote the
probability that a will occur (if 2 is an event) or the probability that a is true (if a is a
statement). The probability of any event (or statement) a lies between 0 and 1 if a is
uncertain. P(a)=1 if a is certainly true, and P(a)=0 if it is certainly false. In symbolic
notation,

0<P(a)<1

. If a and b are independent (that is, the truth or falsity of one does not affect the

probability of the other), then
P(aandb) =P(@) -P(b) anq Pl orb)=P(a)+ P(b)- P(a) - P(b)

. If g and b are mutually exclusive (that is, if one is true then the other must be false), then

Plaandb)=0 ,nq  Plaorb) =P(a)+P(b)

. If we use ~a to denote the negation of a (that is, ~a is true when a is false, and vice versa),
then the probability of ~a is

P(~a) =1-P(a)

(since @ and ~a are mutually exclusive, and therefore P(a or ~a)=P(a)+P(~a)=1).

. If a and b are equivalent (that is, if one is true if and only if the other is true, which we
denote a<=>b), then they have the same probability:

if a<=>b then P(a) = P(b)

The converse is not true; statements with the same probability need not be equivalent.

. If a implies b (denoted a=>b), then the probability of b is at least as great as the
probability of a:

if a=>b then P(b) > P(a)

(since b occurs every time a occurs, and b might also occur at some other times as well).
When b occurs if and only if a occurs, P(b)=P(a) as in (5) above; otherwise P(b)>P(a).
Note that the fact that 2 implies b does not exclude the possibility that other things may
also imply b.

. Conditional probability. If @ depends on b (that is, the probability of a is affected by
whether b is true or false), we use P(a | b) to indicate the probability of a, given b (that is,
the probability of @ when b is true). This is also referred to as the probability of a
conditioned on b, and can be expressed as
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... but were afraid to ask. Kirchner

Plalb) = e andb)

This can be rewritten in more intuitively obvious form as
P(aand b) =P(a | b) - P(b)

In other words, the probability that both a and b are true is simply the probability that b
is true, times the probability that if b is true, a is also true. The strongest possible
conditioning occurs when b implies a, whence P(a | b)=1 and P(a and b)=P(b).
Conversely, when a and b are independent, P(a | b)=P(a), whence P(a and b)=P(a)P(b), as
in (2) above.

Because P(z and b) equals P(b and a), then from (7),
P(alb) - P(b)=P(b |a) - P(a)

Note that although P(a and b) and P(a or b) both commute (that is, the order of a and b
can be reversed without changing P), this is not true for P(a|b). That is, P(a|b) is not
equal to P(b | a), except in the special case where P(a)=P(b). Here's a trivial example. If
someone is named "Jean", then the probability is high that this person is female (except
in France), but if someone is female, the probability is not high that she is named "Jean".
In such a simple example, the fallacy is easy to see. But the fact remains that some of the
most common, and insidious, errors in probabilistic reasoning consist of mistaking
P(alb) for P(bla). A simple example: say a hypothesis & strongly suggests that an
observable event e should occur (i.e. P(e | 1) is high). It does not follow that observing
the event e provides strong evidence for #, (i.e. P(i | ¢) need not be high) because e might
be probable whether or not # is true.

If ay, ap, a3, ...a are mutually exclusive (that is, no two can be true simultaneously) and
jointly exhaustive (that is, at least one must be true), then

P(a;) + P(a,) + Pas) +...+ P(a,) =1

(A set of statements that are mutually exclusive and jointly exhaustive is sometimes
termed a "partition", meaning something that partitions the realm of the possible into
discrete propositions a3, ay, etc.)

10.1f ay, ap, a3, ...a, are mutually exclusive and jointly exhaustive, then for any proposition
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P(b) = P(band ay) + P(b and a,) +...+ P(b and a,,)

since if b occurs at all it must occur with one of the a's (since one of the a's must occur).
This is sometimes termed the "theorem of total probability".



11.In the same vein, if ay, ay, a3, ..., are mutually exclusive and jointly exhaustive, then for

any proposition b,
P®) = P(lay) P(a) + P(b|ay)- Play) +...+ P(b | a,) - P(a,)

This is the basis for "fault tree analysis" and other forms of risk analysis that quantify the
likelihood of an outcome (e.g., a nuclear reactor meltdown) that can occur through
several different causal pathways.

12.1f an hypothesis /1 implies some observable evidence e, and if & is possible, and if e is not

inevitable, (that is, h=>¢, P(h)>0, and P(e)<1), then P( | ¢), the probability that the
hypothesis is true, given that the evidence is observed, is greater than P(h), the
probability that & is true in the absence of any information about whether or not e is
observed,

P(hle) >P(h)

In other words, if h predicts e, then the occurence of e raises the likelihood that h is true.
Although & and e could be any two statements, and need not be an hypothesis and
evidence for it, they are used in this example because it is such an important part of
intuitive scientific inference. Where does (12) come from? Directly from (8), as follows:
if P(hile)P(e)=P(e | h)P(h), and P(e| h)=1 (because & implies ¢), then P(h | e)=P(h)/ P(e),
which must be greater than P(h) because P(e)<1.

13.1f an hypothesis / indicates that some observable evidence e is probable, with a

probability of P(el 1), then the probability that the hypothesis is true if e is indeed
observed, P(h | e), depends on P(e | h), P(h), and P(e), as follows:

where, as in (12), P(h) is the probability that & is true in the absence of any information
about whether or not e is observed, and P(e) is the probability that e would be observed
whether or not i was true. This is Bayes' Theorem, which forms the basis for Bayesian
inference, in conjunction with the two variants given below. It can be derived directly
by rearranging the terms in (8).

Bayes' Theorem quantifies how strongly experimental observations confirm or
undermine a hypothesis. If i greatly increases the probability of e (that is, P(e | 1) is large
compared to P(e)), then observing e greatly increases the likelihood that I is true (that is,
P(h | e) will be much larger that P(h). Conversely, if & strongly suggests that e should not
occur (that is, P(e | h) is small), then observing e provides strong disconfirmation for h
(that is, P(h | e) will be small).

14.1f several alternative hypotheses, hy, hy, ... h;, are mutually exclusive and jointly

exhaustive, then the probability that any one of them, say hy, is true is:
P(elhy) - P(h))

Pl le) =
e g‘,l Plelh) - P

This is simply a generalization of (13), derived by substituting (11) for P(e) in (13). The
variables are likewise generalized from (13): P(h;) (or P(h))is the likelihood that h; (or hy)
is true, before one knows whether or not the observable evidence ¢ is true, P(e | h;) (or

P(e | hy)) is the probability that e will be observed if h; (or hig)is true, and P(hi | e) is the
likelihood that Iy is true, if e is indeed observed. This is known as the second form of
Bayes's Theorem, but was actually proposed by Laplace.

This shows that observing e can provide strong evidence for h (that is, P(hx | e) can be
large), but only if e is unlikely under any of the other hypotheses (that is, P(e | ;) is small
for hj=hy).

15. Where just one hypothesis is being tested, (14) can be reduced to only two
alternatives: the hypothesis h, and all other possibilities (which imply that # is false,
indicated by ~h). Then (14) becomes (after several terms are rearranged) the third form
of Bayes' Theorem:

PUile) = P(h) _ P(h)
N P(el ~h) N P(e| ~h)
P(h)+ PeTh) P(~h) P(h) + PeTh) [1-P(h)]

where P(h) is the "prior" likelihood that / is true (that is, the likelihood in the absence of
any evidence whether ¢ is true or not), P(h | e) is the "posterior" likelihood that  is true
(that is, after e has indeed been observed), and P(e | h) and P(e | ~h) are the probabilities
that e would be observed if the hypothesis were true and if it were false.

The expression above shows that the posterior likelihood, P(% | ¢), depends on only two
factors: the prior assessment of likelihood, P(h), and the likelihood ratio P(e | ~h)/ P(e | h).
Note that if e is likely if & is true, but very unlikely if  is false, the posterior likelihood
P(hle) can approach 1 after e is observed, regardless of what the prior likelihood P(h) is.
That means that the evidence e could even convince a skeptic (someone who believed
P(h) was low) that & is indeed true, but it can only do so if e would be sufficiently
unlikely if & were false.

Conversely, if e is likely when £ is false, but very unlikely when  is true, the posterior
likelihood P(h | e) can approach 0 after e is observed, regardless of whether P(h) was
assumed to be high or low. That means that the evidence e could even convince a
fanatical believer (someone who believed P(h) was high) that & is indeed false, but it can
only do so if e would be very unlikely if 1 were true.

Adapted in part from Chapter 2 of C. Howson and P. Urbach, Scientific Reasoning: The
Bayesian Approach, Open Court Publishing, La Salle, Illinois, 1993.



Bayesian inference I:
John Doe and the AIDS test

Assume: the HIV test has a false positive rate of 5%
and a false negative rate of 0%

Data point: John Doe tests positive
Question: what is the probability that John Doe has HIV?
Wrong answer: 95%

Right answer via classical statistical inference:
"Don’t ask that question!" (Facts are not probabilistic!)

Right answer from Bayesian statistics:
It depends on the rate of HIV in the group John Doe came from!

IMlustration:
Assume HIV rate in this group is 1%.
Test 10000 individuals.
Results:
100 true positives (1% of 10000)
495 false positives (5% of 9900)

Chance John Doe has HIV is:
= (100 true positives)/(100 true + 495 false positives)
=100/595=17%  (not 95%!)

Illustration 2:
What if the HIV rate in John Doe's group were 0.1%?
Test 10000 individuals.
Results:
10 true positives (0.1% of 10000)
499.5 false positives (5% of 9990)

Chance John Doe has HIV is:
= (10 true positives)/(10 true + 499.5 false positives)
=10/509.5~2%  (not95%!)

Important lessons:
Test results alone are meaningless.
Everything depends on likelihood that positive results
are true positives rather than false positives.
This likelihood is unknowable without knowing the
background risk of HIV in the population!

Illustration 3:
Repeat the HIV test on the 509.5 positives
(assume these results are independent of previous ones)

Results:
10 true positives (all of them)
24.975 false positives (5% of 499.5)

Chance John Doe has HIV is:
= (10 true positives)/(10 true + 24.975 false positives)
=10/35~30%  (not 95%!)




Illustration 4:
Repeat the HIV test again on the 35 positives
(assume these results are independent of previous ones)

Results:
10 true positives (all of them)
1.25 false positives (5% of 25)

Chance John Doe has HIV is:
= (10 true positives)/(10 true + 1.25 false positives)
=10/11.25~90%  (not 95%!)

Illustration 5:
Repeat the HIV test yet again on the 11.25 positives
(assume these results are independent of previous ones)

Results:
10 true positives (all of them)
0.0625 false positives (5% of 1.25)

Chance John Doe has HIV is:
= (10 true positives)/(10 true + 0.0625 false positives)
=10/10.0625~99.4%  (not 95%!)

Important lesson:

By generating enough information from testing, we can
reach a clear result (almost) regardless of the background risk in
the population.

Bayesian inference II:
The Reverend Thomas Baves, FRS,
and "Bayes' Theorem"

... which isn't a theorem, and wasn't derived by Bayes ...

T. Bayes, An Essay Towards Solving a Problem in the Doctrine of
Chances, Philosophical Transactions of the Royal Society of London,
53, 370-418, 1763.

(Poses the problem but solves it only for one special case).

Pierre Simon, Marquis De Laplace, Theorie Analytique des
Probabilites, 1812.
(States a general solution but doesn't prove it).

Problem: Given some set of observations, what is the probability
that a given model or hypothesis is correct?

Define:
H  ahypothesis
d  some observable data
P(dIH) probability of observing d if H is true
P(d|1~H) probability of observing d if H is false
P(HId) confidence that H is true if d is observed

note! PdIH)#PHI|d)!




Question:

What is the probability that H is true, and d is observed?

note P(H and d) = P(d| H) P(H)

and P(H and d) = P(H!d) P(d)

s0 P(d|H) P(H) = P(H|d) P(d)
so!
P(Hld)zp(dIH)P(H)
P(d)
P(d| H) P(H)

- P(d1H)P(H)+P(d|~H) P(~ H)
chance of d occurring because H is true

~ chance of d occurring whether or not H is true

This is "Bayes’ Theorem", or more humbly an "updating rule"
which uses data d to update our prior confidence P(H), yielding
our posterior confidence P(d | H).

For multiple hypotheses Hi, Hz, Hs...:

P(d| H;) P(H;)
P(d)
__P@IH;)P(H;)
%P(tﬂHk)P(Hk)

P(H, | d) =

_ chance of d occurring because H; is true

chance of d occurring for any reason

d am

My Lord
Your Jordships
most oledient
humble Jervant

o Bayes.
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Bayesian inference III: How science really works

Two possibilities:
H  some theory is true
~H that theory is false
Two outcomes of a test of a theory:
d  data are consistent with the theory
~d  data are inconsistent with the theory

Classical statistics can tell us:

P(~d|~H)=1-f=power
(likelihood of rejecting a theory that is false)

P(d|~H) = = false negative rate (Type Il error rate)
(risk of accepting a theory that is actually false)

P(~d|H) = a=false positive rate (Type I error rate)
(risk of rejecting a theory that's actually true)

P(d|H) = 1-a = statistical significance
(likelihood that theory will be accepted if it's true)

(The semantics above are conventional if H is the null hypothesis)

But what we really want to know is:

PHId) (If the data support the theory, what are the
chances that the theory is actually true?)

Pt - P 0D

~ P(d| H) P(H)
" P(d|H) P(H)+P(d|~ H) P(~ H)

chance of supportive evidence because theory is true

~ chance of supportive evidence whether or not theory is true

So post-test confidence in the theory can be high, but only if there
was a low risk that the theory could spuriously pass the test

In the language of power and significance:

(1-a) P(H)
(1-a) P(H)+ g (1-P(H))
B l1-a
o B

1-a ﬂ+P(H)
1

+'8|:1+1:|
1-a| P(H)

So if power is high enough (£is low enough), the test should
convince a non-dogmatic skeptic that the theory is valid
(non-dogmatic means P(H)>0)

P(H |d)=




Bayesian inference I'V: Hotspot detection

Two possibilities:
H  ahotspot exists
~H hotspot does not exist

Two outcomes of an attempt to detect the hotspot:
d  hotspot detected
~d  hotspot not detected

Classical statistics can tell us:

P(dIH) =1-f=power
(probability that hotspot will be detected if it's there)

P(~d1H) = p= false negative rate (Type Il error rate)
(probability of missing hotspot even though it's there)

P(d1~H) = a = false positive rate (Type I error rate) (=0?)
(probability of falsely detecting a hotspot that's not there)

P(~d|1~H) = 1-a = statistical significance (=1)
(likelihood that if there's no hotspot, none will be detected)

But what we really want to know is:

P(H|~d)
(i.e., the risk that there’s a hotspot there,
even though we've failed to detect it)
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P(~d|H) P(H)

- P(d)

~ P(~d|H) P(H)

" P(~d|H)P(H)+P(~d |~ H) P(~ H)

chance of nondetection even though hotspot is there

P(H|~d)=

~ chance of nondetection whether or not hotspot is there

Assuming P(~d|~H) =1 (we won't falsely detect a nonexistent
hotspot),

P(~d|H) P(H)
P(~d|H) P(H)+P(~ H)
_ BP(H)

S P(H)+1-P(H)

P(H|~d)=

If gis small (high power to detect hotspots if they exist)

P(H)
1-P(H)

P(HI|~d)~ p

i.e., if hotspot detection is reliable enough, failure to detect a
hotspot should be convincing to a non-dogmatic skeptic

that is, if fis small enough, post-test confidence that a hotspot
exists -- P(H |~d) -- can be small

... even though pre-test confidence -- P(H) -- was high

... as long as P(H)<1 (non-dogmatic prior)






