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Laboratory 11:  Detecting and accounting for serial correlation 
 
Serial correlation is very common in environmental time series.  Serial correlation (also called autocorrelation) 
occurs when the residuals in a time series are not independent; instead, each residual depends, in part, on the 
previous residual.  That probably sounds pretty arcane and technical, but serial correlation has some very important 
practical effects on trend analyses.  To quote from the serial correlation Toolkit: 
 
 -Spurious--but visually convincing--trends may appear in your data  
 -Although the regression coefficients (or other results of your analysis) will still be unbiased, you will 

underestimate their uncertainties, potentially by large factors.   
 -Because uncertainties will be underestimated, confidence intervals and prediction intervals will be too 

narrow.   
 -Estimates of "goodness of fit" will be exaggerated. 
 -Estimates of statistical significance will be exaggerated, perhaps vastly so.  Your actual false-positive rate 

can be much higher than the α-value used in your statistical tests. 
 
You should have already received a toolkit that explains serial correlation, and details techniques to detect it and 
account for it.  Here, we will demonstrate some of these techniques.  The purpose is to give you a little bit of direct 
experience with serial correlation, to go along with the theoretical concepts in the toolkit. 
 
Open the JMP data file, "Serial correlation lab.jmp".  There are two 50-year time series here, labeled simply as A 
and B.  One of these time series has a real trend in it, and the other doesn't.  Your task is to figure out which is 
which. 
 
To begin, first plot both time series as a function of year, using Fit Y by X.  Now, before you fit a line to the data, 
just look at them.  �1:  Does either series look like there is a clear trend?  Which one?  Now, fit straight lines to both 
time series, and �2: note the regression slope, its standard error, and its statistical significance (p< value), for both 
time series.  Based on these results, which data series appears to have the more convincing trend?  �3:  Is there any 
visual evidence that either data set needs to be transformed to make it linear or to make it homoscedastic (to make 
the scatter roughly even, from the beginning of the time series to the end)? 
 
As the linear regression Toolkit stressed, it is vital to look at the residuals from any fitting exercise.  Let's go through 
a few of those steps.  Save the residuals from the two regression exercises, and plot them as functions of time.  �4:  Is 
there any evidence of curvature?  Any evidence of heteroscedasticity (uneven scatter)?  Any clear outliers?  �5:  Plot 
the distributions of the residuals.  Are there drastic departures from normality? 
 
The foregoing exercises simply check for curvature, non-normality, and heteroscedasticity.  They don't check for 
serial correlation.  To check for serial correlation, you need to plot the residuals against their lags.  To do this, you 
need to create two columns, called "lag A residuals" and "lag B residuals", with formulas that look like this: 

 Lag(Residuals Series A , 1)          and            Lag(Residuals Series B , 1)  (1) 

where you get the lag function from the "Row" category in the right-hand choice window.  Look to make sure that 
these columns are doing what you want them to: they should reproduce the two residuals columns, displaced 
downward by one row. 
 
Now, plot each of the residuals against its lags.  If the data are serially correlated, there should be significant 
correlation between the residuals and their lags.  �6: Is there such correlation, for either data set?  What are the 
correlation coefficients for set A and set B? 
 
You should have discovered that there is serial correlation in the residuals from data set A.  That raises the spectre of 
all of the badnesses that were spelled out in the introduction.  In particular, the uncertainty in the regression trend for 
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data set A may have been underestimated, and therefore the statistical significance may have been overestimated.  So 
we need a way to tell what the "real" parameters hiding inside that regression relationship are.  There are several 
practical ways to do this.  Let's review the theory behind them, again from the serial correlation Toolkit: 
 
Linear regression assumes that the "true" underlying linear relationship between X and Y is, 

  iii XY ε+β+α=  (2) 

where αand β are the "true" slope and intercept (corresponding to the parameters a and b that you would estimate 
from any particular data set), and εi are the errors in Y.  If those errors are serially correlated with a "true" 
correlation of ρ (roughly corresponding to the correlation coefficient r that you would estimate from the lagged 
residuals of any particular data set), then: 

  iii ξ+ρε=ε −1  (3) 

where ξi is random, and not serially correlated.  Note that a fraction ρ of each εi-1 is passed on to the next εi; you 
can think of ρεi-1 as the redundant part of εi, and ξi as the non-redundant part.  Regression assumes that the errors 
are uncorrelated, like the ξi, not like the εi, which are serially correlated.  So the question naturally arises: can we 
arrange things so that our residuals are the uncorrelated ξi, which regression knows how to handle, rather than the 
serially correlated εi?  Watch this: solve the linear relationship for ε, at both time i and i-1: 

  111 −−− β−α−=εβ−α−=ε iiiiii XY      and      XY  (4) 

Now, substitute both of these ε's into equation (3) above, and rearrange terms: 

 iiiiiiiiii )XX()(YY   or  )XY(XY ξ+ρ−β+ρ−α=ρ−ξ+β−α−ρ=β−α− −−−− 1111 1  (5) 

Note that the serially correlated errors εi have disappeared, and only the well-behaved error ξi remains.  There are 
several ways to fit equation (5) to data.  Here we will use the Hildreth-Lu procedure, which is conceptually quite 
simple (and relatively easy to implement on JMP).  The Hildreth-Lu procedure rewrites equation (5) such that Yi is a 
function of Yi-1, Xi, and Xi-1: 

  iiiii )XX()(YY ξ+ρ−β+ρ−α+ρ= −− 11 1  (6) 

The Hildreth-Lu procedure turns ρ into a parameter that is fitted to the data, just like α and β are.  This approach is 
simple, straightforward, and appealing.  There is only one drawback: equation (18) is nonlinear in the parameters, so 
it can't be solved by linear regression.  Instead, it must be fitted by nonlinear regression.  In JMP, this is done 
through the "Nonlinear Fit" platform.  This is explained in detail in "Nonlinear Regression" (Chapter 16 in the 
Statistics Guide in the help features of JMPIN); you can refer there if the instructions below aren't sufficiently clear.   
 
The first step is to create a new column, called "Y" (don't make this into a formula, just keep it as a data column), 
and copy Data Series A into it. 
 
The next step is to create another column and build a formula (call it "fit function") that contains the right hand side 
of this equation: 

   )()1( 11 −− −+−+= iiii rXXbrarYY             (where X, obviously, is time) (7) 

which JMP will then try to fit to the "Y" data by choosing appropriate values for the trend b, the y-intercept a, and 
the serial correlation coefficient r (as best-fit approximations to the true values α, β, and ρ).  These three constants 
are "parameters", and you need to define them.  Here's how you do it.    In the formula window, and click on the 
little triangle to the right of the heading of the left-hand window, click "Parameters", and then "New Parameter", 
then type "r" as the name, then enter an initial value for r (pick something reasonable!) and click "OK".  Create the 
parameters "a" and "b" in the same fashion.  Now, using your formidable formula-building skills, create the 
following formula: 

 r•Lag(Y , 1) + a•(1-r) + b•(Year - r•Lag(Year , 1)) (8) 
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You will need to select Y and Year from the "Table Columns" in the left-hand window, and a, b, and r the 
"Parameters" in the same left-hand window, and use the small triangle at the top of that window to toggle back and 
forth between displaying the parameters and displaying the table columns.   
 
When the formula looks like (8) above, close the formula window. 
 
Now, from the "analyze" menu, select "Nonlinear Fit".  Assign "Y" as the Y, or "response", variable, and "fit 
function" as the X, or "predictor" variable.  Then click "OK".  The fitting algorithm will try to adjust the constants in 
"fit function" so that it looks as much like "Y" as possible.  All you need to do is click "Go" (there are lots of other 
goodies here; if you're curious, see the help features).  Now, inspect the "Solution" table for the parameter estimates 
and their approximate standard errors.  �7: What are the estimates and standard errors for r, a, and b?   
 
�8: What is the ratio between the standard error of the slope (b) when serial correlation is taken into account, 
compared to the standard error that you calculated above?  (In other words, by how many times did your simple 
linear regression underestimate the uncertainty in the slope?)  �9: From your improved estimate of the slope and its 
standard error, calculate a value of t that expresses by how many standard errors the slope differs from zero.  What is 
the approximate statistical significance of this value of t?  What is the ratio between this statistical significance and 
the value you obtained earlier?  (In other words, by how many times did your simple linear regression overstate the 
statistical significance of the slope)? 
 
For the sake of completeness, copy data set B into the Y column and re-run your nonlinear fitting algorithm (you 
don't need to re-enter the formula; just click "reset" and then "go").  �10: Does correcting for serial correlation 
substantially alter the standard error of set B's slope, or its statistical significance? 
 
�11: Once serial correlation has been taken into account, which data set, A or B, do you think contains the real 
trend?  Which trend is known more precisely?  How does this compare with the results you got before you 
accounted for the effects of serial correlation? 

----> Don't discard your data set; keep it open for the next section <---- 
 
Serial correlation in global temperature records 
 
Now let's look at some environmental data.  In particular, let's look at the global average temperature record 
compiled by Jones et al.  Open the JMP data set, "Jones Global Temp.jmp"  This is the last 40 years of a data set that 
stretches back into the mid-1800's.  These are not temperatures in degrees C, instead, they are so-called temperature 
"anomalies".  In order to combine data from many different sites, Jones et al. calculated the average temperature for 
each site during a particular "reference" period (here, 1950-1975), then they subtracted this average from the 
readings for each year.  If the temperature in (say) October 1999 were 2°C warmer than the average for all the 
Octobers during the "reference" period, the temperature "anomaly" for October 1999 would be 2°.  As I explained in 
lecture a while ago, this subtracts out a lot of the site-to-site variability, and clarifies the year-to-year changes.   
 
It has been alleged that because there is serial correlation in long-term climate records, no reliable trends can be 
observed.  Test this claim with the Jones time series for 1960-1999, following the same steps above.  Regress the 
temperature anomaly against time, inspect the residuals, and plot the residuals against their lags to determine 
whether there's serial correlation.  Then use the Hildreth-Lu procedure to correct for the serial correlation.  To save 
yourself the trouble of building a whole new formula, (a) extend your previous data sheet to 480 rows, (b) copy the 
temperature anomaly data into the "Y" column and the years into the "year" column, and (c) re-use the formula you 
used before. 
 
�12: Write a brief summary of what you found.  How much serial correlation was there?  Did it significantly affect 
your results?  Is the global temperature trend statistically significant, even after serial correlation is taken into 
account?  What is your best estimate of the global warming trend, in degrees C per century? 
 
We hope that this lab has taught you to respect serial correlation, but not to fear it.  It's a beast, but one that can be 
tamed--or at least subdued. 


