Reasons to transform data
- to more closely approximate a theoretical distribution that has nice statistical properties
- to spread data out more evenly
- to make data distributions more symmetrical
- to make relationships between variables more linear
- to make data more constant in variance (homoscedastic)

Ladder of powers
A useful organizing concept for data transformations is the ladder of powers (P.F. Velleman and D.C. Hoaglin, *Applications, Basics, and Computing of Exploratory Data Analysis*, 354 pp., Duxbury Press, 1981). Data transformations are commonly power transformations, $x' = x^\theta$ (where x' is the transformed x). One can visualize these as a continuous series of transformations:

<table>
<thead>
<tr>
<th>θ</th>
<th>transformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>x^3 cube</td>
</tr>
<tr>
<td>2</td>
<td>x^2 square</td>
</tr>
<tr>
<td>1</td>
<td>x^1 identity (no transformation)</td>
</tr>
<tr>
<td>1/2</td>
<td>$x^{0.5}$ square root</td>
</tr>
<tr>
<td>1/3</td>
<td>$x^{1/3}$ cube root</td>
</tr>
<tr>
<td>0</td>
<td>log(x) logarithmic (holds the place of zero)</td>
</tr>
<tr>
<td>-1/2</td>
<td>$-1/x^{0.5}$ reciprocal root</td>
</tr>
<tr>
<td>-1</td>
<td>$-1/x$ reciprocal</td>
</tr>
<tr>
<td>-2</td>
<td>$-1/x^2$ reciprocal square</td>
</tr>
</tbody>
</table>

Note: - higher and lower powers can be used
- fractional powers (other than those shown) can be used
- minus sign in reciprocal transformations can (optionally) be used to preserve the order (relative ranking) of the data, which would otherwise be inverted by transformations for $\theta<0$.

To use the ladder of powers, visualize the original, untransformed data as starting at $\theta=1$. Then if the data are right-skewed (clustered at lower values) move down the ladder of powers (that is, try square root, cube root, logarithmic, etc. transformations). If the data are left-skewed (clustered at higher values) move up the ladder of powers (cube, square, etc).

Special transformations
$x' = \log(x+1)$ - often used for transforming data that are right-skewed, but also include zero values.
- note that the shape of the resulting distribution will depend on how big x is compared to the constant 1. Therefore the shape of the resulting distribution depends on the units in which x was measured. One way to deal with this problem is to use $x' = \log(x/\text{mean}(x)+k)$, where k is a small constant ($k<<1$). In this transformation, the mean x will be transformed to near $x'=0$ and k will function as a shape factor (small k will make x' more left-skewed, larger k will make it less so). But most importantly, changing the units of measure will not change the shape of the distribution.
$x' = \sqrt{x + 0.5}$ - sometimes used where data are taken from a Poisson distribution (for example, counts of random events that occur in a fixed time period), or used for right-skewed data that include some x values that are very small or zero. As above, the resulting distribution of x' depends on the units used to measure x.

$x' = \arcsin \sqrt{x}$ - used for data that are proportions (for example, fraction of eggs in a clutch that fail to hatch); converts the binomial distribution that often characterizes such data into an approximate normal distribution.

Important note

- in general, parameters (means, standard deviations, regression slopes, etc.) that are calculated on the transformed data and then are transformed back to the original units, will *not* equal the same parameters calculated on the original, untransformed data.

Symmetry plots (a precise visual tool for displaying departures from symmetry)

How to:

- sort the data set $x_i, i=1..n$ into ascending order, and find the median

- for each pair of points surrounding the median (which will be the the points x_i and $x_{(n+1-i)}$), plot:
 - on the horizontal axis, the distance $x_{\text{median}} - x_i$
 - on the vertical axis, the distance $x_{(n+1-i)} - x_{\text{median}}$

- if the points lie consistently above the 1:1 line, then the data are right-skewed.
- if the points lie consistently below the 1:1 line, then the data are left-skewed.
- if the points lie close to the 1:1 line, then $x_{\text{median}} - x_i = x_{(n+1-i)} - x_{\text{median}}$ and the distribution is approximately symmetrical.

![Symmetry plot](image)

Figure 2.15 A symmetry plot of the ozone data.