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General statement of the problem

If some quantity of interest z is calculated from other quantities x, y, q, w, etc.,

),w,q,y,x(fz L=

the average value of z will NOT, in general, be equal to the function f evaluated at the averages of  x, y, q, w,
etc.  Whenever f is nonlinear or its input variables are correlated with one another, ),,,,( Lwqyxfz ≠ , as the
following figure illustrates:
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Intuition tells us, from the figure above, that the true mean of z  (the upper open circle) will differ from f
evaluated at the mean of x (the lower open circle) by an amount that depends on two things: the degree of
curvature in the function f(x) and the amount of variability in x.  Note that z  deviates from )x(f  because x
is variable, not because the mean value x  is uncertain.  That is, increasing the number of measurements may
help to estimate x more precisely, but it will do nothing to decrease the discrepancy between )x(f  and z .

Method of moments

Simplest case: single-variable function z=f(x)
Approximate f by a quadratic curve that has a slope of dz/dx  and a curvature of d2z/dx2,

evaluated at the mean of x.  Then z  will be approximately,
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This result corresponds exactly to the intuitive impression conveyed by the figure above:
z  differs from )x(f  by an amount that is proportional to the curvature of f
(measured by the second derivative of z, d2z/dx2) and the variability of x, measured
by Var(x).

A sketch of the derivation goes like this.  Approximate the function f(x) by its second-
order Taylor series expansion about the mean of x:
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Take the mean of this approximate z:
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So one directly obtains the result given above.
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Function of two variables z=f(x,y)
Approximate f by a curved surface whose slope in the x and y dimensions is described by

the partial derivatives xz ∂∂ / and yz ∂∂ / , and whose curvature is described by the four
partial second derivatives 22 / xz ∂∂ , 22 / yz ∂∂ , yxz ∂∂∂ /2 , and xyz ∂∂∂ /2  (again, these
are evaluated at the mean x and mean y).  The mean of z  is approximately:
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The derivation follows that shown above, and will not be shown here.  Note that if the
surface is saddle-shaped, the variability in x and y can have offsetting effects on z .  If
x and y are uncorrelated, then the covariance term vanishes, leaving simply,
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Function of many variables z=f(x1, x2, x3...)
Caution: different notation.  Here x1, x2, x3...xm to refer to m  different variables (e.g., x2=y,

x3=q, etc.) rather than different measurements of a single variable.  The result for the
two-dimensional case shown above can be generalized to,
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Where all of the xi are uncorrelated with one another, the covariance terms vanish, leaving
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Exact analytic methods
If the probability density function p(x) is known, the mean of z can be calculated directly,

and without approximation, as
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If the integral cannot be solved analytically (as is often the case), it can be evaluated by
numerical integration.

Monte Carlo methods
Monte Carlo methods calculate the average value of z by brute force, by evaluating f at

many individual values of x, y, etc. that have been randomly generated from
distributions that have statistical properties similar to the real-world variables x, y, etc.
See the error propagation toolkit for further details.
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