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ABSTRACT

The remarkably regular geometric relations observed in stream networks have been
widely interpreted as evidence of a distinctive structure that reflects particular geomorphic
processes. These relations have also been interpreted as evidence that stream networks are
topologically random, formed by the laws of chance. Neither of these inferences is justified. The
oft-cited geometric properties are not specific to particular kinds of stream networks or to
topologically random networks; instead, they describe virtually all possible networks. They
therefore compel no particular conclusion about the origin or structure of stream networks.

OBSERVED REGULARITIES IN
STREAM NETWORK STRUCTURE

Stream networks are important, both as
controls on drainage basin hydrology (Kirk-
by, 1976) and as indicators of geologic proc-
esses. The patterns formed by stream chan-
nels are thought to reflect regional tectonics
(Ollier, 1981; Cox, 1989; Burbank, 1992) and
local geologic structure (Abrahams and
Flint, 1983), as well as prevailing erosional
mechanisms (Dunne, 1980) and climate
(Gregory, 1976; Daniel, 1981).

The morphology of stream channel net-
works is often characterized in terms of Hor-
ton’s (1945) ““laws of drainage network com-
position” (Fig. 1). Horton’s ““law of stream
numbers” states that N, the number of
streams of order w, decreases geometrically
with stream order:
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where () is the order of the network’s main
stream and Ry is the “bifurcation ratio.”
Horton’s “‘law of stream lengths’” holds that
L, the mean length of streams of each or-
der, increases geometrically with stream
order:
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where L, is the mean length of the first-order
tributaries and R; is termed the ““length ra-
tio.”” The ““law of stream areas,” proposed
by Schumm (1956) in the spirit of Horton,
holds that drainage-basin area A4, increases
geometrically with stream order:
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where A4, is the mean area draining into each
first-order tributary and R, is the ‘‘area
ratio.”

Today, many textbooks teach Horton’s
““laws” as central principles of drainage-ba-
sin structure (e.g., Chorley et al., 1984;
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Selby, 1985; Press and Siever, 1986; Ritter,
1986; Skinner and Porter, 1987; Judson and
Kaufman, 1990; McKnight, 1990; Bloom,
1991; Summerfield, 1991; Easterbrook,
1993). Dozens of studies on stream networks
in diverse landscapes have confirmed that,
as equations 1-3 predict, semilogarithmic
plots of stream lengths, numbers, and areas
vs. stream order (e.g., Fig. 1B) are nearly
linear. Except in networks subject to struc-
tural controls, these studies have also shown
that bifurcation, length, and area ratios are
restricted to relatively narrow ranges; Ry
generally varies between 3 and 5, with a
modal value of 4, R; usually ranges between
1.5 and 3, with a modal value of roughly 2,
and R, typically ranges between 3 and 6
(Chorley, 1957; Smart, 1972; Abrahams,
1984).

Many geomorphic theories yield net-
works that satisfy Horton’s laws and give
values of Ry, Ry, and R, that closely re-
semble those typically observed. Horton’s
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laws have been widely used as empirical
tests of specific models of drainage network
development (e.g., Roth et al., 1989; Rod-
riguez-Iturbe et al., 1992). They have also
been used to test more general claims that
stream networks form from successive gen-
erations of rills (Horton, 1945), that net-
works develop according to principles of
maximum entropy or maximum efficiency
(Leopold and Langbein, 1962; Woldenberg,
1969; Leopold, 1971; Rodriguez-Iturbe et
al., 1992), and that networks are topologi-
cally random, developing largely by the laws
of chance (Shreve, 1966, 1969, 1975).

NEED FOR A NULL HYPOTHESIS

Attempts to test geomorphic theories
against Horton’s laws have generally suf-
fered from the lack of an appropriate null
hypothesis. They have implicitly (and some-
times explicitly) assumed that Horton’s
laws, and the observed Horton ratios, char-
acterize a distinctive type of network struc-
ture and thus represent a strict empirical test
of whether the theories outlined above yield
realistic networks. Here I demonstrate that
this premise is false by showing that almost
all possible networks fit Horton’s laws and
have Horton ratios similar to those observed
in nature.

Directly enumerating all possible net-
works is impractical, because in networks
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Figure 1. A: Exploded diagram of stream channel network in Marin County, California (Montgomery
and Dietrich, 1989), illustrating application of conventional stream-ordering rules (Strahler, 1952):
(1) all streams without tributaries are first order; (2) where two streams of order « join, they both
terminate and a stream of order » + 1 begins, and (3) where two streams of unequal order meet,
lower-order stream terminates, and higher-order stream continues through junction. B: Number
(circles), mean length (squares), and mean drainage area (triangles) of streams in drainage network
of Daddy’s Creek, Tennessee (data of Morisawa, 1962), plotted as function of stream order, with
bifurcation, length, and area ratios (Rg, R,, and R,; see equations 1-3) calculated from slopes of
regression lines.
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Figure 2. Probability density functions (p) for
bifurcation, length, and area ratios for unbiased
sample (see text) of 9800 networks evenly dis-
tributed between N, = 20 and N, = 1000. Note
that distributions are narrow and that almost all
networks in this Monte Carlo sample have Hor-
ton ratios that fall within ranges typically ob-
served in natural stream networks (dashed
lines).

with realistic numbers of first-order streams,
the number of possible configurations is
very large (Shreve, 1966). Instead, I use a
Monte Carlo method (Shreve, 1974) to select
an unbiased sample of all possible networks
formed by a given number of first-order
channels. I then apply the ordering rules in
Figure 1A to each network; tally the num-
bers, lengths, and drainage areas of streams
of each order; and calculate the resulting bi-
furcation, length, and area ratios.

In a branching network, the number of
streams of each order is a purely topological
property; it depends only on the sequence in
which the channels merge (Melton, 1959).
Stream lengths and drainage areas depend
both on network topology and on the length
and contributing area of each channel seg-
ment (or ““link”’) connecting adjacent nodes.
Here, for simplicity, I assume that average
link lengths do not vary with order, so length
ratios can be estimated from the topological
lengths (i.e., the number of component
links), rather than physical lengths, of
streams. I also assume that the average con-
tributing area per link does not change with
order, so area ratios can be estimated from
the total number of links, including tributar-
ies, that make up each stream in a network
(these assumptions are addressed in more
detail below). Thus, by tallying the number
of streams in each order, the number of links
in each order, and the number of links in
each order’s drainages, I can estimate Rg,
R;, and R, by linear regression (as in
Fig. 1B) for each Monte Carlo network (in
accordance with typical practice, if a single
point corresponding to a short main stream
would exert undue leverage, it is omitted
from R; regressions).

In an unbiased sample of all possible net-
works that can be formed by merging N,
first-order channels, 20 < N; < 1000, 96% of
all bifurcation ratios (Rg), 95% of all length
ratios (Ry ), and 98% of all area ratios (R,)
fall within the ranges considered typical for
natural stream networks 3<Rg < 5,15 =<

R, =3,3 <R, <6), and the modal values
are close to those observed in nature
(Fig. 2). The Horton plots for each of the
three ratios (as in Fig. 1B) are also very
straight; 96% of Ry and R4 plots have re-
gression coefficients 7 = 0.98, and 95% of
R;_plots have 7 = 0.80. In other words, al-
most all possible networks obey the same
Hortonian ‘‘laws” observed in studies of
natural channel networks.

If stream networks have distinctive char-
acteristics, Horton’s ratios fail to identify
them, yielding only the singularly imprecise
conclusion that natural stream networks are
some subset of all possible networks. It is
not surprising that Horton’s laws are suc-
cessfully predicted by many different theo-
ries and models, because only a small frac-
tion of possible networks violates Horton’s
laws. Therefore, the observed regularity of
stream networks, as viewed through the tra-
ditional stream-ordering protocols and Hor-
tonian analysis, is an exceedingly weak test
of theoretical models of network structure.

RANDOM AND NONRANDOM
NETWORKS

Statistical methods like those used above
have previously been used to draw a very
different conclusion—that in the absence of
structural controls, natural channel net-
works develop by chance and are in fact to-
pologically random, like the Monte Carlo
sample in Figure 2 (Shreve, 1966, 1969,
1975). Today, it is generally believed that
stream networks obey Horton’s laws be-
cause they are topologically random, but the
data do not justify that interpretation. Topo-
logically random networks certainly obey
Horton’s laws, but so do networks that
clearly violate the assumption of topological
randomness, as I show below.

My approach is to take the Monte Carlo
networks in Figure 2 (which are topologi-
cally random) and rank them according to
various topological criteria. Dividing a
ranked set in half yields two topologically

Networks ranked in order of increasing diameter >
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Figure 3. Topologically random set of ten networks formed from 60 first-order streams, ranked in order of increasing diameter. Stick-figure diagrams
describe network topology (i-e., order in which channels merge), but do not show size, shape, or orientation of channel links. Arrow represents outlet
of network, and vertical position of individual links indicates number of junctions separating them from outlet. Note that obvious differences between
elongated and compact networks are not reflected consistently in bifurcation, length, and area ratios. Subsets shown are topologically nonrandom
because they include only networks that are more elongated, or more compact, than median diameter.
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nonrandom subsets of the original random
set. I then test whether the Horton ratios of
these topologically nonrandom networks de-
viate significantly from those of the topolog-
ically random networks.

In Figures 3 and 4, I divide the networks
according to diameter, which is the number
of links separating the outlet from its farthest
first-order tributary (Smart, 1978). As Figure
3 shows, networks with larger diameters are
topologically longer, whereas networks with
smaller diameters are more compact. The
Monte Carlo sample shown in Figure 2 in-
cludes ten networks for each number of first-
order channels N,. For Figures 3 and 4, I
rank the ten networks for each N, in order of
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Figure 4. Distributions of bifurcation, length,
and area ratios for topologically nonrandom
sets in which each network is more elongated
(larger diameter) or more compact (smaller di-
ameter) than median for each number of first-
order streams (see Fig. 3). Distributions for
compact and elongated networks are almost in-
distinguishable from each other and from dis-
tributions for topologically random networks
(Fig. 2).
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increasing diameter, then divide the ranked
set in half. The two resulting sets of net-
works are mutually exclusive and markedly
nonrandom; one set contains only networks
that are more elongated than the median di-
ameter for their N,, and the other set in-
cludes only networks that are more compact
than the median diameter.

Even though both the elongated networks
and the compact networks clearly violate
the premise of topological randomness, they
both have distributions of bifurcation,
length, and area ratios (Fig. 4) that are al-
most indistinguishable from those of topo-
logically random networks (Fig. 2). The
degree of similarity between these distribu-
tions can be quantified through the following
thought experiment. Imagine one had a sam-
ple of networks drawn from either of the
nonrandom distributions shown in Figure 4.
How large a sample would be needed to de-
tect a statistically significant difference be-
tween either of these distributions and the
random set of networks shown in Figure 2?
Table 1 shows that roughly 170 Ry values, 60
R, values, or 280 R, values from elongated
or compact networks would be needed to
reject, at p = 0.05, the hypothesis that the
networks were actually random. Horton’s
ratios cannot readily distinguish between
random and nonrandom sets of networks.
Therefore, the fact that the ‘““random mod-
el”” successfully predicts Horton’s laws and
the observed Horton ratios does not dem-
onstrate that natural stream networks are
actually random.

.DISCUSSION

The argument presented above has two
central points. First, almost all possible net-

works have Horton ratios similar to those
observed in studies of natural channel net-
works, so those ratios are a very weak test
of theories of stream network structure.
Second, because both random and nonran-
dom sets of networks yield essentially the
same Horton ratios, the ratios observed in
nature do not show whether natural stream
networks are random. The generality of
these results depends on the following three
questions.

First, do link lengths and contributing ar-
eas change with order, contrary to the as-
sumptions used here? Some studies of nat-
ural channel networks indicate that links in
first-order streams are somewhat longer, on
average, than those of higher order streams,
and others suggest that they are shorter
(Shreve, 1969; Smart, 1972; Montgomery
and Dietrich, 1989). First-order link lengths
are sensitive to the criteria used to define
where first-order channels begin, and there
are very few published measurements of link
contributing areas. However, plausible vari-
ations in link lengths and contributing areas
are unlikely to affect the results reported
here. If first-order links were 50% longer
than higher order links, on average, as some
field data suggest (Smart, 1972), the length
ratio (R ) values reported above would be
reduced by an average of only 0.1. Doubling
the average contributing area to first-order
links (Shreve, 1969) would decrease the re-
ported area ratio (R,) values by an average
of only 0.2. The effects of plausible varia-
tions in link lengths and areas are small com-
pared to the effects of the stream-ordering
definitions, which geometrically compound
the numbers of links in each order.

Second, do these results depend on the

TABLE 1. SAMPLE SIZE NEEDED TO DISTINGUISH NONRANDOM GROUPS OF NETWORKS

Networks Rg" sst R sst Ra" sst
Random networks 3.8+ 04 21 £ 04 43 + 0.6
Nonrandom subsets selected according to:
Diameter
> median 3.9 £ 05 169 22+ 04 61 44 £ 0.7 276
< median 3.7 £ 04 169 19 £ 0.3 61 42 + 0.5 _277
Width
> median 3.6 + 0.4 143 1.9 + 0.3 77 42 £ 0.5 232
< median 3.9 £ 05 140 22+ 04 75 45 + 0.7 227
Mean source height
> median 3.9 £ 05 190 22+ 04 64 44 + 0.7 382
< median 3.7 + 0.4 190 1.9 £ 0.3 64 42 + 0.5 383
Mean source height / diameter
> median 3.8 £ 04 12719 2.0 £ 0.3 4906 43 + 06 3290
< median 3.8 £ 0.5 12506 2.1 £+ 0.4 4855 43 + 06 3262

“Means + standard deviations for Monte Carlo sample of 9800 networks evenly distributed from
N7 =20to N7 = 1000, and for nonrandom subsets created by dividing random sample in half

according to various topological criteria (see text).

Approximate number of samples from nonrandom distribution that would be needed to reject
(p = 0.05) hypothesis that samples were drawn from random networks, using Kolmogorov-

Smirnov test for differences in distributions.
are both skewed and leptokurtic.

Student's t-test is not used, because distributions
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number of first-order streams (N, ) in the net-
works that were analyzed? Because the like-
lihood of particular bifurcation, length, and
area ratios varies with N, the details of the
distributions shown in Figures 2 and 4 will
vary somewhat with the range of N; sam-
pled. However, repeating this analysis with
widely differing N, ranges (20 < N, < 1000,
20 <N, 200,20 <N, 500,500 <N, <
1000, and 20 < N, < 10000) yields substan-
tially the same results as reported above.

Third, are the results shown in Figure 4
sensitive to the particular topological crite-
rion used to create the two nonrandom sets
of networks? I have repeated the analysis
described above using three other structur-
ally important ranking criteria: (1) network
width (Kirkby, 1976), the largest number of
links equidistant from the network outlet, (2)
mean source height (Jarvis and Werrity,
1975), the average distance separating first-
order links from the network outlet, and (3)
mean source height divided by diameter,
which expresses the degree to which the net-
works in Figure 3 appear top-heavy or bot-
tom-heavy. In each case, the results agree
with those reported above; the Horton ratios
of the nonrandom networks are virtually in-
distinguishable from those of the random
networks (Table 1).

These results do not show that natural
channel networks are actually nonrandom;
they simply show that Horton ratios are
poor indicators of whether or not networks
are random. Other measures have revealed
systematic departures from topological ran-
domness in natural stream networks, even
where geologic controls are absent (Smart,
1978; Abrahams, 1984). The ‘‘random mod-
el”” remains particularly useful as an explicit
null hypothesis; because it is parsimonious,
its premises can be stated concisely, and its
implications can be calculated readily. How-
ever, failure to reject this null hypothesis
does not indicate that networks are in fact
random, if the measures used (such as Hor-
ton ratios) are not sensitive to randomness in
network structure.

This analysis shows that Rg, Ry, and R
are profoundly indifferent to network struc-
ture. Because the stream-ordering rules cre-
ate a particular hierarchy of separate
streams in channel networks, they constrain
Ry, R, and R, to relatively narrow ranges,
thus enforcing substantial uniformity in the
derived stream statistics whether or not
there is structural uniformity in the under-
lying networks themselves. My results
support earlier intuitive arguments that Hor-
ton’s laws must be an artifact of stream-or-
dering methods (Bowden and Wallis, 1964;
Milton, 1966; Smart, 1978), by showing that
few possible networks lie outside the usual
ranges of Ry, Ry, and R,, and by showing
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that these ratios are insensitive to marked
changes in network structure. For example,
the Horton ratios of the networks shown in
Figure 3 vary little and do not reflect, in a
consistent way, the obvious differences be-
tween elongated and compact networks.
These ratios vary over such a small range
(Fig. 2, Table 1) and are so insensitive to pro-
nounced differences in network configuration
(Figs. 3 and 4, Table 1) that it is unsurprising
that they are also insensitive to prevailing ge-
ologic and climatic conditions (Smart, 1978).

These results do not imply that stream
networks lack distinctive geometric or topo-
logical characteristics. Rather, these results
show that if stream networks have unique
structural features, those characteristics are
unlikely to be revealed in the numbers,
lengths, and areas of streams defined
through the conventional stream-ordering
rules. Factors that regulate channel forma-
tion, such as competition for drainage area
(Dunne, 1980; Abrahams, 1984) and ero-
sional thresholds controlling channel inci-
sion (Montgomery and Dietrich, 1989),
should give rise to distinctive network pat-
terns. Devising morphometric techniques
to detect the characteristic structure of nat-
ural channel networks and explaining that
structure in mechanistic terms remain
central problems in quantitative fluvial
geomorphology.
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