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Statistical inevitability of Horton’s laws and the apparent randomness of stream channel networks:

Comment and Reply

COMMENT

Jeffrey G. Masek, Donald L. Turcotte
Department of Geological Sciences, Comnell University, Ithaca,
New York 14853

In Kirchner’s (1993) statistical study of stream networks, he
argued on the basis of Monte Carlo simulations, that Horton’s ratios
are not diagnostic of any particular mode of formation but are nearly
universal attributes of all networks. Although we agree with the
primary conclusion of the paper, we dispute the assertion that the
inevitability of Horton’s ratios is ““‘an artifact of stream-ordering
methods” (Kirchner, 1993, p. 594). Alternatively, we suggest that
fractal analysis provides a more useful way to interpret the results of
Kirchner (1993). :

It has long been noted that river networks are classic examples
of scale-invariant (fractal) trees (Mandelbrot, 1982). In fact, satis-
fying Horton’s bifurcation and length-order ratios are necessary
conditions for any drainage to be fractal. Thus, Kirchner (1993) has
really shown that the majority of drainages created with the Monte
Carlo simulation are, in fact, fractal. In terms of Horton’s bifurcation
ratio (Rg) and length-order ratio (R ), the fractal dimension (D) of a
drainage network may be written as

_ log(Rg)
log(Ry)’

Using the modal values for Rg and R;_from Kirchner (1993), we find
that D = 2.0. The fractal dimension can be related to the Euclidian
dimension in a direct way, such that a dimension of D = 2 corre-
sponds to the space-filling geometry of a plane. Given the conclusion
that most networks are inherently fractal, it should not be surprising
that, if extended to infinite order, the networks tend toward the
space-filling geometry of D = 2. Indeed, in nature, a fractal dimen-
sion close to 2 is a necessary condition for river networks to drain
any point on the land surface. This was also first noted by Mandel-
brot (1982).

We agree with Kirchner (1993) that satisfying Horton’s ratios is
not an adequate check on any particular model for network forma-
tion. We emphasize, however, that the basic mechanics behind the
formation of fluvial networks is still poorly understood, and the
problem merits further investigation. In the past ten years, several
physical models have been proposed to generate fractal networks.
Kondoh and Matsushita (1986), Meakin et al. (1991), and Masek and
Turcotte (1993) have introduced diffusion-limited aggregation mod-
els for drainage networks. Stark (1991) developed a model based on
self-avoiding percolation clusters. Chase (1992), Willgoose et al.
(1991), and Kramer and Marder (1992) developed advection-diffu-
sion models coupled with topography. To a greater or lesser extent,
these models make unique predictions about the way in which net-
works self-organize in response to precipitation and topography.
Although these models presumably generate fractal networks, they
differ in terms of rietwork shape, density, and evolution. Thus, al-
though structural differences berween natural networks are certainly
of interest, the universal pattern of network evolution common to all
drainages deserves further study as well.
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REPLY

James W. Kirchner
Department of Geology and Geophysics, University of California,
Berkeley, California 94720

The numbers, lengths, and areas of streams in natural channel
networks vary systematically with stream order. These relations,
known as Horton’s “‘laws of drainage network composition,”” have
been widely interpreted as evidence that natural channel networks
are fractal. Masek and Turcotte apply this interpretation to my re-
cent theoretical study of network structure, which shows that Hor-
ton’s laws, and the typical values of the Horton ratios, are not spe-
cific to natural channel networks but instead are shared by virtually
all possible networks. My work also shows that Horton’s bifurca-
tion, length, and area ratios (Rg, Ry, and R,) are profoundly insen-
sitive to pronounced changes in network structure. Because Ry and
R,_contain little geomorphological information, I am skeptical that
the ratio log(Rg)/log(Ry) will be geomorphologically informative
when interpreted as a fractal dimension, as Masek and Turcotte
suggest and as others have suggested previously (e.g., Tarboton et
al., 1988; Hinrichsen et al., 1989; LaBarbera and Rosso, 1989; Liu,
1992).

Masek and Turcotte argue that because nearly all of my hypo-
thetical networks obey Horton’s laws, these networks are fractal.
cannot agree, because logically they have the cart before the horse.
If a network is statistically self-similar (or “fractal”), then it must
obey Horton’s laws. To my knowledge, the converse has not been
shown—i.e., that networks conforming to Horton’s laws (however
closely or loosely they may do so in the real world) are necessarily
self-similar. How nonfractal can a network be while still conforming
to Horton’s laws as closely as do real stream networks? If both
fractal and nonfractal networks obey Horton’s laws, then one can-
not use Horton’s laws as an indicator of whether or not stream
channel networks are fractal.
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It is important to recognize that networks obey Horton’s laws
largely because of the particular way that the conventional stream-
ordering rules divide the network into separate streams and assign
them their various orders. The streams for which numbers, lengths,
drainage areas, and orders are compared in Horton’s laws do not
begin and end at points determined by nature. Instead, they begin
and end at points determined by an externally imposed classification
scheme. This classification scheme filters the geomorphological in-
formation in the network such that Horton’s laws are, as I have put
it, ““statistically inevitable”’: one can contrive examples that violate
Horton’s laws, but such examples are rare. The commonly used
stream-ordering rules require that two streams of a given order must
meet for a stream of the next higher order to begin. This hierarchical
definition of stream order, combined with a small degree of struc-
tural randomness or random mapping error, can create the power-
law relations that are commonly observed, whether or not the net-
works themselves possess a systematic underlying configuration.
These relations explain why nearly all possible networks obey Hor-
ton’s laws and why wide variation in network structure has little
effect on the calculated Horton ratios and, thus, the estimated fractal
dimensions.

Because Horton’s laws and the ““typical’ values of Rg = 4 and
R, = 2 are largely an artifact of stream ordering, I am reluctant to
interpret Horton’s laws as the “‘signature’ of self-similarity in
stream networks. I agree with Masek and Turcotte that ““the uni-
versal pattern of network evolution common to all drainages de-
serves further study,” if such a pattern actually exists. Whether
such a pattern exists, and what its character is, remain open ques-
tions. To determine whether a universal pattern exists, we need
sensitive measures of network configuration, ones that will yield
similar measurements for diverse networks only if the networks
themselves share a common structure. ’

It is tempting to assume that invariance in some descriptive
statistic, such as fractal dimension, implies uniformity in the things
to which that statistic is applied. Sometimes this assumption turns
out to be correct, but sometimes the statistic is simply insensitive,
or is controlled artifactually by the way we have classified or meas-

ured the objects of our analysis. We have been down that road be-
fore. For decades many geomorphologists interpreted the uniform-
ity in Horton’s ratios as reflecting a general underlying property of
stream networks themselves, and they have used Horton’s laws to
justify diverse theories of network evolution. Now we better under-
stand the limitations of Hortonian analysis, but I am concerned that
we may unwittingly repeat this experience, this time with fractal
geometry. One can now find phrases in the fractals literature echoing
Horton’s (1945) argument that his laws “‘evolve from physical proc-
esses which Nature follows rather closely in the development of
stream systems. . . .”” One also sees statements implying that par-
ticular theories of network evolution must be correct because they
predict the same fractal dimensions that are observed for real net-
works. For such inferences, appropriate null hypotheses are crucial;
we should know what values we expect for the descriptive statistic
of interest (bifurcation ratio, fractal dimension, and so forth) both if
the theory holds and if it does not.

Fractal geometry merits serious attention as a technique for
describing many geomorphological phenomena, including stream
networks. However, I hope we will not uncritically assume that
fractal dimensions are meaningful in every case where a fractal di-
mension can be calculated. We should be able to find out quickly
whether or not fractal dimension is a useful index of stream channel
network structure, particularly if we remember that descriptive sta-
tistics can mislead as well as inform.
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Post-125 Ma carbon storage associated with continent-continent collision: Comment and Reply

COMMENT

Derrill Kerrick

Department of Geosciences, Pennsylvania State University,
University Park, Pennsylvania 16802

Ken Caldeira

Global Climate Research Division, Lawrence Livermore
National Laboratory, 7000 East Avenue, L-256,

Livermore, California 94550

Selverstone and Gutzler (1993) concluded that the transfer of
carbon from the atmosphere to deep-seated metamorphic reservoirs
during the Tethyan continent-continent collision may have contrib-
uted to post-125 Ma global cooling. However, because the long-
term (>1 m.y.) atmospheric CO, content is controlled by the inter-
play between the flux of CO, from Earth degassing vs. CO,
consumed by silicate-rock weathering (Berner et al., 1983), carbon
sequestered in orogenic environments affects atmospheric CO, only
if it influences the rates of degassing (Kerrick and Caldeira, 1993)
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and/or weathering (Raymo and Ruddiman, 1992). We agree that
there is net carbon storage in orogenic belts; nevertheless, colli-
sional orogenesis can enhance CO, degassing to the atmosphere
because metamorphism in orogenic belts can liberate to the atmo-
sphere CO, that would have otherwise remained locked up in ker-
ogen and carbonate rocks.

Selverstone and Gutzler (1993) concluded that carbon was re-
tained in carbonate minerals and graphite and that there was little or
no CO, loss from metamorphic devolatilization reactions involving
these minerals. However, residual carbonate may remain in meta-
morphic rocks even after significant CO, loss by decarbonation.
Quantitative estimates of reaction progress suggest that extensive
decarbonation occurred in many impure metacarbonate rocks.
Marls lose between 5 and 30 wt% CO, during prograde metamor-
phism (Frank, 1983; Kerrick and Caldeira, 1993). Abundant calc-
silicates in metamorphosed siliceous dolomites of the Alps
(Trommsdorff, 1966; Franz and Spear, 1983), Mediterranean
Tethys, and Himalaya orogens (Kerrick and Caldeira, 1993) attest
to significant decarbonation. Using a model orogenic carbonate
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