abundance of the lighter isotope (Shimizu and Hart, 1982), which
will result in apparently low “*’Pb/**Pb ages. Several attempts
have been made to constrain the limits for fractionation in
SHRIMP °7Pb/2%Pb measurements by comparison with thermal
ionization analyses on the same samples, but a convincing value
has not been established. In some cases no fractionation could be
proven (e.g., Compston et al., 1984). The estimate for mass frac-
tionation of 3%c/amu suggested by Wiedenbeck and Watkins
(1993) is an artifact due to their use of 572 Ma for the 2°7Pb/2%Pb
age for the reference zircon SL3 instead of 552 Ma. It is agreed
that the unknown Pb isotopic fractionation during sputtering re-
mains a problem, but it should be noted that 3% Pb isotopic
fractionation causes only 5 m.y. underestimation in the ages of
the 3600-3900 Ma samples presented by Nutman et al. (1993).

 stress that the universal problems in data assessment raised by
Wiedenbeck are second order in the consideration of dating Archean
zircon populations having low U contents. In no way do these prob-
lems alter the conclusion of Nutman et al. (1993) that the Amitsoq
gneisses of West Greenland contain many groups of unrelated plu-
tonic rocks emplaced between 3600 and 3900 Ma.
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Statistical inevitability of Horton’s laws and the apparent randomness of stream channel networks:

Comment and Reply

COMMENT

Brent M. Troutman, Michael R. Karlinger
U.S. Geological Survey, MS 418, Bax 25046, Federal Center,
Denver, Colorado 80225

Kirchner (1993) raised some interesting questions concerning
the value of Hortonian analysis of drainage networks. We comment
here on his conclusions and offer another perspective on this prob-
lem. Generally, Kirchner argued that Horton’s laws are ““statisti-
cally inevitable”” and therefore that Hortonian analysis is a weak test
of theoretical models of network structure. We demonstrate here
that this conclusion is not in general justified. Although, as Kirchner
showed, Horton’s ratios may yield weak tests of certain types of
structural peculiarities, they will provide powerful tests of other
types.

We restrict our discussion to the bifurcation ratio, Rg, in this
Comment, but similar arguments may be advanced concerning the
length and area ratios as well. Let S, be the set of all configurations
of networks of magnitude 7 (i.e., with n first-order streams). Kirch-
ner generated networks from a union of the sets S, for n ranging from
20 to 1000 and analyzed this mixture; results shown in his Figure 2A
depict clearty the tendency for Ry to be clustered around 4. What
must be recognized, however, is this crucial fact: The distribution of
Ry depicted in Kirchner’s Figure 2A is very much dependent on the
computer algorithm (a Monte Carlo method of Shreve, 1974) that he
used to generate the networks. When Shreve’s algorithm is used, the
assumption is that all elements of S, for a given n are equally likely;
in other words, a uniform distribution on S, holds. (This, inciden-
tally, is the primary assumption of the random topology model.)
Thus, the “statistical inevitability’” of Rg values near 4 (Kirchner,
1993) is in fact reaily a property of networks having a uniform prob-
ability distribution on S,,. We could quite easily design a computer
exercise that would produce networks having an Ry distribution that
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looks quite different from the one in Kirchner’s Figure 2A; this is
simply a matter of sampling from a suitably chosen nonuniform dis-
tribution, such as the one we discuss below.

Kirchner implied that the method he used to generate networks
is in some sense preferred—he referred to his sample as ‘‘unbi-
ased.” But it is not at all clear in what sense the term ““unbiased”
is to be interpreted here. It is true that there is a natural correspond-
ence between a uniform distribution and simple enumeration of
points in a finite sample space (S, here); simple enumeration makes
an implicit assumption that all points in the sample space are equally
likely. But in performing such an enumeration we must be careful
not to fall into the trap of thinking that our equal probability enu-
meration has any implications about what patterns might arise in
nature. It is perfectly conceivable that real-world networks might
tend to lie in a small (perhaps very small!) subset of the sample space
S,. Without first collecting data for actual networks and computing
Rg, we do not know whether such values will tend to cluster around
4, or near 2, or near 5. If we collected data and found that Rg tended
to lie near 2.5, for example, it would be evidence for a nonuniform
distribution on S, in nature. Accordingly, in that situation, a more
natural and “unbiased’” Monte Carlo-generated sample would be
one that comes from a nonuniform distribution. Now, the fact that
after collecting data on real basins, we observe that Ry values do
tend to have a relative frequency that closely resembles Kirchner’s
Figure 2A is an indication that the uniform distribution tends to hold
for real basins. That is, it is one piece of evidence in favor of the
random topology model. There is, however, no *“statistical inevita-
bility”” for such behavior, and there is no way we could have, with-
out data, predicted that the uniform distribution would be a good
approximation for real networks.

There have been numerous examples of nonuniform distribu-
tions on topological network configurations in the geomorphology
literature; see, for example, Werner (1972), Dacey and Krumbein
(1976), and Van Pelt et al. (1989). In these works one sees that Rg



may indeed differ consistently from 4, even in the limit as the number
of sources n grows large. A further illustration that there is nothing
sacred about a uniform distribution in nature may be found in Kar-
linger and Troutman (1989) and Troutman and Karlinger (1992). In
this work, the set of possible network configurations (analogous to
S, above) is composed of spatial networks draining a fixed set of grid
points. Although we first assumed a uniform distribution (Karlinger
and Troutman, 1989), we found, after further investigation (Trout-
man and Karlinger (1992), that real networks do in fact constitute
only an extremely smail subset of the set of all the possible net-
works. Here is an example in geomorphology where generation of
networks according to uniform distribution would give a very
skewed picture of what might be regarded as ““statisticaily inevita-
ble.” This situation is the rule rather than the exception in statistical
mechanical systems, where typically large parts of the configuration
space end up being assigned a very small probability.

What about the usefuiness of Rg in testing network models? Let
us say that we want to test a uniform (null hypothesis, H) vs. a
nonuniform model (alternative hypothesis, H,) using Ry as a test
statistic (Kirchner used the terms ‘““random’ and ‘‘nonrandom”” in-
stead of “‘uniform’ and “‘nonuniform’’). The power of the test will
depend on the distribution of networks under H,. Kirchner (1993)
correctly pointed out that the test using Ry will not be very powerful
in testing certain alternative models, such as those with certain re-
strictions on diameter, network width, source height, or source
height divided by diameter. But why should we expect a bifurcation
property to be powerful in these situations? If we are really inter-
ested in testing bifurcation structure, it makes more sense to pose a
parametric model that explicitly incorporates this structure. Al-
though there are many ways one could define such a model, a very
simple probability model may be defined by taking the probability of
a network s to be proportional to exp[—BRg(s)], where s is a par-
ticular network in S,,, Rg(s) is the bifurcation ratio for s, and B is a
parameter. This model is patterned after the Gibbsian model in sta-
tistical mechanics (Troutman and Karlinger, 1992); the techniques in
this paper may be used to generate networks from this distribution.
When B is 0, this model reduces to the random topology (i.e., uni-
form) model. Thus, the hypotheses of interest become H,,; B = 0 vs.
H,: B = 0. Under H,, the distribution of Ry will look like Kirchner’s
(1993) Figure 2A. Under H,, however, this distribution can have
central tendency anywhere between the minimum (2, or near 2, de-
pending on n) and maximum (n) value that Rg may take on. Thus,
using Ry to test the random topology model against this set of al-
ternative models will indeed lead to a powerful test; Kirchner’s claim
that Ry is ‘““profoundly indifferent to network structure’” certainly
does not hold here. All we have done is to emphasize the obvious:
Ry is useful for detecting differences in bifurcation structure, even
though it may not be useful for detecting other types of differences.

We agree with Kirchner’s assertion that there are many in-
teresting and important properties of networks that Horton’s laws
do not address and that Horton’s ratios cannot test effectively. De-
termining what morphometric properties are distinctive and struc-
turally important and devising tests to look at these properties do
indeed “‘remain central problems in quantitative fluvial ggomorphol-
ogy.” Horton’s ratios do tell us something substantive, however.
Let us not be quite so hasty in discarding them.
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REPLY

James W. Kirchner

Department of Geology and Geophysics, Umvemty of California,
Berkeley, California 94720

[ appreciate the interest Brent Troutman and Michael Karlinger
have shown in my work, but I regret that they have misconstrued my
argument. They portray me as claiming that natural channel net-
works are topologically random, and that therefore Horton’s laws
and the commonly observed values of Horton’s ratios are unavoid-
able. That’s not what I said, as my paper (Kirchner, 1993) plainly
shows. My argument was, and is, as follows. (1) The vast majority
of all possible networks have Horton ratios similar to the values
reported for natural channel networks, so the Horton ratios ob-
served in nature are not special or peculiar to natural networks. (2)
Many different models of network structure predict functionally
identical distributions of Horton’s ratios, so Hortonian analysis can-
not be used to test these models against one another. (3) In partic-
ular, many nonrandom sets of networks have Horton ratio distri-
butions similar to those of the random model, so the fact that
topologically random networks yield ‘realistic’” Horton ratios does
little to support the notion that natural channel networks are topo-
logically random.

Some of Troutman and Karlinger’s difficulties stem from their
fixation on the phrase “statistically inevitable,”” which occurs four
times in their comment but is found only in the title of my paper,
never as part of the assertions in which they incorporate it. That
Troutman and Karlinger have misread my work is illustrated by their
third paragraph, in which they wonder about my use of the term
“‘unbiased,” and suggest that a nonuniform distribution would yield
amore “unbiased’’ sample if real networks are distributed that way.
My paper, however, clearly refers to an ‘“unbiased sample of all
possible networks” (emphasis added), not an unbiased sample of
real networks. My simulated networks are not intended to model
real stream networks, but rather to sample the universe of all pos-
sible network configurations without preferentially selecting any
particular kinds of networks. These simulations permit me to esti-
mate the Hortonian behavior expected for networks that are not
““special’ in any particular way, and thus to show that Hortonian
analysis apparently cannot distinguish real stream networks among
the class of all possible networks. In other words, I used topologi-
cally random networks as a nuil hypothesis (not a hypothesis for how
actual networks are formed), and showed that within the Hortonian
framework, one cannot reject this hypothesis; nor—an important
point—can one reject a wide variety of competing hypotheses. Be-
cause Ry is a purely topological property of networks, the obvious
null hypothesis for such a study is a topologically unbiased subset of
all possible networks. The ““crucial fact,”” as Troutman and Kar-
linger put it, that they could contrive a different algorithm to give
different Ry distributions, is true but irrelevant. Any contrived dis-
tribution would be less useful as a null hypothesis, because it would
not properly span the universe of all possible networks.
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Of course, Troutman and Karlinger are correct that the distri-
bution of Ry values could diverge from my Figure 2A if the prob-
ability of a network s were proportional to, for example,
exp[—BRg(s)] with B = 0, or any other nonuniform probability dis-
tribution. Obviously, by preferentially selecting particular networks
according to Ry itself, we can create populations of networks with
different distributions of Rg. However, the fact that we can do this
does not demonstrate—as Troutman and Karlinger imply—that Rg
is an interesting or important network property. Note, for example,
that we could use the same technique to select networks according
to a perfectly meaningless parameter, such as a randomly assigned
serial number. Therefore, Troutman and Karlinger’s argument does
not support their claim that “Rg is useful for detecting differences in
bifurcation structure,” except in the trivial sense that Rg can detect
differences in Ry, itself.

One could test a null hypothesis (such as 8 = 0 in the expression
above) against alternative hypotheses (such as B = 0) for the dis-
tribution of Rg, as Troutman and Karlinger suggest. But what would
we learn from doing so? We would merely be testing whether Ry
was distributed one way or another, not testing theories about how
networks are formed. For tests of Rg to be scientifically informative,
different theories of network structure must predict Ry distributions
that diverge measurably from one another. Many radically different
channel network models predict roughly the same Hortonian be-
havior (because, as my [Kirchner, 1993] Figures 3 and 4 illustrate,
pronounced differences in network structure can be obscured in the
Horton statistics). The fact that each model agrees with the Horton
statistics of real networks is taken by its authors as confirmatory,
while it somehow escapes notice that the same statistics agree
equally well with other incompatible models. To spur development
of better network models, we need tests that the models will stand
some chance of failing.

Troutman and Karlinger conclude that Ry is a useful measure
that can provide powerful tests of network theories. Experience
suggests otherwise. For example, while the papers cited by Trout-
man and Karlinger (Werner, 1972; Dacey and Krumbein, 1976; Van
Pelt et al., 1989) all contain theories predicting different distributions
of Rg, in none of the three cases were Ry distributions useful for
testing the competing theories empirically. Although channel net-
works found in nature might hypothetically have bifurcation ratios
falling far outside the range 3 < Rg < 3, in practice they rarely do
s0. Many have viewed this as remarkable (rather than obvious) and
have proposed theories to explain the observed values of Rg. These
theories have usuaily been tested without the benefit of a null hy-
pothesis. Instead, the common practice has been to first present a
premise that implies R of roughly 4, then observe that natural chan-
nel networks also have Ry of roughly 4, and then declare the premise

to be validated, without considering whether Ry could be 4 even if
the premise were false. Thus, it is not valid to conclude (as Troutman
and Karlinger do) that the Ry values observed in nature are “‘one
piece of evidence in favor of the random topology model,”” because
the Ry distributions predicted by random and nonrandom sets of
networks are practically indistinguishable. (Troutman and Karlinger
portray me as assuming that networks must be topologically ran-
dom, whereas my work shows why this need not be the case.)

Although Troutman and Karlinger take issue with my assertion
that Ry is “‘profoundly indifferent to network structure,”” their own .
experience illustrates my point. Their random-walk network growth
model yielded Ry values typically distributed between 3 and 5, with
means very close to 4, similar to the Rg distributions of real net-
works (Karlinger and Troutman, 1989), even though later work
(Troutman and Karlinger, 1992) showed that other measures could
clearly distinguish the simulated networks from real networks at
p < 0.01. In other words, even though natural drainage networks
occupied a very small subset of the model’s sample space, their Ry
values apparently differed little from those of the rest of the net-
works in the sample space.

We should not be too hasty in discarding Horton’s ratios, but
neither should we be too reckless in employing them. For five de-
cades, Horton’s ratios have been used under the presumption, as yet
still unsubstantiated, that they reflect interesting and important
properties of networks and provide useful tests of theoretical mod-
els. Such tests would require explicit hypotheses of network forma-
tion, and explicit null hypotheses, whose predicted Horton ratios
differ sufficiently that they can be distinguished by a feasible set of
empirical observations. Powerful hypothesis tests employing Hor-
ton’s ratios may yet be possible, and I would welcome them. How-
ever, in the absence of evidence that particular hypothesis tests are
meaningful, we should be cautious of studies that find confirmation
in successfully predicting Horton’s laws.
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CORRECTIONS

Chicxulub structure: A volcanic structure of Late Cretaceous age:
Correction
Geology, v. 22, no. 1, p. 3-4 (January 1994)

Paragraph two of the article states that there are 350 m of Late
Cretaceous age sediments overlying the volcanic sequence in the
Yucatin No. 6 well. This number applies to the Chicxulub No. 1
well; the correct number for the Yucatdn No. 6 well is 260 m. For
the Chicxulub No. 1 well, the top of the Maastrichtian was cited at
a well depth of 920 m and the top of the andesite at 1270 m; for the
Yucatin No. 6 well the top of the Maastrichtian was cited at 1000 m
and the top of the andesite at 1260 m.
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Cancer and autoimmune disease: A Cambrian couple?: Correction
Geology, v. 22, no. 1, p. 5 (January 1994)

The complete address for the author of this Opinion is John M. Saul,
ORYZX, 3 rue Bourdaloue, 75009 Paris, France.
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