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Abstract

Generally accepted standards for testing and validating ecosystem models would benefit both modellers and model
users. Universally applicable test procedures are difficult to prescribe, given the diversity of modelling approaches and
the many uses for models. However, the generally accepted scientific principles of documentation and disclosure pro-
vide a useful framework for devising general standards for model evaluation. Adequately documenting model tests re-
quires explicit performance criteria, and explicit benchmarks against which model performance is compared. A model’s
validity, reliability, and accuracy can be most meaningfully judged by explicit comparison against the available alter-
natives. In contrast, current practice is often characterized by vague, subjective claims that model predictions show
‘acceptable’ agreement with data; such claims provide little basis for choosing among alternative models. Strict model
tests (those that invalid models are unlikely to pass) are the only ones capable of convincing rational skeptics that a
model is probably valid. However, ‘false positive’ rates as low as 10% can substantially erode the power of validation
tests, making them insufficiently strict to convince rational skeptics. Validation tests are often undermined by excessive
parameter calibration and overuse of ad hoc model features. Tests are often also divorced from the conditions under
which a model will be used, particularly when it is designed to forecast beyond the range of historical experience. In
such situations, data from laboratory and field manipulation experiments can provide particularly effective tests, be-
cause one can create experimental conditions quite different from historical data, and because experimental data can
provide a more precisely defined ‘target’ for the model to hit. We present a simple demonstration showing that the
two most common methods for comparing model predictions to environmental time series (plotting model time series
against data time series, and plotting predicted versus observed values) have little diagnostic power. We propose that
it may be more useful to statistically extract the relationships of primary interest from the time series, and test the model
directly against them.
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1. The need for modelling standards

Mathematical models of environmental systems
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changes in greenhouse gas emissions affect Earth’s
climate? How will changes in climate alter the
structure and function of natural ecosystems (or
managed ecosystems, such as those underlying
agriculture and forestry)? What reduction in ‘acid
rain’ precursors would be needed to preserve or re-
store water quality in acid-sensitive regions? Are
salmon fisheries collapsing due to natural popula-
tion fluctuations, overfishing at sea, damming and
diversion of spawning rivers, or the effects of land
use on headwater streams? Will a proposed mitiga-
tion plan successfully contain groundwater con-
taminant plumes at a Superfund site? What is the
probabilility that stored radioactive wastes will
escape, over the next 10 000 years, under various
repository schemes? These hotly contested public
policy questions share several important char-
acteristics. None are amenable to direct experi-
mentation, none can be decided by simple
extrapolation from past experience, and none con-
cern systems that are simple enough that human
intuition — even the intuition of experts — can
provide a reliable guide for action.

Computer simulation models may provide
useful insight into such problems, particularly if
they are at least as reliable as the next best alterna-
tive (such as expert opinion). Although model reli-
ability is a major factor in determining how
models should be used in decision-making, tests of
model reliability rarely receive the attention or em-
phasis they deserve. One reason, no doubt, is the
sheer effort required to get complex models up and
running. Another reason may be the lack of data
sets with adequate spatial and temporal resolution.
However, we suspect that many models are not
rigourously tested simply because the community
does not demand it. Instead, many journals
routinely publish papers in which the authors
simply opine that the model ‘provides acceptable
agreement with the data’, without specifying their
criteria for deciding what’s acceptable, without
objectively measuring how good the agreement ac-
tually is, without considering whether better agree-
ment could be obtained from other models, and
without addressing whether good agreement could
have been obtained even if the model were fun-
damentally flawed.

Generally accepted standards for model evalu-

ation are needed to encourage the development of
better models. There will be little incentive to im-
prove a model, unless there is also systematic pres-
sure to find out how good or bad it actually is.
Rigourous model evaluation, rigourously applied,
would have the salutary effect of encouraging and
rewarding better modelling efforts.

Model evaluation standards are also needed to
reassure those who are skeptical of models and
modelling. Some skeptics regard models as
reckless exercises in ‘garbage in, garbage out’ that
confer an air of scientific sophistication on un-
substantiated conjectures. That such models have
sometimes been built is clear; whether they are the
exception or the rule remains an open question.
This question can only be resolved if there are
generally accepted standards for distinguishing
good models from bad, and if the community
demands that these standards be applied.

Model evaluation standards are clearly
desirable, but are they possible? The term ‘mathe-
matical modelling’ embraces many diverse appro-
aches, developed within many different disciplines,
serving many different objectives, and using many
different kinds of data. Any particular testing pro-
cedure might be ideal for one modelling approach,
but inappropriate for others.

However, we believe there is a middle path be-
tween the current laissez-faire attitude that says,
‘anything goes’, and a methodological straight-
jacket that ignores critical differences among
models. We argue that the longstanding scientific
traditions of disclosure and documentation pro-
vide a useful guide for what we should expect of
modellers, without constraining them to specific
procedures, criteria, and protocols. The generally
accepted standards for reporting research results
do not require that all experiments be performed
in a particular way. Instead, they simply require
that all relevant factors should be disclosed and
the basis for any conclusions should be docu-
mented. Analogously, we hold that modellers can-
not be required to build their models according to
a single method, or test them against a single
criterion, but modellers can and should be re-
quired to disclose the tests that they have con-
ducted (or disclose the fact that the model has not
been tested at all). For example, if a model is
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deemed to give ‘acceptable agreement with the
data’, complete disclosure would include an assess-
ment of how many adjustable parameters there
are, how much flexibility they introduce into the
model, and how probable it is that the model could
fit the data even if it had critical flaws. Likewise,
modellers cannot be required to apply a single uni-
versal protocol to reaching their conclusions, but
they can and should be required to document the
basis for whatever conclusion was reached.
Documentation for a conclusion would include,
for example, an assessment of how the conclusion
depends on the premises and data underlying the
model (sensitivity analysis), and an evaluation of
how uncertainties in those premises and data affect
the conclusion (uncertainty analysis). By ‘docu-
mentation’ we expressly do not mean simply
documentation of the computer code; we hardly
discharge our responsibility to our colleagues and
the public if we say, ‘Here, it’s all in the code, you
figure it out’.

The principles of disclosure and documentation
demand that we move beyond the arbitrary model
acceptance criteria commonly used today. A
criterion like ‘acceptable agreement with the data’
is too subjective to provide effective documenta-
tion of how good or bad the agreement really is,
particularly for those who have different standards
of acceptability. Yet model evaluations are usually
phrased in vague terms such as ‘surprisingly good
agreement with the data’, or ‘acceptable for the
purposes of this study’. We should be able to do
better than this.

Assessments of value only have meaning with
reference to some benchmark for comparison.
Models are only ‘realistic’, ‘reasonable’, ‘valid’,
‘accurate’ and so forth, compared to some alterna-
tive; such statements have little meaning on an ab-
solute basis. Possible benchmarks for comparison
include null hypotheses, alternative mathematical
models, or expert judgment. Are the model’s
predictions markedly more reliable than those
made by flipping coins (a null hypothesis)? Are
they more accurate than predictions made by other
models, or by experts? If so, then at what cost? If
not, then why model?

At a minimum, documentation of model evalu-
ation requires three elements: a performance

criterion, a benchmark, and an outcome. The per-
formance criterion (e.g. ability to match short-
term fluctuations in the data, or precise agreement
with observed long-term averages) documents
which aspects of the model were tested, and in
what way model performance was deemed good or
bad. The ‘benchmark’ is the alternative the model
was compared to. Specifying the benchmark
answers the question, ‘good compared to what?’
Finally, specifying the outcome documents how
good model performance was (and particularly,
how much better or worse than the alternative).

If a model is to be used for policy analysis, the
most obvious and appropriate benchmarks are the
decision tools that would otherwise be used (such
as expert opinion). Models are widely used under
the premise that many environmental systems are
too complex for expert judgment to be reliable. On
the other side are those who argue that models are
primarily useful to educate experts’ intuition,
which should then be used for prediction and
decision-making [1,2]. Either premise may well be
true; we simply point out that they both can be
tested. It may be that experts are actually less
reliable than a model, but are less easily revealed
as such, because erroneous predictions are revised
in hindsight. Expert judgments are also usually less
concrete and specific than model results; this may
make them harder to falsify, but it also may more
accurately reflect the uncertainties inherent in
predicting the behavior of complex environmental
systems.

2. The value of strict tests

It is almost axiomatic that models should be
rigourously tested, but this belief (with which we
agree) leaves important questions unanswered.
What makes a particular test rigourous? How can
we distinguish between rigourous tests and those
that are not rigourous? Can we measure how
rigourous a test is? And precisely why are
rigourous tests desirable?

In this section, we argue that a test’s rigour is
most directly gauged by the probability that in-
valid models could nonetheless pass it. Tests for
which this probability is small (which we term
‘strict’ tests) can be shown to convey significant
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information about model validity. By contrast,
passing non-strict tests conveys little information
about model validity. Most importantly, only
strict tests can forge consensus among individuals
with widely differing preconceptions of a model’s
validity, because only strict tests can be shown to
be capable of convincing an open-minded skeptic.
In contrast, tests that are not strict cannot be
expected to substantially alter individuals’
preconceptions about model validity; skeptics can
rationally remain skeptical, even if the model
passes the test. We show semi-quantitatively that
most model validation exercises are probably not
strict enough to convey much information about
model validity.

Consider a greatly simplified example of model
validation. In this example, the model being tested
is either ‘valid’ or ‘invalid’, with no shades of gray
in between, and the test is assumed to have a
decisive outcome: either the model is declared to
have ‘passed’, or it is declared to have ‘failed’. We
concede that the real world is not so simple. In
reality, of course, models are rarely either valid or
invalid; instead, they are valid to varying and
uncertain degrees, in various particular ways, for
various particular purposes. (By ‘validity’ we mean
adequacy for a specific purpose, rather than abso-
lute truth in every respect. All models simplify
reality and therefore are unrealistic to some
degree.) Likewise, results of model tests are rarely
an unambiguous ‘pass’ or ‘fail’; usually the
model’s performance lies somewhere between
complete success and complete failure. Nonethe-
less, these simplifications make the following
discussion much more straightforward, and they
could be relaxed if a more elaborate treatment
were desired.

Two potential points of confusion need to be
clarified before we proceed. First, in our example,
we have specified that the model can only have two
states (‘valid’ or ‘invalid’), but we have not
specified which state it is in (that is, the model’s
validity is uncertain). Second, although we assume
that the test results are unambiguous, this does not
imply that the validity of the model is similarly
unambiguous. That is, passing the test does not
automatically imply that the model is valid, nor
does failing the test automatically imply that the

model is invalid. This would only be true for a
perfect test, one that the model would pass if and
only if it were valid. No tests are perfect. Instead,
in the real world an invalid model will sometimes
pass a test (by simple random chance, for example,
or if the model’s invalid features are masked by
parameter tuning), and likewise a valid model will
sometimes fail a test (if, for example, the data are
unrepresentative). In our example, as in the real
world, even though it might be clear whether the
model has passed or failed the test, it might still be
unclear whether the model is valid or invalid.

There will always be uncertainty surrounding
whether a model is valid or not; the next few
paragraphs explore how model tests can reduce
this uncertainty. The analysis outlined below uses
a probabilistic (or Bayesian) framework [3,4]. If
readers are unfamiliar with Bayesian inference, we
ask them to bear with us for a moment, since they
may ultimately find this approach more intuitively
appealing than the classical models for scientific
inference.

We use P(valid) to represent our confidence
that the model is valid, before the test results are
known, and use the conditional probability
P(validlpass) to express our confidence that the
model is valid, given that the model has passed the
test. Although these levels of confidence are ex-
pressed in the formalism of probabilities, and al-
though they can be manipulated according to
probability theory, they are not probabilities in the
classical sense. In classical scientific inference, it
makes no sense to talk about the ‘probability’ that
a model is valid, since validity is a simple question
of fact; either the model is valid or it isn’t. Most
practicing scientists, however, find it natural to
speak of the likelihood that a theory (or model) is
valid; in this way they express their confidence or
certainty, rather than making an objective state-
ment of probability in the classical sense. Mirror-
ing this habit of thought, the Bayesian approach
does not formally distinguish between uncertainty
and improbability. Thus, the explicitly Bayesian
approach used here does not propose a new and
different logic for scientific inquiry. Instead, it
only makes practicing scientists’ intuitive logic ex-
plicit, in part to explain why this logic is rea-
sonable.
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So, what is the probability that the model both
(a) is valid, and (b) passes the test? This can be
calculated in two ways. One is the pre-test proba-
bility (or confidence) that the model is valid, times
the. probability that the model will pass the test if
it is'valid. The second is the probability that the
model will pass the test, times the probability that
it is valid if it passes the test. These two pro-
babilities must be equal, so

P(valid\pass) x P(pass) =

P(passivalid) x P(valid) 1

Eq. (1) can be rearranged to yield the Bayesian
updating rule,

P(pass|valid)

Plpass) P(valid) (2)

P(valid\pass) =

Eq. (2) shows that our confidence P(validlpass)
that the model is valid (given that it has passed the

test) depends on P(valid), our confidence before
the test, times a ratio that describes the char-
acteristics of the test, namely, the ratio between
P(pass|valid) (the probability that a valid model
would pass) and P(pass) (the probability that the
model would pass whether or not it is valid). We
can expand P(pass) into its two components,

P(pass) = P(pass|valid) x P(valid)

+ P(passlinvalid) x (1 - P(valid)] where

1 - P(valid) = P(invalid) (3)

Where P(pass|valid) is the probability that a
valid model would pass the test, and
P(pass|invalid) is the probability that an invalid
model would pass. Although these probabilities
may be difficult to estimate for any particular test,
they are not subjective like our pre-test confidence,
P(valid). The Bayesian updating rule thus
becomes:

1

)

P(valid\pass) =

1+ P(passlinvalid) [ 1

P(pass|valid)

or, if the model fails the test,
1

P(valid)

]

&)

P(valid|fail) =

P (fail/invalid) 1
P (fail/valid)

P(valid)
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Eqgs. (4) and (5) are rational rules for using
model tests to revise our prior assessments of a
model’s validity. Both expressions unavoidably
depend on P(valid), the subjective pre-test confi-
dence that the model is valid. Although P(valid) is
subjective, the relationships linking P(valid),
P(valid|pass), and P(valid\fail) are neither sub-
jective nor arbitrary. Given a specified pre-test
confidence, the post-test assessments of validity
are not arbitrary, but instead are completely deter-
mined by the outcome of the test and the condi-
tions under which that result was obtained, that is,
the probabilities P(passlvalid) and P(passi
invalid). In this sense, Eqs. (4) and (5) are rational,
even though they have a subjective element. Fur-
thermore, although P(valid) is subjective, proper-
ly designed tests can make post-test assessments of
validity — P(valid|pass) and P(valid\fail) — con-
siderably less subjective. As we will shortly show,
for sufficiently strict tests, P(valid|pass) is largely
independent of pre-test confidence in model
validity.

The pre-test confidence in the model’s validity,
P(valid), will vary among individuals. For a true
believer, such as a model’s author, P(valid) may
be high (say, 0.9), while for skeptics, such as the
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author’s competitors, P(valid) may be low (say,
0.1), and an impartial observer, with no basis for
making a prior judgment, might assume that
P(valid) is 0.5. Assume that the skeptic is not so
dogmatic as to assume that P(valid) is exactly
zero, and the true believer is not so dogmatic as to
assume that P(valid) is exactly one. Now, what
test could convince all three individuals that the
model is probably valid? Inspection of Eq. (4)
reveals that post-test confidence in the model can
approach 1, independent of the subjective pre-test
confidence P(valid), if the test is sufficiently strict,
that is, if it is sufficiently unlikely that an invalid
model would pass.

As Fig. 1 shows, a test that is not strict will bare-
ly alter the preconceptions of the three individuals;
the believer remains enthusiastic, and the skeptic
remains skeptical. A test’s capacity to alter prior
assessments of validity is a measure of how much
information it provides. From this perspective,
tests that are not strict cannot convey much infor-
mation about model validity. Only strict tests are
able to create consensus between believers and
skeptics.

The degree of rigour in a test is commonly view-
ed as simply ‘how hard it is to pass’. However, one
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Fig. 1. Assessments of model validity after a test has been passed, P(validlpass), calculated from Eq. (4), as a function of the test’s
strictness, for individuals with three different prior assessments of model validity: a ‘believer’, a skeptic, and an impartial observer
(who believe the chances that the model is valid are 0.9, 0.1 and 0.5, respectively). The test’s strictness is expressed by the false positive
rate, P(passlinvalid), which is the likelihood that an invalid model would pass the test. Tests that are not strict (tests for which
P(pass|invalid) is not small) do little to alter the three individuals’ subjective assessments. However, sufficiently strict tests (tests that
invalid models are unlikely to pass) force all three individuals to agree that the model is likely to be valid, despite their prior
disagreements. False positive rates must be low to forge consensus between believers and skeptics, whether the tests are easy for
models to pass (P(pass|valid) = 0.9, left panel), or more difficult for valid models to pass (P(pass|valid) = 0.5, right panel).
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can see from Fig. 1 that increasing the difficulty of
the test for valid models (changing P(pass|valid)
from 0.9 to 0.5) does little to alter the inference
that would be drawn if the model passes. If a
model has passed the test, Fig. 1 and Eq. (4) show
that rational post-test assessments of model validi-
ty have little to do with how difficult the test was
for a valid model to pass, but they have a lot to do
with how difficult it would be for an invalid model
to pass. That is, the test’s difficulty is less impor-
tant than its selectivity (its ‘false positive’ rate). In
other words, successful test results are meaningful
only if an invalid model could probably not have
passed. Put in such direct terms, this general prin-
ciple should be intuitively obvious to most practic-
ing scientists. Thus the preceding analysis has not
discovered a new principle, but it has explained
why strict tests are valuable, and has described
precisely what makes strict tests strict.

But how strict is strict enough? Eq. (4) allows us
to quantify how strict a test must be in order to
convey significant information. The results are dis-
quieting. As shown above, the information content
of a test depends on the ‘false positive’ rate, the
probability that an invalid model could pass. It is
admittedly difficult to quantify this probability.
However, our assessment (relying on our com-
bined experience both in modelling, and in
evaluating models built by others) is that typical
model validation exercises are probably not more
than 80 or 90% effective in detecting invalid
models. In other words, we believe that false posi-
tive rates could easily be at least 0.1 or 0.2, and
possibly higher in some cases. However, as Fig. 1
clearly shows, false positive rates must be much
lower than 0.1 or 0.2 for positive results to con-
vince rational skeptics, and thus to create consen-
sus between skeptics and true believers. In other
words, our analysis provides a quantitative basis
for concluding that typical model validation exer-
cises are probably not strict enough to convey
much information about model validity.

Our analysis demonstrates that the significance
of a model test depends crucially on the false posi-
tive rate, or, the probability that invalid models
could pass the test. Because the false positive rate
plays such a central role, methods for quantifying
it are urgently needed. One possibility is to
generate synthetic data sets from several fun-

damentally incompatible models, then ask how
often each model would ‘fail’, when tested against
data generated from the other models. Here, al-
though we will not attempt to quantify false posi-
tive rates, we will briefly comment on several
factors that affect the likelihood of false positives.

The false positive rate depends on both the test-
ing procedures and the model’s characteristics.
Parameter calibration is one feature of modelling
practice that clearly could contribute to false
positives, by masking deficiencies in model struc-
ture. Successful parameter calibration implies
either that the model structure and the parameter
values are both realistic, or that they are both
unrealistic but compensate for one another. Par-
ticularly when the validation data set is functional-
ly equivalent to the calibration data (as is often the
case with two time periods from the same data
series), parameter tuning can dramatically increase
the false positive rate.

Parameter tuning makes the model more flexi-
ble, and reduces the degree to which the underly-
ing model structure constrains model behavior. If
model structure has little effect on model behavior,
flaws in model structure are unlikely to be revealed
by testing model behavior against data. In extreme
cases, where there are too many free parameters,
model calibration can become a computationally
sophisticated — but scientifically empty — exer-
cise in multidimensional nonlinear curve fitting.
How many free parameters are too many? The
answer remains unclear, but the available evidence
indicates that many models have far more free par-
ameters than can be reliably estimated from
typical environmental data sets. For example,
Jakeman and Hornberger [5] indicated that typical
rainfall-runoff data contain only enough informa-
tion to constrain simple hydrologic models having
up to four free parameters. Hooper et al. [6] show-
ed that even detailed hydrologic and geochemical
time series data were insufficient to constrain a
simple model with only six free parameters. In
short, when it comes to parameter calibration,
very little is still too much.

A related practice that also undermines the
power of model tests is the use of ad hoc model
features to make the model fit the data better. To
take just one example, the Birkenes model [7]
assumes that weathering reactions (which consume
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H*) will cease when [H*] decreases to 5 uM, but
this assumption was not justified on the basis of
weathering studies; instead, it was motivated simp-
ly by the observation that in the field data, [H*]
never fell below 5 uM. Like parameter tuning, ad
hoc empiricisms undermine the significance of a
model test (by making spurious agreement be-
tween model and data more likely), but because
they are put in during model development rather
than as part of explicit calibration procedures,
their implications for model testing can easily be
overlooked.

Whether a model test is strict depends not only
on the characteristics of the model being tested,
but also on the nature of the data used to test it.
Models are often tested against environmental
time series, in which the relevant signals may be
hidden by relatively large noise. In such situations,
many different models may appear to fit the data
equally well, within the scatter of the data. Thus
the power of the test is low, because the data do
not permit discrimination among alternative
models.

One approach in such cases is to statistically
extract the relationship of interest from the data
set, and test the model against the statistically
clarified relationship rather than the noisy raw
data (see below). Another approach is to use
chemical or isotopic tracers to specifically target
the processes of interest. A third approach is to
amplify the behavior of interest, through experi-
mental manipulation of field plots. Finally, one
can use controlled laboratory experiments to
elucidate the behavior of interest, without the con-
founding factors that may dominate the data in
nature. For example, laboratory-scale experiments
are much less complex than real-world watersheds;
their material properties can be much better
characterized, and their behavior can be much
more precisely and comprehensively monitored.
Controlled experiments provide a more sharply
defined empirical ‘target’, making it easier to tell if
a model has missed the mark.

Laboratory experiments are rarely faithful
models of the real world, but it would be hard to
claim that although a particular model could not
predict the outcome of a simple laboratory experi-
ment, it nonetheless could reliably predict the be-
havior of real ecosystems, with their vastly greater

complexity. Thus, while laboratory experiments
may not provide strong confirmation for models,
they have considerable diagnostic power. If con-
trolled experiments focus on mechanisms that are
relevant to the real-world problems of interest,
they can provide strong disconfirmation, under the
presumption that models that do not work under
simplified laboratory conditions probably will not
work in the real world either.

3. The value of relevant tests

For a test to be useful, it must be more than
merely strict; it also must be relevant to the condi-
tions under which the model will need to function.
Models are usually intended to extrapolate beyond
the range of historical experience. It does little
good to test such a model against time series that
exhibit the same range of behaviors as the calibra-
tion data. Instead, it makes more sense to test the
model against data that diverge substantially from
the calibration. Experimental ecosystem manipu-
lations can make such data available, and can be
designed to focus on processes or forcing factors
of particular interest. For example, Wright et al.
[8,9] experimentally altered acid loading to several
small catchments, producing marked changes in
runoff chemistry; they then tested an acidification
model against the resulting runoff data. Long-term
monitoring data can also reveal fortuitous changes
in natural or anthropogenic forcing. For example,
Kirchner et al. [10] used climatically triggered acid
episodes to test a theory of catchment acid buffer-
ing. The acid episodes produced dramatic depar-
tures from pre-episode stream chemistry; in
addition, because the theory did not permit cali-
bration in the normal sense, the test was unusually
strict.

Models are often needed to predict ecosystem
response to particular kinds of forcing, over par-
ticular time scales. If so, tests emphasizing other
types of forcing, or other time scales, may not be
relevant. Even if a model passes a strict test, it does
not follow that all aspects of that model have been
tested. At best, test results can assess only those
parts of the model that respond to the imposed
forcing, and affect the observed output variables,
under the test conditions.

Time series data from natural ecosystems (e.g.
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chemical concentration and water flux time series
from catchment studies, measures of species abun-
dance in ecological studies, or weather observa-
tions in climate modelling studies) are frequently
used in model testing. However, environmental
data reflect many different types of forcing, some
of which are more relevant than others for the pol-
icy decisions that must be made. Again taking
catchment acidification models as an example, we
note that catchment runoff chemistry may be af-
fected by at least three factors: hydrologic fluctua-
tions, changes in atmospheric deposition, and
long-term depletion of base cations from catch-
ment soils. The processes of greatest policy interest
are the direct effects of atmospheric deposition on
runoff chemistry, and the indirect effects of acid
loading on base cation depletion from soils. Some
hydrochemical models [7,11] explicitly model the
short-term effects of catchment hydrology on
runoff chemistry. If these models are tested against
data that are dominated by hydrologic fluctua-
tions rather than chemical changes, they might
correctly predict chemical response to the storm
hydrograph, and thus explain most of the observed
variance, even if they did not correctly predict
catchment response to chemical forcing (see
below).

Most acidification models are also designed to
predict how runoff chemistry will respond to long-
term depletion of base cations from catchment
soils, under accelerated leaching by acid deposi-
tion. However, available catchment data do not
clearly reveal the effects of changes in base satura-
tion, because this process may take decades to pro-
duce measurable effects, and because these trends
may be obscured by short-term changes in catch-
ment hydrology, atmospheric forcing, and other
factors. Therefore, model predictions of chronic
acidification from base cation depletion are still
largely untested. Because these long-term predic-
tions have far-reaching public policy implications,
there is an urgent need for tests that focus on the
effects of base cation leaching. Because the rele-
vant processes take place too slowly in nature,
these tests may only be possible with data from ar-
tificially accelerated laboratory experiments [12].

4. Testing models against environmental time series

Models are often tested against time series data

from nataral ecosystems. Time series data can be
compared to models by several methods. Below,
we show that two common methods may fail to
reveal significant discrepancies between model and
data. We argue that it is often useful to isolate and
clarify the relationships among variables of
interest in the data, before comparing these rela-
tionships to model predictions.

These points are illustrated below, using syn-
thetic time-series data from a hypothetical water-
shed (Fig. 2). Using synthetic data permits us to
know what the underlying ‘true’ model is, because
we have specified it. In other respects, however,
the data examined here are similar to real-world
catchment data recently analyzed by Kirchner et
al. [13); the distributions of each variable are
similar to those found in real-world catchment
data, and each variable exhibits realistic levels of
correlation with the others, as well as realistic lev-
els of serial correlation with itself.

The problem at hand is to predict how changes
in sulfate concentrations will affect acid neutraliz-
ing capacity (ANC), in order to evaluate the
expected benefits from reductions in sulfate
loading. ANC is also expected to be a function of
catchment discharge, but this relationship is less
important for policy analysis purposes. Changes in
discharge may also affect sulfate concentrations;
thus, discharge can affect ANC both directly, and
indirectly via sulfate.

Assume that we want to test two models that
predict ANC. The first, ‘model A’, predicts that
ANC should be a linear function of the log of dis-
charge, and a linear function of sulfate concen-
tration:

Model A: ANC =
213 - 80 x log(flow) — 0.4 x SO, (6)
The second model, ‘model B’, predicts that ANC

will be independent of sulfate concentration, and
will be affected slightly differently by discharge:

Model B: ANC =91 - 67 x log(flow) @)

In Eqgs. (6) and (7), the coefficients could be
physically-based, or they could be determined by
calibration to independent data; it makes no dif-
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Fig. 2. Time series data for discharge, sulfate concentration, and acid neutralizing capacity (ANC) in a hypothetical catchment.
Synthetic ANC data shown by open circles. ANC predicted by model A (see text) shown by solid line; ANC predicted by model B

(see text) shown by dotted line.

ference for the purposes of the model tests shown
below. We emphasize, however, that we are not
concerned with fitting either model to the data. In-
stead, we take models A and B to be completely
specified. Although they are linear equations, this
is just to make the demonstration simple; they
should not be mistaken for regression models. In

actual practice, the models being tested might be
complex sets of coupled equations, rather than the
simple closed-form expressions shown here; this
complicates the situation but does not fundamen-
tally alter the principles involved.

Now we turn to the problem of testing model A
and model B against the data. The most common

ANC (uequiv. I'")

Fig. 3. Expanded view of | year from hypothetical ANC time series from Fig. 2, more clearly showing predictions from model A

(—) and model B (---).
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Fig. 4. ANC values predicted by model A (left panel) and model B (right panel), compared to ANC values in hypothetical time series.
Diagonal line indicates perfect agreement between model and observations.

way that environmental models are compared with
data is by visually comparing the time-trace of the
model with the time series of the data. Examining
Figs. 2 and 3, it is hard to find anything wrong
with either model. Both models appear to do a
good job of following the ups and downs of the
ANC time series, within the apparent scatter of the
data.

The second common method for comparing
models to data is by plotting the observed values
as a function of model predictions, and visually
checking whether the data conform to the line of
perfect agreement. Testing models A and B in this
way (Fig. 4) reveals no systematic discrepancies
between either model and the data. Although
model B appears to predict ANC slightly less
accurately than model A, neither model shows
visible bias. If the two models were explicitly com-
pared, model A might appear preferable, but if
only one model were tested (as in conventional
practice), either would appear to predict ANC
accurately.

So, using the most common methods for com-
paring model predictions against data, we find no
reason to reject either model. But modeis A and B
cannot both be accurate, because they are incon-
sistent with one another; model A assumes that
sulfate depresses ANC by a specified amount,
while model B assumes that there is no such effect.
One (or possibly both) must be wrong, even
though both fit the ANC data well. Despite the

difference between the two models — a difference
that is crucial for policy analysis — either model
looks ‘acceptable’. Is there any way to discriminate
between the models?

To better visualize how SO, affects ANC, and
thus better evaluate the two models, one could plot
ANC directly as a function of SO,, as in Fig. 5
(left panel). The advantage of viewing the data in
this coordinate space is that the difference between
the predictions of the two models can be clearly
seen. Unfortunately, the data show no clear pat-
tern, and either model A or model B appears to
describe the data equally well (or perhaps equally
poorly). The regression line through the data
(shown as a dashed line in Fig. 5) lies between
model A and model B, and arguably represents the
best estimate of whatever linear trend is present.
The regression slope is —0.2, with a standard error
of 0.05, and thus it differs from both model A
(slope of —0.4) and model B (slope of zero) by four
times its standard error. In a narrow statistical
sense, then, Fig. 5 arguably invalidates both
models. Model A apparently overstates the effect
of SO, on ANC, while model B apparently
underestimates it. In Figs. 2, 3 and 4, both models
seemed to be valid, but now neither appears ade-
quate. What has happened?

Because ANC depends on both SO, and dis-
charge, either factor can obscure the effect of the
other. In our example, the influence of discharge
on ANC (Fig. 5, right panel) is two or three times
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Fig. 5. ANC for hypothetical data set as a function of the two causal factors, sulfate concentration and discharge. Plotting ANC
as a function of sulfate without correcting for flow variations (left panel) reveals no clear trend. Regression line is shown by broad
dashes for comparison. A clearer relationship is evident between ANC and flow (right panel).

stronger than the effect of SO4. This has two im- the effect of SOy is relatively small, we cannot
portant consequences. First, any model that cap- simply dismiss it as unimportant; indeed, in our
tures ANC’s discharge-dependence will predict example, SO, is the only variable of practical im-
ANC relatively accurately, whether or not it cor- portance for policy purposes.
rectly models the effect of SO,, because that effect It is tempting — but incorrect — to conclude
is a relatively small part of the ANC signal. That that since there is no clear pattern between SO,
is why, even though the two models disagree over and ANC, SO, must have no clear effect on ANC.
how to treat SO, effects, both models appear to To reveal the effect of SO, on ANC, and thus
fit the ANC data well. Second, because the large finally decide whether either model is likely to be
effect of discharge obscures the much smaller adequate, we need to statistically separate the
effect of SO,, there is little apparent pattern in the effects of SO, and discharge. In this case, because
left panel of Fig. 5. In these circumstances, simply these effects are roughly linear, this separation can
plotting ANC against SO, may not reveal the be done by multiple regression. (In more
functional dependence of ANC on SO,. Although realistically complex cases, other techniques may
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Fig. 6. Dependence of ANC on sulfate concentration and discharge, revealed by multiple regression. Removing flow effects clarifies
the relationship between ANC and sulfate (left panel), revealing that model A is consistent with the data and model B is not. Correc-
ting for changes in sulfate also clarifies ANC’s dependence on flow (right panel).
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be needed; see Kirchner et al. [13] for a slightly
more complicated real-world example.) What is
important is not the particular technique but the
general principle of filtering out confounding fac-
tors to better reveal the interactions of greatest
interest.

Applying multiple regression to our synthetic
data, and correcting for the confounding effect of
discharge variations, reveals the relationships
shown in Fig. 6. Removing the scatter caused by
discharge fluctuations reveals that the dependence
of ANC on SO, is clear, in marked contrast to
Fig. 5. The multiple regression slope of ANC on
SO, is -0.4 £ 0.02, which is consistent with
model A but not with model B. Model B does not
accurately reflect the effect of SO, on ANC (the
effect most relevant for policy analysis), but this
was only revealed by statistically isolating that
effect and correcting for the confounding effect of
discharge. Careful readers will note that the multi-
ple regression slope of the SO4-ANC relationship
here is twice as steep as the simple regression slope
obtained in Fig. 5. The difference arises from the
fact that SO, is negatively correlated with dis-
charge in the data. Thus high flows, all else equal,
tend to produce both low ANC and low SO,; this
partially masks the direct effect of low SO,, which
is to raise ANC. In other words, because SO, and
discharge are correlated, Fig. 5 is a distorted —
not merely blurred — representation of SO,’s
causal effect on ANC.
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The multiple regression slope of ANC on the log
of discharge is =74 + 2 pequiv. 17" log unit™,
which is significantly different from both models
(Fig. 6). We could conclude, therefore, that both
models have been shown to be invalid. However,
while the difference between this regression slope
and the two models is statistically significant, it is
not practically significant, particularly since dis-
charge is not a variable of policy interest. Thus
model A appears to be adequate (although strictly
incorrect), while model B appears to be inappro-
priate for our purposes.

Although model B incorrectly specified the
mechanism of interest, only our last method of
analysis revealed this to be the case. Evaluated by
the other methods, model B appeared adequate. In
particular, visual inspection of the time series
(Figs. 2,3) and the plots of predicted versus
measured ANC (Fig. 4) failed to detect any
grounds for concern, yet these are precisely the
methods most often used to evaluate model predic-
tions. Only when the relationship of interest
(ANC’s dependence on SO,) was extracted from
the other confounding factors in the data, did it
become clear that model B was fundamentally in-
correct.

Another way to expose the difficulty with model
B is to plot the difference between predicted and
observed ANC as a function of sulfate (Fig. 7).
These residuals of model B show a systematic pat-
tern, indicating that the SO,-dependence of ANC
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Fig. 7. Model residuals (observed ANC minus predicted ANC) plotted as a function of sulfate concentration. Residuals for model
B (right panel) show clear dependence on sulfate, indicating a systematic difference between the responses of the model and the data
to changes in sulfate. Residuals for model A (left panel) show no systematic deviation of model from data.
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is different in the model and the data. In contrast,
the residuals of model A show no systematic rela-
tionship with SO,. Inspection of residuals is a
standard step in evaluating statistical models, but
is applicable to simulation modelling as well.
Residuals reveal useful information about simula-
tion models, just as they do in purely statistical
analyses, by highlighting discrepancies between
model and data.

This example was, we concede, contrived to
demonstrate our point. For example, the effects of
sulfate on ANC would be clearer in the data if
sulfate varied more, or if flow varied less, or if the
dependence of ANC on sulfate were not distorted
by the correlation between sulfate and flow. How-
ever, the real world is rarely so convenient. OQur
data set is not a rare pathological case. On the con-
trary, it simply exhibits several common features
(such as correlation between nominally indepen-
dent variables) that often complicate environmen-
tal analyses. If anything, our data set is
unrealistically straightforward, since the level of
spurious noise is relatively low, the distributions
are not highly skewed, and there are no outliers.

The reader might object that any puzzle is easy
once one knows the answer, and might question
whether we could have reached the correct answer
if we had not known it beforehand. We share this
concern, and it proves our point. Even in such a
simple case as this — where there are only three
variables, the underlying ‘real world’ relationships
are linear, and lots of data are available — it can
be exceedingly difficult to determine whether a
given model accurately portrays the mechanisms
behind the data. The task becomes immeasurably
harder if there are dozens of potentially relevant
variables, if these variables are interrelated in com-
plex nonlinear ways, and if the data are sparse or
unreliable. Because the most common model eval-
uation techniques utterly failed in our simple test
case, we think they are unlikely to be reliable when
applied to the more difficult task of real-world
model testing.

Based on our combined experience, both with
simplified test cases and with real-world modelling
exercises, we believe that there are generalizable
lessons to be learned from this brief demonstra-
tion. First, even in simple cases it can be very hard
to tell whether the mechanisms in a model are

realistic. Serious model flaws can be fiendishly dif-
ficult to uncover. As a result, model tests are rarely
strict; the probability that flawed models will pass
is rarely low.

Second, the conventional visual comparisons of
time series (Figs. 2,3), and plots of predicted versus
observed values (Fig. 4), can be singularly ineffec-
tive at revealing problems with models, even
models as simple as the two tested here. Simply
testing whether a model makes accurate predic-
tions may not be very informative, if you need to
know not only whether it gives the right answers,
but also whether it does so for the right reasons.

Third, testing models against time series is dif-
ficult because the forcing factor of interest is often
confounded with other factors, including irrele-
vant ones. It may often be more productive to ex-
tract the relationship of interest from the time
series; that is, to isolate the relationships between
the forcing factors and outcome variables of in-
terest, correcting (insofar as possible) for the influ-
ence of other confounding factors (Fig. 6). This
procedure should provide a stricter test of model
structure, and one that is more relevant to the
practical concerns behind many ecosystem models.

5. Conclusions

Improving ecosystem models will require setting
higher standards for model testing and evaluation.
An important first step, in our view, is to ask
modellers to use explicit performance criteria in
evaluating their models, and to compare them
against explicitly stated benchmarks. This would
be a significant improvement over the subjective
model evaluations that are common today. Ex-
plicitly testing models against other decision-
making methods (such as expert opinion) would
provide a particularly illuminating measure of the
accuracy and reliability of model predictions.

There is an urgent need for model tests that are
sufficiently strict, tests that invalid models are
unlikely to pass. To convince rational skeptics,
validation tests must have very low false positive
rates (Fig. 1). Our simple analysis shows that
typical model tests are probably not strict enough
to convince rational skeptics, and therefore are not
strict enough to forge consensus on public policy
issues. The power of model tests to detect flawed
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models can be substantially eroded by parameter
calibration and ad hoc model features. The power
of model tests is also often limited by the available
data, because in typical environmental time series,
the signals of interest are often weak compared to
the background noise. In such cases, tracer stud-
ies, plot-scale field manipulations, and laboratory
experiments may provide more exacting tests.
Cleverly designed experiments and tracer studies
can emphasize the particular forcing factors of
greatest interest, while minimizing the effect of
potentially confounding factors. When environ-
mental monitoring data are used to test models,
clever applications of statistical methods can cor-
rect for confounding factors and, as much as possi-
ble, highlight the relationships between the
relevant forcing factors and outcome variables.

Many of the conventional methods for testing
models have relatively low power to detect serious
flaws. A wide range of more powerful techniques
is available, and they have recently come into lim-
ited use. These procedures will become more wide-
ly used if the community demands them. A clear
consensus among modellers and model users
demanding more exacting model tests could spur
the development of better models and thus ad-
vance ecosystem science.
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