
GSA Data Repository Items for "Mountain erosion over 10-year, 10 000-year, and 10 000 000-year time scales", by James W. Kirchner, Robert C. Finkel, Clifford S. Riebe, Darryl E. Granger, James L. Clayton, John G. King, and Walter F. Megahan

Figure A. Study catchment boundaries (solid lines) and major streams (dotted lines), superimposed on outline map of the state of Idaho. Catchment identification numbers are keyed to Table A.

Short-term rates Long-term (cosmogenic) rates Be Drainage Altitude Glaciated Record Sediment Time Sediment vield[†] concentration§ vield[#] Latitude Longitude length scale area range area (km^2) $(T \cdot km^{-2} \cdot yr^{-1})$ $(10^{5} \text{ atom} \cdot \text{g}^{-1})$ $(T \cdot km^{-2} \cdot yr^{-1})$ (%) (yr) (m) (vr)44°22'20" 115°45'59" 1.2 1463-2073 0 27 13.2 ± 2.2 0.92 ± 0.04 5 100 327 ± 42 44°22'06" 115°46'12" 1.3 1451-2066 0 28 8.9 ± 1.4 1.61 ± 0.06 9 400 174 ± 23 44°20'46" 28 115°47'18" 1.1 1390-1772 0 10.9 ± 1.6 1.87 ± 0.07 12 000 136 ± 18 44°20'15" 115°48'20" 1.6 1381-1784 0 27 9.3 ± 1.7 1.72 ± 0.11 11 000 152 ± 22 44°21'01" 1457-1819 22 90 ± 12 115°46'30" 0.23 0 14.4 ± 2.5 2.88 ± 0.11 17 000 13 44°21'21" 115°47'02" 1.1 1415-1720 0 30.0 ± 10.6 2.06 ± 0.09 13 000 121 ± 16 45°59'37" 115°20'27" 0.57 1268-1744 0 10 7.3 ± 1.3 2.46 ± 0.09 16 000 97 ± 13 45°59'44" 115°20'39" 1.4 1280-1747 0 10 3.5 ± 0.6 2.71 ± 0.11 18 000 89 ± 12 45°59'37" 115°21'00" 1.0 1293-1726 0 15 3.3 ± 0.6 2.94 ± 0.11 19 000 80 ± 11 45°59'41" 115°21'26" 1317-1726 12 11.0 ± 3.0 2.64 ± 0.13 90 ± 13 1.5 0 17 000 45°59'37" 115°21'53" 0.23 1341-1646 10 8.6 ± 1.3 2.86 ± 0.09 19 000 80 ± 11 0 45°59'32" 115°22'19" 0.65 1354-1729 0 12 9.9 ± 2.4 2.58 ± 0.09 17 000 92 ± 13 45°59'30" 115°23'07" 0.83 1390-1804 0 14 8.2 ± 2.3 2.48 ± 0.08 16 000 101 ± 14 45°59'24" 115°23'30" 0.62 1415-1804 12 7.5 ± 2.3 3.09 ± 0.15 19 000 80 ± 12 0 45°59'27" 1524-1768 13 4.36 ± 0.15 55 ± 8 115°24'31" 0.21 0 25.1 ± 6.7 27 000 45°59'30" 23 115°20'10" 17 1250-1804 0 5.0 ± 0.5 2.72 ± 0.07 18 000 87 ± 12 45°59'20" 23 115°19'58" 1241-1835 2.5 ± 0.3 3.12 ± 0.09 20 000 76 ± 11 14 0

TABLE A. CATCHMENT CHARACTERISTICS AND SEDIMENT YIELDS

Catchment

ID* Name

Silver Creek SC-2

SC-3

SC-5

SC-6

SC-7

SC-8

HC-2

HC-4

HC-6

HC-8

HC-9

HC-10

HC-12

HC-14

HC-16

West Fork

East Fork

Horse Creek

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

•••						•			0= 0.00		
Tailholt & Circle End Creeks											
18	Tailholt A	45°03'11"	115°40'54"	2.2	1256-2369	0	21	11.0 ± 2.5	1.18 ± 0.07	6 300	264 ± 36
19	Tailholt B	45°03'10"	115°40'57"	1.6	1256-2141	0	22	14.6 ± 3.3	1.15 ± 0.05	6 400	262 ± 34
20	Tailholt C	45°03'09"	115°41'00"	1.4	1256-2073	0	22	13.7 ± 2.4	1.41 ± 0.05	8 200	202 ± 26
21	Tailholt Main	45°02'34"	115°40'38"	6.6	1091-2369	0	28	14.0 ± 2.8	1.22 ± 0.06	7 000	239 ± 32
22	Circle End A	45°03'17"	115°40'13"	0.8	1296-2015	0	N.D.	N.D.	1.23 ± 0.05	7 300	226 ± 29
23	Circle End B	45°03'16"	115°40'17"	2.3	1296-2369	0	N.D.	N.D.	1.26 ± 0.05	7 300	229 ± 30
24	Circle End Main	45°02'50"	115°40'01"	3.8	1083-2369	0	25	6.5 ± 1.1	1.30 ± 0.07	7 700	215 ± 29
Larger Streams and Rivers											
25	Trapper Creek	45°40'13"	115°19'47"	20	1476-2012	0	10	9.8 ± 1.6	4.67 ± 0.12	26 000	57 ± 8
26	South Fk. Red River	45°42'35"	115°20'37"	98	1320-2170	0	14	8.0 ± 1.4	4.65 ± 0.13	25 000	58 ± 8
27	Upper Red River	45°42'38"	115°20'34"	129	1320-2075	0	14	10.1 ± 1.6	$\textbf{3.03} \pm \textbf{0.10}$	18 000	87 ± 12
28	Johns Creek	45°49'23"	115°53'18"	293	735-2551	32	10	7.6 ± 1.3	2.60 ± 0.09	15 000	108 ± 15
29	S. Fk. Clearwater Rvr	45°53'15"	116°01'47"	2 149	600-2551	7	25	7.6 ± 2.3	2.75 ± 0.09	17 000	91 ± 12
30	Lochsa River	46°09'04"	115°35'37"	3 055	465-2680	21	72	$\textbf{26.3} \pm \textbf{2.8}$	1.05 ± 0.04	6 700	250 ± 32
31	Selway River	46°05'11"	115°30'59"	4 945	490-2709	21	70	24.5 ± 3.2	1.32 ± 0.07	8 100	205 ± 28
32	Salmon River	45°44'38"	116°19'39"	35 079	460-3859	10	84	13.7 ± 4.1	1.47 ± 0.08	6 300	261 ± 36

Notes for Table A

*Identification numbers are coded to map in Figure A.

[†]Sediment yields for catchments smaller than 20 km² were measured by trapping sediment behind small dams; the trapped sediment was measured and removed once or twice per year (Clayton and Megahan, 1986). Measurements of suspended sediment passing over the dams were used to correct for trap efficiency. Sediment yields for catchments larger than 20 km² were calculated from daily measurements of streamflow, scaled by bias-corrected (Ferguson, 1987) sediment rating curves derived from measurements of suspended sediment concentrations and bedload fluxes over a wide range of flows. Periods of record for sediment concentrations (and thus for construction of rating curves) were 10, 14, 14, 10, 5, 4, 4, and 16 years for catchments no. 25 through 32, respectively. Uncertainties (expressed as standard errors of means) were calculated from variability of annual fluxes. For catchments no. 32 and no. 29, bedload was estimated as 5% and 10% of total sediment flux, respectively, and standard errors were estimated at 30 percent of the mean. N.D. = not determined.

[§]40-gram samples of quartz were purified from sand-sized sediment by magnetic separation and by acid leaching (Kohl and Nishiizumi, 1992) (which also eliminates meteoric "garden variety" ¹⁰Be), spiked with ~0.5 mg ⁹Be, and dissolved in HF. Be was separated by ion chromatography and analyzed as ¹⁰Be/⁹Be by accelerator mass spectrometry at Lawrence Livermore National Laboratory.

[#]Long-term sediment yields were calculated from equation 1. Area-averaged P_n and P_m values were calculated from sea-level high-latitude ¹⁰Be production rates 4.72±0.38 atoms•g⁻¹•yr⁻¹ and 0.11±0.01 atoms•g⁻¹•yr⁻¹ respectively (Riebe et al., 2000; Riebe et al., 2001), scaled for latitude and for the altitude distribution within each catchment (Lal, 1991). Using Nishiizumi et al.'s (Nishiizumi et al., 1996) sea-level high-latitude production rate of 5.8 atoms•g⁻¹•yr⁻¹ would increase calculated sediment yields by ~20 percent. Production rates were corrected for quartz enrichment by chemical weathering (Small et al., 1999), and for topographic shielding (Dunne et al., 1999). We corrected for shielding by snow cover using site-specific relationships between altitude and average snow water equivalent measured at nearby snow survey sites. Weathering fluxes were estimated at *W*=10.7±0.4 T•km⁻²•yr⁻¹, based on 11-yr chemical mass balances at four Silver Creek catchments (Clayton and Megahan, 1986).

- Clayton, J.L., and Megahan, W.F., 1986, Erosional and chemical denudation rates in the southwestern Idaho batholith: Earth Surface Processes and Landforms, v. 11, p. 389-400.
- Dunne, J., Elmore, D., and Muzikar, P., 1999, Scaling factors for the rates of production of cosmogenic nuclides for geometric shielding and attenuation at depth on sloped surfaces: Geomorphology, v. 27, p. 3-11.
- Ferguson, R.I., 1987, Accuracy and precision of methods for estimating river loads: Earth Surface Processes and Landforms, v. 12, p. 95-104.
- Kohl, C.P., and Nishiizumi, K., 1992, Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides: Geochimica et Cosmochimica Acta, v. 56, p. 3583-3587.
- Lal, D., 1991, Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models: Earth and Planetary Science Letters, v. 104, p. 424-439.
- Nishiizumi, K., Finkel, R.C., Klein, J., and Kohl, C.P., 1996, Cosmogenic production of 7Be and 10Be in water targets: Journal of Geophysical Research B, Solid Earth, v. 101, p. 22225-22232.
- Riebe, C.S., Kirchner, J.W., Granger, D.E., and Finkel, R.C., 2000, Erosional equilibrium and disequilibrium in the Sierra Nevada, inferred from cosmogenic ²⁶Al and ¹⁰Be in alluvial sediment: Geology, v. 28, p. 803-806.
- Riebe, C.S., Kirchner, J.W., Granger, D.E., and Finkel, R.C., 2001, Minimal climatic control on erosion rates in the Sierra Nevada, California: Geology, v. 29, p. 447-450.
- Small, E.E., Anderson, R.S., and Hancock, G.S., 1999, Estimates of the rate of regolith production using Be-10 and Al-26 from an alpine hillslope: Geomorphology, v. 27, p. 131-150.

APPENDIX A

To test whether shallow debris flows have a measurable effect on cosmogenic nuclide concentrations, we sampled and analyzed sand-sized material at two points along the debris flow scar at Circle End Creek (samples no. 22 and no. 24 in Table A). These samples yielded cosmogenic nuclide concentrations and long-term erosion rates that were indistinguishable from those of an undisturbed Circle End tributary (catchment no. 23) and adjacent undisturbed Tailholt Creek (catchments 18-21). This indicates that cosmogenic nuclide measurements of long-term erosion rates are not substantially affected by recent debris-flow activity, because the time required for a typical sediment grain to be exhumed from a hillslope and transported to a small channel or hollow is much longer than the timescale of its subsequent storage there. Thus the cosmogenic nuclide signature is primarily acquired during hillslope exhumation and transport, with channel storage having little effect on either nuclide production or decay (the latter requiring storage at depths >1 m for timescales >1 Myr, which is implausible at our sites).