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Hillslope evolution by nonlinear, slope-dependent transport:
Steady state morphology and equilibrium adjustment

timescales
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Abstract. Soil-mantled hillslopes are typically convex near the crest and become
increasingly planar downslope, consistent with nonlinear, slope-dependent sediment transport
models. In contrast to the widely used linear transport model (in which sediment flux is
proportional to slope angle), nonlinear models imply that sediment flux should increase
rapidly as hillslope gradient approaches a critical value. Here we explore how nonlinear
transport influences hillslope evolution and introduce a dimensionless parameter ‘¥ to
express the relative importance of nonlinear transport. For steady state hillslopes, with
increasing ¥/, (i.e., as slope angles approach the threshold angle and the relative magnitude
of nonlinear transport increases), the zone of hillslope convexity becomes focused at the
hilltop and side slopes become increasingly planar. On steep slopes, rapid increases in
sediment flux near the critical gradient limit further steepening, such that hillslope relief and
slope angle are not sensitive indicators of erosion rate. Using a one-dimensional finite
difference model, we quantify hillslope response to changes in baselevel lowering and/or
climate-related transport efficiency and use an exponential decay function to describe how
rapidly sediment flux and erosion rate approach equilibrium. The exponential timescale for
hillslope adjustment decreases rapidly with increasing ;. Our results demonstrate that the
adjustment timescale for hillslopes characteristic of the Oregon Coast Range and similar
steep, soil-mantled landscapes is relatively rapid (< 50 kyr), less than one quarter of the

timescale predicted by the linear transport model.

1. Introduction

The morphology of landscapes reflects the integrated effect
of tectonic and climatic forcing as regulated by surface
processes. Although numerous studies have used topographic
data to explore landscape dynamics and infer rates of uplift
and erosion from morphologic properties of drainage basins
[e.g., Ahnert, 1970; Milliman and Syvitski, 1992; Granger et
al., 1996; Hurtrez et al., 1999], the variability of surface
processes, climate, and uplift rates often confounds such
investigations [Riebe et al., 2000]. In order to systematically
analyze how crustal deformation and climate change may
affect landscape properties, such as relief, drainage density,
and the distribution of regolith, the relevant sediment
transport processes must be well characterized.

In mountainous landscapes, landsliding and mass wasting
dominate sediment transport on hillslopes [e.g., Strahler,
1950; Carson and Petley, 1970; Burbank et al., 1996]. The
frequency and magnitude of these slope-dependent processes
control hillslope morphology as well as the time required for
hillslopes to adjust to changes in the rate of channel incision

'"Now at Department of Geological Sciences, University of
Oregon, Eugene, Oregon

Copyright 2001 by the American Geophysical Union.

Paper number 2001JB000323.
0148-0227/01/2001JB000323$09.00

or climate-related transport efficiency. @ Owing to the
difficulty in obtaining field-calibrated hillslope erosion
models many fundamental relationships between hillslope
processes and landscape dynamics have been unexplored. For
example, how does the response to an increase in baselevel
lowering differ for steep, landslide-prone slopes and gentle,
soil creep-dominated hillslopes?  Also, does the relief
associated with individual hillslopes control mountain-scale
relief?

Soil-mantled hillslopes (on which erosion rates do not
exceed the rate at which bedrock is converted to soil [e.g.,
Heimsath et al., 1997]) are found in hilly and mountainous
landscapes throughout the world and tend to have a
characteristic convex form, suggesting erosion by a common
mechanism. Davis [1892] and Gilbert [1909] recognized the
paucity of overland flow erosion on convex hillslopes and
suggested that downslope soil creep is controlled by
disturbance-driven processes (e.g., biogenic activity and
wet/dry cycles) such that sediment transport rates should
depend primarily on gravity and thus hillslope gradient. Since
the seminal work of Gilbert [1909], the linear, slope-
dependent transport model has often been used to simulate
hillslope erosion [e.g., Culling, 1960; Kirkby, 1971; Koons,
1989; Tucker and Slingerland, 1994], but the morphology of
most soil-mantled hillslopes is inconsistent with the constant-
curvature form predicted by the linear model under steady
state erosion. Instead, soil-mantled hillslopes tend to be
convex near the crest (or drainage divide) and become
increasingly planar downslope [Anderson, 1994; Howard,
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1994; Roering et al., 1999]. This observation, coupled with
results from topography-based erosion modeling in the
Oregon Coast Range, indicates that nonlinear sediment
transport models may be more appropriate than the linear
model for simulating the erosion of soil-mantled hillslopes
[Roering et al., 1999]. According to nonlinear models, which
are also supported by recent experimental results [Roering et
al, 2001], sediment flux is linearly related to hillslope
gradient at low angles and increases rapidly as slope angles
approach a critical value related to the angle of repose
[Kirkby, 1984; Anderson, 1994; Howard, 1994; Roering et
al., 1999]. This behavior has important yet unexplored
implications for how hillslopes respond to changes in uplift
rate and/or climatic variables. _

Ever since Hack [1960] elaborated Gilbert's [1877]
hypothesis that landscapes tend to adjust their form such that
erosion rates are spatially constant, numerous studies have
used the equilibrium conceptual framework to guide their
investigations of landscape evolution [e.g., Brunsden and Lin,
1991; Reneau and Dietrich, 1991; Burbank et al., 1996;
Hovius et al., 1997; Meigs et al., 1999; Whipple et al., 1999;
Riebe et al, 2000]. Field evidence demonstrating an
approximate balance between uplift and erosion is difficult to
obtain owing to variability in temporal and spatial scales of
observation. As a result, theoretical models have often been
used to simulate how tectonic forcing and other factors may
influence landscape evolution [e.g., Ahnert, 1976; Koons,
1989; Willgoose et al., 1991; Rinaldo et al., 1995; Fernandes
and Dietrich, 1997; Howard, 1997]. The time required for
hillslopes to adjust to tectonic and climatic forcing affects the
dynamics of mountain-scale erosion, the potential for isostatic
unloading, the rate and characteristics of sediment supply to
channels, and the development of relief. Recent advances in
formulating mechanistic, calibrateable sediment transport
models have enabled geomorphologists to quantitatively
explore how landscapes may respond to changing boundary
conditions. Using numerical simulations, Fernandes and
Dietrich [1997] systematically analyzed how the linear
transport model influences transient hillslope response.
Following stepwise changes in baselevel lowering rate and/or
climate-related transport efficiency, Fernandes and Dietrich
[1997] quantified the time necessary for erosion and sediment
transport rates to adjust within an arbitrary percentage of the
new equilibrium value. This contribution expands upon
Fernandes and Dietrich’s [1997] study by (1) using an
exponential decay function to provide a more detailed and
useful description of hillslope adjustment to changing
boundary conditions and (2) investigating how nonlinear
sediment transport influences hillslope adjustment and
evolution. In addition, we use analytical solutions for
equilibrium hillslope morphology to explore how baselevel
lowering rates affect steady state hillslope morphology and
relief in our Oregon Coast Range study site. We demonstrate
that the adjustment timescale . decreases rapidly as the
importance of nonlinear sediment transport increases.

2. Modeling Slope-Dependent Sediment
Transport on Hillslopes

Ever since Davis [1892] and Gilbert’s [1909]
rationalization for the convex form of hilltops, sediment
transport on soil-mantled hillslopes has been modeled as a
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slope-dependent process [e.g., Kirkby, 1971; Ahnert, 1976;
Howard, 1994; Dietrich et al., 1995]. Through analogy with
Fourier’s [1822] heat conduction equation (in which heat
flux is proportional to thermal gradient), Culling [1960]
modeled hillslope evolution using the linear sediment
transport model, such that sediment flux g is proportional to
hillslope gradient:

q=-KVz M

where X is a rate constant (L’ 7”') and z is elevation above an
arbitrary datum (L). Sediment transport rates on low-gradient
hillslopes have been estimated from analyses of cosmogenic
radionuclides and are consistent with (1) [McKean et al.,
1993; Small et al., 1999]. However, a recent topographic
study indicates that nonlinear sediment transport models
[Anderson, 1994; Howard, 1994] may be more appropriate
for simulating the erosion of entire hillslopes [Roering et al.,
1999]. Generally, these nonlinear models include a critical
gradient term that generates high sediment fluxes on steep
slopes and thus limits further hillslope steepening. According
to a proposed nonlinear model [Andrews and Bucknam, 1987,
Roering et al., 1999], sediment flux varies with gradient
according to
-KVz

s @

where S, is the critical gradient. Equation (2) is similar to (1)
when |Vz|<<S,, but as |Vz| approaches S, sediment flux
increases rapidly, becoming infinite when |Vz|=S, (Figure 1).
This model does not explicitly account for landslides, but as
|Vz| approaches S, (2) may effectively capture the behavior of
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Figure 1. Theoretical relationship between hillslope gradient
and sediment flux. The thick line indicates total sediment
flux calculated with (2) (K=0.003 m” yr' and S,=1.2), which
can be divided into linear (thin line) and nonlinear (dashed
line) components (equation (7)). We distinguish the linear
and nonlinear components to quantify the relative importance
of nonlinear transport on hillslopes (equation (8)), but do not
suggest that these two components represent distinct
processes (see text).
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small landslides that are not triggered by the topographic
convergence of subsurface flow and do not travel long
distances through the channel network [Roering et al., 1999].

Sediment flux and landscape lowering can be related
through the continuity equation:

0z ~

o ==psV-q+ p,Co(t) (€)
where C,(#) is the time-dependent rate of rock uplift, which
we define as equivalent to the baselevel lowering (or channel
incision) rate along the hillslope margin (L T ), and p, and p,
are the bulk densities of rock and sediment (M L'3),
respectively. If C,(¥) is finite and does not vary with time,
hillslopes may approach an approximate steady state, such
that across the hillslope, dz/0t =0 and p,C, = p,V-¢ . In this
paper, we will explore steady-state hillslope morphology and
hillslope response to changes in baselevel lowering, C,(¢), and
climate change (which we model by changing the transport
rate constant K).

To focus our investigation of how nonlinear transport
affects hillslope morphology and equilibrium adjustment
timescales, we use a simple, one-dimensional (i.e., profile)
analysis. Although two-dimensional analyses of (1) and (2)
are computationally feasible, they require that we specify
models governing channel formation (e.g., fluvial erosion or
debris flow incision [Howard and Kerby, 1983; Whipple and
Tucker, 1999]), which control channel network geometry and
thus the spatial scale of hillslopes. In addition, the inclusion
of channel-forming processes requires additional model
formulation and parameterization which unnecessarily
complicate our analysis. Howard [1997] compared landscape
evolution simulations using hillslope and fluvial transport
models and demonstrated that one-dimensional simulations
capture similar characteristics as their two-dimensional
counterparts. His results indicated that the influence of
erosion rate on drainage density (and thus average hillslope
length) depends strongly on the chosen model for fluvial
erosion [Howard, 1997]. By not including valley-forming
processes and their complex dependencies, our simple
hillslope profile analysis allows us to focus on hillslope
response to changes in the rate of baselevel lowering and/or
climate-induced changes in transport efficiency.

The length scale of our one-dimensional model hillslopes
should scale with the drainage area per unit contour width,
a/b (L), which defines the hillslope-valley transition as
defined in two-dimensional hillslope representations [e.g.,
Tucker and Bras, 1998; Roering et al., 1999]. Analyses of
channel initiation indicate that a threshold defined by gradient
and a/b may control the transition from hillslopes to the valley
network [e.g., Dietrich et al., 1992; Montgomery and
Dietrich, 1992]. Thus our investigation only applies to
hillslopes whose length scale L is less than the average value
of a/b required to form channels or valleys. The
channelization threshold may also vary with lithologic and
climatic variables [Montgomery and Dietrich, 1989].

Ps

3. Steady State Hillslope Morphology

3.1. Nonlinear and Linear Transport Models

Using the equilibrium assumption (0z/0¢ = 0) and (3), we
can quantify the equilibrium morphology of hillslopes that
erode according to linear and nonlinear transport models. By
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substituting (1) and (2) into the one-dimensional version of
(3), respectively, we obtain expressions relating profile
curvature to the baselevel lowering rate for the linear and
nonlinear models, respectively:

d*z -B

Ex—2—=? (42)
d% - (dz/ax} i dz/dx )
:ix—f—? 1—['—Sc ) 1+("‘—Sc ) (4b)

where B=(o/p)C, and x is horizontal distance from the
drainage divide or hillslope crest. Whereas linear transport
(equation (4a)) predicts that hillslope curvature should be
constant across hillslopes, nonlinear transport (equation (4b))
implies that hillslope convexity should be greatest when dz/dx
equals zero and decreases continuously with slope,
approaching zero as dz/dx approaches S,. By integrating (4a)
and (4b) with respect to x we can quantify the spatial variation
of hillslope gradient for the linear and nonlinear models,
respectively:

(52)
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where c; and c, are constants of integration. For both (5a)
and (5b) we define x=0 as the hillslope crest, such that dz/dx
approaches zero with diminishing x and ¢,=c,=0. The linear
model (equation (5a)) predicts that equilibrium hillslope
gradients increase linearly downslope, whereas on sufficiently
long hillslopes (x >> KS,/2f3) the nonlinear model (equation
(5b)) predicts that hillslope gradients increase nonlinearly,
approaching S, downslope of the drainage divide. By
integrating these equations once more, we can derive
expressions for equilibrium elevation profiles, under the
linear and nonlinear models, respectively:

zZ= g—]—(ﬁ—xz +c3 (6a)
2
z= "f; [ K% +(2Bx/S, \
. ,/Kz +(2Bx/S, Y +K (6b)

2B/Sc

We do not include expressions for the constants of
integration, c; and c,, because they arbitrarily define the
absolute value of elevation at the hillslope crest, whereas our
analysis only seeks to characterize the relative variation of
elevation across model hillslopes.

3.2. Quantifying the Relative Importance of Nonlinear
Transport

Numerous studies have explored the characteristics of
equilibrium hillslope morphology as modeled by the linear
transport model ((4a), (5a), and (6a)) [Kirkby, 1971; Koons,
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1989; Fernandes and Dietrich, 1997).  Dietrich and
Montgomery [1998] demonstrated that landslide-driven
transport may influence relief, but we are unaware of studies
that have systematically analyzed how nonlinear transport
affects hillslope relief, gradient, and curvature. Our nonlinear
transport model (equation (2)) can be rewritten as the
combination of two flux terms, a purely linear component gy,
and a nonlinear component q,,, (Figure 1):

2
Kz(%)
q=qﬁn+qm=K£+—ix—Sc—z @
N 7
(%)

By this conceptual framework we are not implying that two
distinct transport mechanisms combine to generate the
nonlinear sediment flux relationship quantified by (2). On the
contrary, the formulation of (2) assumes only that the work
done on hillslopes by disturbance-driven processes is
balanced by frictional and gravitational forces and no
additional processes are invoked to generate the nonlinearity
[Roering et al., 1999]. In order to guide our theoretical
analysis, we introduce a dimensionless ratio ¥ that quantifies
the relative importance of nonlinear sediment flux at an
arbitrary point along a hillslope. We define ¥ as the ratio of
nonlinear to linear components of sediment flux calculated at
an arbitrary location along the hillslope (x) according to

dzfdx )
5 )
i - M 2 (83)
S X

c

Goon |
Diin

For an equilibrium hillslope, ¥ increases downslope as
slope gradients increase and the nonlinear component of
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sediment flux increases more rapidly than the linear
component. For all of our analyses we evaluate 'V at the base
(or channel margin) of our modeled hillslopes (¥;=¥(Ly),
where L, is hillslope length), by substituting (5b) into (8a):

2

: 2
Sc —K+ K%+ 2Ly
2BLy Se

(8b)

2

2
1- _SL —-K+ K2+ Z_BL_h
2BL, s,

The nonlinear transport ratio ¥; quantifies the relative
importance of nonlinear transport at the hillslope base. As a
result, \¥; is a measure of the magnitude and distribution of
hillslope convexity. -

4. Study Site: Oregon Coast Range

Our investigation of hillslope morphology and evolution is
motivated by data and observations from the central Oregon
Coast Range (OCR), although our analysis may be applied to
most soil-mantled hillslopes. The OCR is a humid, forested,
mountainous landscape whose central and southern regions
are underlain by a thick section of Eocene turbidites mapped
as the Tyee Formation [Baldwin, 1956; Snavely et al., 1964;
Heller et al, 1985]. The Tyee Formation has been
compressed into a series of low-amplitude, north-northeast
striking folds that seldom exhibit dip angles greater than 20°
[Baldwin, 1956]. The Oregon Coast Range is situated above
a subduction zone and has experienced uplift over the last 20-
30 Myr [Orr et al., 1992].

Much of the terrain in the Oregon Coast Range is
characterized by steep, highly dissected, - soil-mantled
mountains and incised bedrock river valleys (Figure 2).

SO
1000m

Figure 2. Shaded relief map of study site near Coos Bay, Oregon. Topographic data were obtained with
airborne laser altimetry at an average spacing of 2.3 m. The dark line delineates a small basin used in Figure

3. Modified from Roering et al. [1999].
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Figure 3. Semilog plot showing the relationship between drainage area per unit contour (a/b) and gradient
for the basin delineated in Figure 2. The gray band signifies the transition zone between hillslopes and the
valley network and thus defines the average length scale of hillslopes in our study area. Solid and shaded
circles denote divergent (curvature < 0) and convergent (curvature > 0) portions of the landscape,

respectively. Modified from Roering et al. [1999].

Alternating ridges and unchanneled valleys dominate the
topography and have a relatively uniform spacing [Dietrich
and Dunne, 1978; Montgomery and Dietrich, 1989; Benda
and Dunne, 1997]. Thin soils typically mantle ridges, and
thick colluvial deposits fill unchanneled valleys at the
uppermost extent of the channel network. Our proposed
transport model (equation (2)) applies to purely slope-
dependent transport processes on divergent and planar
hillslopes but does not encompass debris flow processes or
deep-seated landsliding. Denudation rates (~ 0.07-0.1 mm yr
) do not vary significantly with spatial scale, such that an
approximate equilibrium may exist between sediment
production on hillslopes and basin-wide sediment yield
[Reneau and Dietrich, 1991; Heimsath, 1999]. In our study
area, high-resolution topographic data were obtained using
airborne laser altimetry, which can accurately characterize
fine-scale topographic features over large areas (see Figure 2).

In this study, we used parameters characteristic of the OCR
study site, where Roering et al. [1999] calibrated K and S,
using topographic data (K=0.003 m’ yr' and S=1.2). To
characterize the transition from hillslopes to the valley-
channel network and estimate the average hillslope length, we
used high-resolution topographic data from a small catchment
in our study site near Coos Bay, Oregon (see Figure 2), to plot
topographic gradient versus drainage area per unit contour
length (a/b). Hillslopes are characterized by small a/b and
generally exhibit a trend of increasing a/b with gradient
(Figure 3). For a/b greater than ~ 80 m, a/b decreases with
gradient, thereby distinguishing the valley network. As a
result, a/b=30-80 m defines the transition between hillslopes
and the valley network and thus denotes the average spatial

scale of hillslopes (see shaded band on Figure 3). Much of
the variability in this transition zone results from the influence
of valley gradient on valley formation, such that valley heads
with smaller drainage areas are typically steeper than those
with larger drainage areas [Montgomery and Dietrich, 1992].
In our study site, most of the hillslopes terminate into steep
valleys (or hollows), so we chose L,=40 m as the average
hillslope length for our simulations.

5. Characteristics of Equilibrium Hillslope
Morphology

5.1. Nonlinear Transport and Hillslope Convexity

Using (4b), (5b), and (6b), we can analyze how nonlinear
sediment transport influences steady state hillslope
morphology. Figure 4 illustrates how varying ¥, affects
hillslope elevation, gradient, and curvature profiles calculated
for a theoretical hillslope with arbitrary length and erosion
rate (L,=40 m; C,=0.5x10™* m yr'; p/p=2.0). To clarify how
¥, affects hillslope morphology, we used (5b) and (8b)
conjointly, systematically varying K and S, to generate
hillslope gradient profiles with varying ¥; and a constant
gradient of 1.0 at the hillslope base (Figure 4b). For each
value of ¥; we used the corresponding values of X and S, to
calculate elevation and curvature profiles using (4b) and (6b)
(Figures 4a and 4c). In effect, ¥, quantifies the distribution
and magnitude of hillslope convexity. For hillslopes without
a critical gradient constraint (S,=c and ¥;=0), gradient
increases linearly from the crest and curvature is spatially
constant (as predicted by (4a) and (4b)). For ¥;=1 the
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Figure 4. Profiles of (a) elevation, (b) gradient, and (c)
curvature for equilibrium hillslopes modeled with (4b), (5b),
and (6b). Each hlllslope has a constant lowering rate C, equal
to 1.0x10™* m yr', and the labels refer to the value of ¥, for
that hillslope. To most clearly illustrate how W¥; influences
morphology, we set the gradient equal to 1.0 at the base of
each hillslope and varied the values of K and S, to generate
the modeled profiles. For W;=0, hillslope profiles are
parabolic (and thus have constant curvature as expected for
the linear model). With increasing ‘¥;, the zone of hillslope
convexity becomes narrower, and the magnitude of the hilltop
convexity increases (see Figure 4c), whereas side slopes
become increasingly planar. For very large ‘¥, the hillslope
approximates an “angle of repose” hillslope with effectively
straight, uniform gradient slopes.

nonlinear and linear components of sediment flux at the base
of the hillslope are equal, such that much of the upslope
hillslope area is dominated by the linear transport component
(Figure 4). As a result, such hillslopes exhibit relatively little
variation in curvature (relative to cases where ¥,>1). With
increasing ¥;, side slopes of modeled hillslopes become
increasingly planar, and convexity becomes increasingly

: HILLSLOPE EVOLUTION BY NONLINEAR TRANSPORT

concentrated at hilltops. Such “convexoplanar” slopes are
characteristic of hillslopes in the Oregon Coast Range study
site, for which ¥, is approximately equal to 1.8 (equation
(8b)). For ¥, >>1 the modeled hillslope approximates an
“angle of repose” slope with effectively planar side slopes and
an extremely narrow convexnty (i.e., a sharp peak) at the
divide.

5.2. Hillslope Gradient, Relief, and Curvature in the
Oregon Coast Range

To explore how nonlinear transport influences linkages
between landscape morphology and tectonic forcing, we used
both the linear and nonlinear transport models ((4)-(6)) to
quantify morphologic properties of equilibrium hillslopes for
varying erosion rates. Holding other factors equal (e.g., the
influence of erosion rate on drainage spacing [Howard,
1997]) and using our calibrated OCR parameters (K=0.003 m’
yr", S.=1.2, L;=40m, and p,/ps=2.0), Figure 5 illustrates how
varying the erosion rate C, (or rate of tectonic forcing)
influences maximum and average hillslope gradient, hilltop
curvature, and relief for the linear and nonlinear transport
models. Values of hilltop curvature (calculated at x=0, such
that dz/dx=0) were calculated using (4a) and (4b), and the
maximum and average gradients were calculated using (5a)
and (5b). Hillslope relief H is calculated from (6a) and (6b),
as H=z(0)-z(L,). For very low erosion rates (C, < 5x10° m yr
1 and ;<1 ) the linear and nonlinear models give similar
results, predicting that the average and maximum hillslope
gradients and hillslope relief increase linearly with erosion
rate. With the linear model, slope angle and relief increase
proportionally with erosion rate, suggesting that erosion rates
or tectonic forcing can be inferred from hillslope morphology
[Koons, 1989]. The linear model predicts that relatively long
hillslopes exhibit extremely steep slope angles (>60°-70°)
near the channel margin, inconsistent with field observations
in soil-mantled landscapes. '

Contrary to the linear model, (5b) and (6b) imply that
hillslope relief and gradient will not be sensitive indicators of
uplift- (or landscape erosion) rate. For erosion rates higher
than 1.0x10™ m yr' (or ¥;>1), gradients calculated with the
nonlinear model become relatively constant with erosion rate,
making slope angle an insensitive indicator of uplift or
erosion rate. Similarly, the nonlinear model predicts that
hillslope relief becomes relatively independent of erosion rate
for C,>1.0x10* m yr' (Figure 5b). For erosion rates
characteristic of the Oregon Coast Range, our results indicate
that hillslope relief will increase only 10% for a twofold
increase in erosion rate. The difference between hillslope
relief predicted by the linear and nonlinear transport models
increases rapidly with erosion rate, and for our OCR
parameters, hillslope relief calculated with the linear model is
more than a factor of 2 greater than the nonlinear-derived
relief (see Figure Sb).

Despite the discrepancies between nonlinear and linear
transport models, both predict that hilltop curvature
(calculated where dz/dx=0) varies proportionally with erosion
rate ((4a) and (4b); see Figure 5a), making it a potentially
useful diagnostic tool for inferring tectonic forcing from
landscape morphology [e.g., Roering et al., 1999]. Most
topographic data, however, are not sufficient to resolve hilltop
curvature. In many soil-mantled landscapes, meter-scale
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Figure 5. Theoretical relationships between morphologic properties and lowering rate for equilibrium
hillslopes that erode according to linear and nonlinear transport models ((1) and (2)). (a) Average and
maximum gradients increase linearly with lowering rate for linear transport (dashed lines), whereas for
nonlinear transport both average and maximum gradient (thin solid and thick shaded lines) become relatively
independent of erosion rate and approach S, as C, approaches . These relationships are calculated with
parameters characteristic of our study site in the Oregon Coast Range (OCR) (K=0.003 m® yr', S=1.2,
p/p=2.0, and L,=40m). Both linear and nonlinear transport indicate that hilltop curvature (thick solid line)
varies proportionally with lowering rate. (b) Relief for the same parameters used above, which increases
proportionally with erosion rate for linear transport (dashed lines) and is relatively independent of erosion
rate for nonlinear transport (solid lines). The ¥, axis illustrates how erosion rate increases the relative
magnitude of nonlinear transport on hillslopes (equation (8b)). For small ¥, transport is essentially linear,
but as ¥, gets large, nonlinear transport becomes important, and the disparity between morphology predicted
by the linear and nonlinear models increases. AH indicates the difference between hillslope relief predicted
with the linear and nonlinear models for the OCR study site. ‘
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topographic data (<5 m spacing) are required to characterize
hilltop curvature at the appropriate scale.

Nonlinear sediment transport has important implications
for the development of hillslope relief, but it is unknown how
the relief associated with individual hillslopes compares to the
total landscape relief of our Oregon Coast Range study area.
Using high-resolution topographic data for our study site, we
estimated the scale-dependence of topographic relief to
quantify the contribution of individual hillslopes to the total

relief. Specifically, we calculated the maximum elevation
difference (relief) within a window of fixed radius at evenly
spaced intervals across the landscape, thereby generating a
distribution of relief for a given spatial scale (window radius).
By repeating this process with varying window radii, we
characterized the influence of spatial scale on topographic
relief. Figure 6 shows that the topographic relief associated
with hillslopes in our study site (radius ranging from 20 to 50
m) is ~ 30-60 m, consistent with predictions from our profile
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calculation for C,=1x10™* m yr”' (see Figure 5b). On average,
individual hillslope relief accounts for ~ 15-20% of the large-
scale relief (~250-300 m) of our study area (Figure 6).

6. Timescales of Hillslope Adjustment to
Tectonic and Climatic Forcing

6.1. Model Description

Hillslopes respond to changes in tectonic and/or climatic
forcing by adjusting their morphology and sediment
production. The time required for a hillslope to adjust its
morphology to a change in baselevel lowering or climate has
been termed the “relaxation” or “adjustment” timescale [e.g.,
Ahnert, 1987, Howard, 1988].  Numerous theoretical
corntributions demonstrate that regardless of their initial
conditions, model hillslopes evolve asymptotically toward a
steady state, such that hillslope characteristics are effectively
time-invariant if downcutting rates and model parameters are
constant over timescales that are long compared to the
hillslope adjustment time [e.g., Ahnert, 1987; Fernandes and
Dietrich, 1997; Howard, 1997]. In the following analyses,
we consider hillslope adjustment to changes in (1) baselevel
lowering C, and (2) climate-related transport efficiency on
hillslopes (which may be realized through the hillslope
transport rate constant K). The tectonic evolution of
mountainous terrain may affect rates of baselevel lowering,
and climate change may affect channel incision rates as well
as biological communities, including trees and mammals that
control disturbance-driven soil transport on hillslopes.

To quantify time-dependent hillslope evolution, we
combined (2) and (3) and calculated the spatial and temporal
variation of hillslope elevation in one dimension using a finite
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Figure 6. Plot of maximum relief as a function of window
radius for the landscape depicted in Figure 2. Circles indicate
the mean maximum relief calculated at evenly spaced points
across the study area for a given window (or sampling) radius.
The error bars indicate the standard deviation of maximum
relief. The horizontal scale of hillslopes in the study site is ~
20-50 m, such that the associated relief is ~ 30-60 m (15-20%
of the total landscape relief). ,
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difference model. For all simulations, we used a small node
spacing relative to the total hillslope length. In addition, we
implemented an adaptive time step algorithm to maximize
efficiency and ensure numerical stability [Press et al., 1992].
For all simulations, we modeled a symmetric hillslope with a
crest in the middle and channel margins on either end, where
boundary conditions of baselevel lowering (or channel
incision) C,(¢) were imposed. Our simulations assumed
transport-limited conditions, such that erosion rates do not
exceed rates of soil production; the influence of soil
production will be explored in future contributions. Although
initial conditions have important influences on landscape
evolution, they are typically difficult to characterize. Instead
of making arbitrary assertions about initial conditions, we
used an equilibrium hillslope (calculated using (6b)) as the
initial condition for all of our simulations. Specifically, we
analyzed how a steady state hillslope evolves toward a new
steady state due to an imposed step change in C, or K.

6.2. Hillslope Adjustment to an Increase in the Rate of
Baselevel Lowering

The following numerical experiment illustrates how
hillslope morphology, sediment fluxes, and erosion rates
respond to a step change in C,. We used the OCR parameters
(K=0.003 m* yr'', S,=1.2, L,=40 m, and p,/p,=2.0) to simulate
how an equilibrium hillslope adjusts to a doubling in the
channel incision rate (from C,=5.0x10”° m yr' to C,=1.0x10™
m yr'). The corresponding values of ¥, for the initial and
final equilibrium hillslopes are 0.72 and 1.78, respectively,
such that the relative importance of nonlinear transport
increases and the final hillslope has a narrower zone of hilltop
curvature and more planar sideslopes. Figure 7 depicts the
temporal and spatial distribution of elevation, gradient,
curvature, sediment flux, and erosion rate across the evolving
hillslope. Initial and final equilibrium values of sediment flux
at the hillslope base are denoted by g; and g,, and the
equilibrium values of erosion rate for the initial and final
hillslope are denoted by (C,); and (C,),, respectively. A step
increase in C, causes slope angles at the base of the hillslope
to steepen, increasing sediment flux into the channel network
(Figures 7b and 7d). Increased erosion rates at the hillslope
base cause the locally steepened section to propagate upslope,
reaching the hillslope crest sometime after the initial change
in the channel incision rate (Figure 7e). After the initial
equilibrium state has been perturbed across the hillslope,
further time is required for the hillslope to adjust its form to
the newly imposed lowering rate, such that erosion rates
become approximately constant (Figure 7e). In this example,
the hillslope evolves from one with relatively little spatial
variation in curvature to one with a highly convex crest and
relatively planar sideslopes. At different points along the
hillslope, curvature evolves along a complex path before
reaching the final condition (Figure 7c). The final hillslope
exhibits focused convexity at the hilltop. Figure 8 illustrates
the temporal variation of sediment flux g; (measured at the
base, x=L;) and erosion rate at the hilltop (0z/0f),, both of
which approach their new equilibrium value gradually. A
similar hillslope response is observed for step changes in K
(when C, is held constant), although a different feedback
mechanism controls the morphologic transformation.
Specifically, a twofold increase in K causes erosion rates
across the hillslope to immediately double. Because channel
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Figure 7. (a) Elevation, (b) gradient, (c) curvature, (d) sediment flux, and (e) erosion rate profiles of

transient hillslope adjustment occurring after a twofo]d mcrease in baselevel lowering rate.

The initial

condition is an equlhbnum profile with C,=5.0x10"° m yr, indicated by ¢ (thick shaded line), and the fmal
condmon (which is signifies the end of the simulation) is indicated by #. Model parameters are: K=0.003 m’

yr', S=1.2, p/p=1.0, and L, =40m. Profile lines are shown for 20 kyr mcrements

The clustering of

proﬁles near # illustrates the gradual approach to equilibrium. Read 1E-004 as 1x10™,

incision C, is held constant, the effect of differential erosion
at the hillslope base propagates upslope (as in the previous
case), such that the hillslope crest eventually adjusts its form
to the constant incision rate and newly imposed value of K.

7. Equilibrium Definition and Evaluation

Although the concept of an equilibrium hillslope is
appealing and intuitively accessible, defining and evaluating
the attainment of approximate steady state topography is not a

straightforward task [e.g., Brunsden and Lin, 1991; Ahnert,
1994; Thorn and Welford, 1994]. As elaborated by Howard
[1988], equilibrium can be defined through a single-valued
variable, such as gradient, curvature, or sediment flux. The
choice of which variable to use depends on research goals and
the spatial and temporal scales of available measurements.
The numerical experiments of transient hillslope adjustment
illustrated above (Figure 7) reveal two variables that may be
diagnostic for defining equilibrium. Analogous to basin
studies of sediment yield, sediment flux from hillslopes into
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Figure 8. The variation of (a) sediment flux at the hillslope
base g; and (b) erosion rate at the hillslope crest (8z/0r), with
time for the simulation shown in Figure 7. Arbitrary
threshold-defined equilibrium adjustment times are shown by
t, and ¢, for both time series of g; and (&z/0¢), (see text). The
timescale 1z, indicates when g¢; or (8z/0f), (evaluated
independently) is within 10% of its final equilibrium value, g,
or (C,), (equation (9)), and the timescale #, indicates the time
when 90% of the change between the initial and final values
of q; or (0z/0f), (evaluated independently) is achieved
(equation (10)). The thick shaded bar shown in (b) denotes
the time lag for the perturbation in C, to reach the hillcrest,
such that the final approach to morphologic equilibrium
occurs after the approach to sediment flux equilibrium (see
text).

the channel network (q;= q(L,)) can be used to evaluate
equilibrium [Reneau and Dietrich, 1991; Kooi and Beaumont,
1996; Fernandes and Dietrich, 1997]. As shown in our
example (Figures 7d and 7e), changes in incision rate are
almost immediately transmitted to points along the base of the
hillslope and the approximate attainment of the final
equilibrium sediment flux does ‘not necessarily reflect the
status of morphologic adjustments upslope. In other words,
the gradient (and thus sediment flux) near the base of a
hillslope may adjust to its new equilibrium value before
upslope sections of the hillslope have adjusted. Alternatively,
a morphologic equilibrium definition may be used to define
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hillslope-wide adjustment, such that erosion rates across the
entire hillslope are effectively constant and morphology is
time-independent. To define this type of equilibrium, we
evaluate 0z/0¢ at the hillslope crest (x=0), (8z/6f),, because it
is the last landscape element to adjust to changes imposed at
the hillslope-channel margin. Erosion rate at the crest is
proportional to hillslope curvature, such that the time series of ,
hilltop curvature would exhibit similar variation as (0z/0¢),.
For step changes in C, and K the absolute time for
morphologic equilibrium is longer than that for sediment flux
equilibrium. The difference in time required to attain these
two equilibrium states is approximately equal to the time
required for the signal of the step change to propagate
upslope and reach the hillslope crest (see Figure 8b).

7.1. Equilibrium Criteria

As our numerical example illustrates (Figure 8), sediment
flux at the base g; and erosion rate at the crest (0z/0¢f),
approach their new equilibrium values, g, and (C,),,
asymptotically. As a result, we must devise a method for
determining when the value of g or (8z/0f), is close enough
to its new equilibrium value such that the variable may be
considered effectively constant. Howard [1988] describes
criteria for quantifying the time at which equilibrium is
approximately attained for step changes in boundary
conditions or model parameters (in our case C, and K).
Fernandes and Dietrich [1997] used a simple threshold
criterion to quantify the equilibrium adjustment time of
hillslopes, #,, that erode according to the linear transport
model (equation (1)), such that equilibrium is achieved when
q. or (0z/01), is within an arbitrary fraction of its final value,
according to

t=1, |F(©)-F|<PF, ®

where F, is the final equilibrium value of sediment flux or
erosion rate, g, or (C,),, respectively, F(f) is the time-
dependent value of q; or (0z/0f),, and P is the threshold
fraction used to define equilibrium (Fernandes and Dietrich
[1997] used P=0.1). This approach may be problematic
because initial perturbations that do not exceed the threshold
fraction P yield adjustment times of zero. Alternatively,
equilibrium can be defined as the time when a certain fraction
of the change between the initial and final states is achieved,
15, according to

t=t, |F()-F|<P|F,-F| (10)
where F; is the initial equilibrium value of sediment flux or
erosion rate, g; or (C,),, respectively. We calculated
equilibrium adjustment time (or relaxation time) according to
these two definitions ((9) and (10)) for the hillslope evolution
experiment depicted in Figure 7. For sediment flux
equilibrium (defined by g¢;), 7,=78 kyr and #=110 kyr,
whereas for morphologic equilibrium (defined by (0z/0f),)
t=113 kyr and #=143 kyr (using P=0.1) (Figure 8). As
mentioned previously, these results demonstrate that for a
given equilibrium criterion (#, or #;) the absolute time for
morphologic equilibrium exceeds the time for flux
equilibrium, the difference being approximately equal to the
time required for the signal of increased incision at the
hillslope base to reach the crest (see Figure 8b). For this
example the difference between morphologic and flux
equilibrium is ~ 34 kyr.
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Figure 9. (a) Plot of (11) for various values of ¢ when
F,/F\=2. (b) The transient response of sediment flux for a
twofold increase in baselevel lowering, modeled with an
exponential decay function (equation (11)). Small values of 1
indicate a rapid approach, whereas large values correspond to
longer, more gradual adjustments. Sediment flux for the
simulation shown in Figures 7 and 8 (shaded dots) is well
approximated by an exponential decay function with 1=50

7.2. Exponential Approach to Equilibrium

The above described equilibrium criteria ((9) and (10)) are
somewhat arbitrary and do not describe the characteristic
behavior by which hillslopes gradually approach steady state
(Figure 8). Following a step change in C, or K, time-
dependent values of g; and (0z/0f), can be well approximated
with an exponential decay function [e.g., Howard, 1988],
according to

F()=F,+(F-F)e " (11)

where the imposed step change occurs at =0, F is the variable
used to define equilibrium (in our case F will equal either g;
or (0z/0t),), and 7 is the exponential timescale that quantifies
how rapidly F' approaches its final equilibrium value F,. This
approach enables us to describe transient behavior using an
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exponential timescale instead of an arbitrarily defined time
threshold. Using (11), we calculated how different values of
t affect how F approaches its final equilibrium value,
F,/F;=2. Larger values of t are associated with a slower
approach to equilibrium and vice versa (Figure 9a). For the
simulation depicted in Figures 7 and 8 we fit time-dependent
values of g; with (11) and estimated that =50 kyr (Figure
9b). Because it provides a fairly complete and compact
description of transient model behavior, we use T to
characterize the timescale for equilibrium adjustment. In the
following analyses, we fit T to time-dependent values of g,
and (0z/0r), as they approach their new equilibrium values.
Furthermore, T can be used to calculate time to equilibrium as
defined by the previously discussed threshold criteria, ¢, and #;
((9) and (10)). By substituting (11) into (9) and (10),
respectively, and solving for time ¢ we obtain [Howard, 1988]

t, = —rln[—L—-]
‘ |R/FR -1

ty=—7T ln(P)

(12)

(13)

If the response function is exponential, the time required to
achieve an arbitrary fraction of the change between two
equilibrium states is independent of the magnitude of the
imposed change (equation (13)).

7.3. Analysis of Exponential Timescale: Linear Transport

To guide our investigation of how nonlinear transport
influences the timescale for equilibrium adjustment, we used
analytical equations that describe the transient behavior of
linear diffusive boundary value problems and then used the
ratio ¥; to extend the analysis to nonlinear transport.
Analytical solutions derived for transient, linear diffusive
boundary value problems indicate that the exponential decay
timescale in (11) T should be proportional to L,”/K [Crank,
1975]. . Using the linear transport law (equation (1)) we
modeled the exponential adjustment timescale t associated
with step changes in C, (baselevel lowering rate) and K
(transport rate constant) for hillslopes of various length L, and
found that T, (T for linear transport) is well approximated by

2
L

X (14)

Tlin =4

where A4 is a constant that we estimate to be 0.405 +0.002 and
K is the transport rate constant used in the numerical model
(Figure 10). Equation (14) provides us with a simple and
compact description of how equilibrium adjustment time
varies on hillslopes modeled by linear transport. The values
of 1, shown in Figure 10 were estimated from both g; and
(0z/0¢)o, indicating that for a given L, and K the exponential
timescale describing the final approach to equilibrium 71y, is
effectively equivalent for morphologic and flux equilibrium.
To compare this result with those reported by Fernandes and
Dietrich [1997], we used (12) and (14) to calculate the time
required to evolve g; to within 10% of g, (equation (9)) for
various step changes in C, and obtained results relating
adjustment time 7, to L,, K, and the initial and final baselevel
lowering rates (Table 1). Our results are nearly identical to
those reported by Fernandes and Dietrich [1997] in a
dimensionless graph.
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Figure 10. Variation of the exponential decay timescale with
L,"/K for hillslopes modeled with linear transport (equation
(1)). Numerical results (open circles) are well approximated
with linear relationship with slope A equal to 0.405 +£0.002.

7.4. Analysis of Exponential Timescale: Nonlinear
Transport

To quantify how nonlinear transport affects 7, we modeled
the transient behavior of small perturbations in C, and/or K
for hillslopes with a range of ¥; (which quantifies the relative
importance of nonlinear transport, (8)). All else being equal,
the timescale for adjustment to perturbations in C, and K are
essentially the same. In contrast to the twofold increase in C,
illustrated in Figures 7 and 8 we used small perturbations for
these simulations (imposed values of C, and/or K differ from
the initial values by < 1%). These small perturbations allow
us to quantify how transient hillslope response varies with ¥/,
because values of ¥, for the initial and final equilibrium
hillslopes are effectively equivalent. Using our numerical
model, we simulated hillslope evolution with (2), using
various hillslope lengths L,, transport rate constants K, and
incision rates C, and observed a nonlinear decrease in the
exponential timescale t,, with increasing ¥; (Figure 11).
We normalized our numerically derived estimates of 1,,, with
Ty calculated for a hillslope with the same values of L, and K
(equation (14)). As expected, for very small values of ¥,
T.on/Tin =1 because the relative importance of nonlinear
transport is extremely small. With increasing ¥;, Tuon/Tin
decreases rapidly.  This result indicates that nonlinear
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hillslope transport significantly decreases the time required
for hillslopes to adjust to changing boundary conditions. The
variation of t,,, with ¥ is well described by the following
nonlinear functions:

Toon o1 (15)
Tin (1+¥,)°

. L4
non X (1+"PL)B

where B is a constant that we estimate to be ~ 1.74 +0.02
(Figure 11). Equation (16) allows us to estimate the timescale
of equilibrium adjustment for hillslopes that erode by
nonlinear slope-dependent transport. According to (15) and
(16), for ¥, >>1, equilibrium adjustments occur rapidly,
although this analysis only applies where erosion rates do not
outpace soil production. Thus the range of values of ¥,
relevant to real hillslopes is controlled by the ratio of the
regolith production rate to the landscape lowering rate.

(16)

8. Discussion

Our analysis of nonlinear transport and steady state slope
morphology indicates that equilibrium hillslope relief and
slope angle are poor indicators of tectonic forcing (Figure 5).
On steep slopes, decreasing frictional resistance (and possibly
shallow landsliding) causes transport rates to increase rapidly
for small increases in slope angle, such that large increases in
erosion rate may be accommodated by small slope increases.
Consistent with our analysis, recent field studies demonstrate
that in steep, mountainous landscapes, erosion rates vary
several-fold with little change in hillslope angles [Burbank et
al., 1996; Whipple et al., 1999]. For a given hillslope length,
nonlinear models predict that above a particular erosion rate,
hillslope relief does not vary widely with erosion rate. For
our calculations using parameters characteristic of the Oregon
Coast Range and other soil-mantled landscapes the difference
between hillslope relief calculated by the linear and nonlinear
models increases dramatically for erosion rates >5x10™ m yr.
Individual hillslopes constitute a relatively small amount of
the total landscape relief in the Oregon Coast Range study site
(15-20%), such that valley incision by debris flows [Stock and
Dietrich, 1999] and network evolution are likely to regulate
long-term relief development. '

Although other nonlinear transport models have been
proposed, we use (2) in this study because it has been tested
and field calibrated over the relevant spatial scale. Once
calibrated, other nonlinear models that include a term to
describe the critical gradient at which sediment flux
approaches infinity or a maximum value [Kirkby, 1984;

Table 1. Comparison of Hillslope Adjustment Times Modeled with the
Linear Transport Model: This Study and Fernandes and Dietrich [1997]

Final/Initial ta, Kyr

Lowering Rate (C,)2/(Co) This Study Fernandes and Dietrich
10 475 460

2 347 330

0.1 973 1,020

0.01 1,490 1,540

Here 1, is defined according to (9) where P=0.1. K=0.003 m’ yr"* for all calculations.

For this study, #, is calculated using (12) and (14).

For Fernandes and Dietrich, t, is estimated using Figure 9 of Fernandes and Dietrich [1997].
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Anderson, 1994; Howard, 1994] produce results nearly
identical to those shown here. Andrews and Bucknam [1987]
proposed another nonlinear transport model without a critical
gradient term. Such models predict that high-relief, steady
state hillsides gradually steepen without limit in the
downslope direction, although the magnitude of steepening
may be imperceptible on sufficiently long natural slopes.

The equilibrium concept must be applied to hillslopes over
the appropriate temporal and spatial scales. Recognizing that
considerable fluctuations may prevail over shorter length
scales, numerous studies have applied the equilibrium concept
to characterize tectonic forcing across entire mountain ranges
[e.g., Koons, 1989; Brunsden and Lin, 1991; Anderson, 1994;
Whipple et al., 1999]. Hillslopes supply sediment to
channels, thereby controlling the sediment load that affects
fluvial incision downstream [Sklar and Dietrich, 1999]. Our
analysis suggests that hillslope adjustment is highly sensitive
to the length scale (or spatial extent) of individual hillslopes
and the relative importance of nonlinear transport processes.
In highly dissected landscapes with steep, threshold-
controlled slopes (e.g., the Oregon Coast Range), hillslopes
account for a small portion of the total relief and adjust
rapidly to changes in the rate of channel incision. In contrast,
broad, gentle hillslopes in poorly dissected terrain account for
a larger proportion of the landscape relief and have long
adjustment times. )

Our results demonstrate that relative to the widely used
linear model, nonlinear hillslope transport reduces the
timescale for equilibrium adjustment to changes in incision
rate C, and to changes in the climate-dependent hillslope
transport rate constant K. As ¥; becomes large (i.e., the
relative importance of nonlinear transport increases), the
timescale decreases rapidly, and the relationship between ‘¥
and T,./T;, is well approximated by a power law function
with an exponent equal to approximately -1.74 (see (15)).
However, our analysis applies only to soil-mantled hillslopes,
such that landscape lowering rates do not exceed rates of soil
production.  Recent analyses of soil production using
cosmogenic radionuclides indicate that hillslopes may be soil-
mantled for landscape lowering rates < 2.0x10° m yr'
[Heimsath, 1999]. This upper bound presumably varies with
lithology and surface processes. In some high-relief
landscapes, erosion rates greatly exceed 2.0x10° m yr', and
the dominant denudational processes are thought to be
bedrock landsliding and/or glacial erosion [Burbank et al.,
1996; Brozovic et al., 1997]. Our analysis does not account
for the mechanics of bedrock toppling, structurally controlled
rockfalls, deep-seated landsliding, or glacial abrasion, all
processes that may be characteristic of high mountain
landscapes.

Our analysis uses an exponential decay approach to
quantify hillslope adjustment to changes in tectonic forcing,
similar to previous studies [e.g., Kooi and Beaumont, 1996].
For our analysis of nonlinear transport and transient
adjustment, we simplified the influence of nonlinear transport
by modeling small perturbations in lowering rates, such that
the initial and final hillslopes had very similar values of \¥;.
For hillslopes that undergo a large step change in incision rate
(such that the initial and final equilibrium hillslopes have
significantly different values of ¥;) the adjustment timescale
t will vary nonlinearly as the hillslope evolves. The initial
period of response will reflect the exponential timescale
associated with ¥, for the initial hillslope, whereas the final
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modeled with various values of K and C,. For small ‘¥, the
nonlinear and linear adjustment timescales are effectively
equivalent, whereas for increasing ¥, the adjustment
timescale decreases rapidly. The relationship is well
approximated by (15), with the exponent approximately equal
to 1.74+0.02. The thin solid lines show the initial and final
values of W (initial value of 0.72; final value of 1.78) and

approach to equilibrium is well approximated by ¥, for the
final equilibrium hillslope. Because the final equilibrium
approach ultimately determines the time for adjustment, the
value of W¥; for the final equilibrium hillslope is most
applicable for analyzing hillslope evolution. For example, our
initial simulation (Figures 7 and 8) describes how a hillslope
evolves from an initial condition with W¥;=0.72 to a final
condition with ¥;=1.78, such that 1, changes from 84 to 36
kyr through the course of the simulation (as calculated with
(16)). As shown in Figure 9b, we can fit the entire time series
of g; with (11) using =50 kyr, although early portions of the
curve are better approximated using 1=84 kyr and later
portions are better approximated using t=36 kyr (see Figure
11). When compared to the adjustment timescale predicted
by linear transport (1;,=216 kyr) and additional uncertainties

_inherent to models of landscape evolution, the temporal

variation in 1, as a hillslope evolves may be relatively small.

Systematic analysis of adjustment timescales associated
with geomorphic processes may improve our ability to
evaluate whether uplift and erosion are approximately
balanced in a particular landscape. In the Oregon Coast
Range our results indicate that the characteristic hillslope
adjustment timescale t is approximately 50 kyr, which is more
than a factor of 4 shorter than the adjustment timescale
predicted by linear transport (216 kyr). This suggests that
individual hillslopes adjust more rapidly to changing
boundary conditions than previously proposed, such that the
morphologic adjustment of steep, soil-mantled landscapes
may ultimately be limited by the ability of the channel
network to transmit the signal of baselevel lowering. Whipple
and Tucker [1999] used the stream power equation to
quantify the adjustment of channel networks to changes in the
rate of baselevel lowering and demonstrated that basin
response varies significantly with the model parameters
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describing channel incision. Future studies will combine
fluvial erosion models and hillslope transport models to
analyze transient coupling between hillslopes and channels.
Recent studies have attempted to quantify rates of uplift and
denudation in mountainous landscapes and evaluate the
likelihood of steady state topography [e.g., Hovius et al.,
1997; Meigs et al., 1999; Riebe et al., 2000]. As stated in
these contributions, erosional adjustment timescales control
landscape response to tectonic forcing and thus the time
required for denudation to balance uplift.

Although the exponential timescale that describes the final
approach to equilibrium is the same for the sediment flux and
morphologic equilibrium definitions, adjustment of the hilltop
does not begin until the perturbation induced by a boundary
condition change propagates upslope. As a result, the
morphologic adjustment lags behind that of sediment flux.
As illustrated in Figure 8b, the magnitude of this lag is small
compared to the equilibrium adjustment timescale. By
analogy, estimates of basin-wide sediment yield in
mountainous terrain may not be indicative of time-
independent landscape morphology [e.g., Meigs et al., 1999;
Reneau and Dietrich, 1991]. Instead, the upland landscape
morphology may reflect previous tectonic and/or climatic
conditions. Furthermore, estimates of sediment yield may
reflect changes in sediment storage for specific elements of a
drainage basin (e.g., floodplains) and not morphologic
adjustment of hillslopes.

Complicated patterns of tectonic and climatic forcing
undoubtedly influence the erosional response of landscapes.
As described by Howard [1988], oscillatory fluctuations in
climate or tectonics may introduce complex relationships
between landscape morphology and tectonic or climatic
forcing. The manifestation of such fluctuations likely
depends on the amplitude and wavelength of boundary
condition variations relative to the landscape adjustment
timescale. Our analysis may be easily adapted to incorporate
such variability, but owing to the lack of geologic evidence
indicating such variability we do not include those effects in
this study.

9. Conclusions

Hillslope morphology reflects the interaction between
surface processes and tectonic and climatic forcing. Soil-
mantled hillslopes respond to changes in baselevel lowering
and/or climatic conditions by adjusting their morphology such
that erosion rates approach a constant value across the
hillslope. From our simulations of hillslope evolution by
nonlinear slope-dependent transport we conclude the
following:

1. Contrary to predictions of the frequently used linear
transport model, our proposed nonlinear model indicates that
hillslope relief and gradient are not sensitive indicators of
tectonic forcing. For model parameters and erosion rates
characteristic of the Oregon Coast Range and other soil-
mantled landscapes, relief and average slope angle will
increase only 10% for a twofold increase in erosion rate.
However, our nonlinear model indicates that hilltop curvature
varies proportionally with erosion rate and may be diagnostic
for inferring tectonic forcing from hillslope morphology.

2. We quantify the relative importance of nonlinear
transport with a dimensionless parameter, ¥; (defined as the
ratio of nonlinear to linear components of sediment flux at the
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hillslope base), where low values of ‘¥, reflect steady state
hillslopes with relatively constant curvature between the crest
and channel and high values characterize hillslopes with
narrow, highly convex hilltops and relatively planar
sideslopes.

3. Hillslope adjustments to step changes in baselevel
lowering or the climate-related hillslope transport rate
constant are well approximated by an exponential decay
function. For the linear model the exponential time constant
varies with the square of hillslope length and the inverse of
the transport rate constant. Nonlinear transport on hillslopes
decreases the equilibrium adjustment timescale. On hillslopes
where the magnitude of nonlinear transport is relatively small,
the adjustment timescale is similar to that for linear transport, .
whereas with increasing importance of nonlinear transport the
adjustment timescale decreases rapidly. In our Oregon Coast
Range study site the relief associated with individual
hillslopes is ~ 15-20% of the total landscape relief and the
nonlinear transport model predicts that hillslopes adjust
rapidly to changes in baselevel lowering (4 times faster than
previously predicted with the linear transport model).
Considered together, these results suggest that in steep, soil-
mantled landscapes the signal of tectonic forcing may be
quickly assimilated by hillslopes, such that channel incision
and the coupling of hillslopes and channels may ultimately
control the adjustment of entire drainage basins.
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