Estimating millennial-scale rates of dust incorporation into eroding hillslope regolith using cosmogenic nuclides and immobile weathering tracers

Ken L. Ferrier,1 James W. Kirchner,2,3,4 and Robert C. Finkel4,5

1Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
2Swiss Federal Institute for Forest, Snow, and Landscape Research (WSL), Birmensdorf, Switzerland.
3Department of Environmental Sciences, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.
4Department of Earth and Planetary Science, University of California, Berkeley, California, USA.
5Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, California, USA.

Copyright 2011 by the American Geophysical Union. 0148-0227/11/2011JF001991

Received 11 February 2011; revised 1 June 2011; accepted 13 June 2011; published 15 September 2011.

[1] Dust fluxes are of wide interest because of the effects of dust on climate, oceanic primary productivity, terrestrial biogeochemical cycles, and regolith composition. Estimating long-term dust deposition rates, however, can be difficult, especially in steep, eroding terrain. Here we present a geochemical mass balance method for estimating long-term average rates of dust incorporation into regolith on steadily eroding hillslopes. This method requires measurements of the local regolith production rate and the concentrations of two immobile elements in the regolith, its parent rock, and dust. Dust incorporation rates inferred with this method are averaged over the long timescale of regolith residence on the hillslope (typically 103–105 years), and thus may serve as long-term averages against which modern-day dust fluxes may be compared. We apply this model to 17 field sites in the South Fork of the Salmon River in the Idaho Batholith, where rock and regolith compositions imply that mafic-rich material has been added to the otherwise granitic regolith. We suggest that the most likely source of this mafic material is dust sourced from the same glacial outburst flood sediments that generated the Palouse loess on the Columbia Plateau, and we use the published composition of these sediments to infer dust incorporation rates of 3–13 t km−2 yr−1 at these sites, comparable to modern-day dust fluxes elsewhere in the western United States.

1. Introduction

[2] As the orange-red skies in Sydney, Australia colorfully demonstrated in September 2009, the atmosphere is capable of transporting a great deal of mineral mass. It exercises this ability regularly. Globally, the continents send about 1700 Tg of dust into the atmosphere every year, of which about 450 Tg falls to the oceans and 1250 Tg returns to land [Jickells et al., 2005]. This dust flux has widespread consequences. It influences climate by affecting radiative transfer [e.g., Harrison et al., 2001], it promotes marine primary productivity by fertilizing Fe-limited regions of the oceans [e.g., Fung et al., 2000], and, where it returns to land, it affects regolith composition [e.g., Rex et al., 1969]. If the 1250 Tg of land-bound dust were distributed evenly over all terrestrial landmasses, it would produce a dust deposition rate of roughly 8 t km−2 yr−1. Relative to a present-day globally averaged denudation rate of roughly 140 t km−2 yr−1 [Wilkinson and McElroy, 2007], which, in steady state, must roughly equal the rate at which fresh minerals are supplied to the regolith from the underlying rock, dust deposition should be a secondary but non-trivial source of minerals and nutrients to Earth’s regoliths.

[3] This is confirmed by a number of studies that have found that dust is an important contributor to regolith composition, both in arid to semi-arid regoliths of the western United States [e.g., Marchand, 1970; Litaor, 1987; Harden, 1988; Chadwick and Davis, 1990; Reheis, 1990; Reheis and Kihl, 1995; Reheis et al., 1995, 2009; Dahms, 1993; Reynolds et al., 2006; Goldstein et al., 2008] and elsewhere around the globe [e.g., Rex et al., 1969; Muhs et al., 1990; Brinhal et al., 1988; Chartres et al., 1988; Chadwick et al., 1999; Kurtz et al., 2001; Stiles et al., 2003; Porder et al., 2007; Pett-Ridge et al., 2009]. As many of these studies have noted, incorporation of dust into regolith has consequences for geomorphic and geochemical studies that use the rock-to-regolith enrichment of chemically immobile elements as a tool for inferring rates and processes of regolith
formation, chemical weathering, and physical erosion [e.g., Brimhall and Dietrich, 1987; Brimhall et al., 1992; White et al., 1998; Riebe et al., 2001, 2003, 2004a, 2004b; Green et al., 2006; Yoo et al., 2007, 2009; Burke et al., 2007, 2009; Dixon et al., 2009a, 2009b]. Because the elements typically considered to be immobile are present in small quantities in most regoliths, their concentrations in regolith can be altered by small additions of atmospheric dust, especially if the dust is rich in these elements. Quantifying the influence of dust on regolith composition (and hence on chemical and physical erosion rates inferred from regolith composition) thus requires estimates of dust composition and rates of dust incorporation into regolith.

Figure 1. Schematic of a steadily eroding regolith. In steady state the regolith denudation rate \(D \) is balanced by the sum of the regolith production rate \(P_r \) and the rate of dust incorporation into the regolith \(P_d \), and the concentrations of chemically immobile elements in the regolith \(Z_{r_d} \) and \(Ti_d \), remain constant over time.

Consider a scenario in which a steady state regolith on a hillslope receives influxes of material from two sources: incorporation of the underlying rock into the regolith at a steady regolith production rate \(P_r \), and dust incorporation into the regolith at a steady rate \(P_d \) (Figure 1). In the following derivation we use the term regolith as it is conventionally defined in the geomorphic literature, i.e., as the layer of physically mobile material in the uppermost portion of the weathering profile. This definition is functionally equivalent to the definition of the partially disturbed zone [Yoo and Mudd, 2008] and the definition of soil in some studies [e.g., Heimsath et al., 1997]. It differs from the conventional geochemical definition of regolith, in which regolith comprises both the physically mobile layer and an underlying layer which is physically static but chemically altered relative to the parent rock beneath it [e.g., Brantley et al., 2008]. Similarly, for the sake of simplicity in this derivation we call the parent material underlying the regolith bedrock, although in many field settings the material underlying the regolith has undergone some chemical weathering and may be more accurately termed saprolite, saprock, or weathered rock. Central to the following derivation is the steady state assumption, which requires that the total rate of mass addition to the regolith \(P = P_r + P_d \) be balanced by the regolith denudation rate \(D \), which itself is the sum of the physical erosion rate \(E \) and the chemical erosion rate \(W \). Similarly, for the regolith to be in compositional steady state, the influx of each element \(X \) to the regolith must be balanced by the efflux of \(X \) out of the regolith. Here and elsewhere in this paper, we consider \(D, E, W, P, P_r, \) and \(P_d \) to be mass fluxes per unit area of hillslope (M L\(^{-2}\) T\(^{-1}\)). Here we note that although the equations in the following mathematical framework are built on the assumption of a steady state regolith and thus are most accurate when the regolith is in steady state, these equations are in fact relatively insensitive to deviations from exact steady state [Ferrier and Kirchner, 2008]. This is because many of the equations in this framework are based on the mean regolith composition, which itself is relatively insensitive to temporary fluctuations in mass fluxes into and out of the regolith [Ferrier and Kirchner, 2008]. Assuming that downslope gradients in regolith chemistry are negligible (a good approximation at hilltops and ridgelines [Mudd and Furbish, 2006; Yoo et al., 2007]) the steady state mass balance equations for the bulk regolith and for an element \(X \) may be written as follows.

\[
P = P_r + P_d = D = E + W \tag{1}
\]

\[
P_X = P_r X_r + P_d X_d = D_X = E X_r + W_X \tag{2}
\]

Here \(P_r \) is the regolith production rate (M L\(^{-2}\) T\(^{-1}\)), \(P_d \) is the dust incorporation rate (M L\(^{-2}\) T\(^{-1}\)), \(P \) is the total mass flux into the regolith (M L\(^{-2}\) T\(^{-1}\)), \(P_X \) is the total flux of element \(X \) into the regolith (M L\(^{-2}\) T\(^{-1}\)), \(D_X \) is the total flux of element \(X \) out of the regolith (M L\(^{-2}\) T\(^{-1}\)), \(E \) is the physical erosion rate (M L\(^{-2}\) T\(^{-1}\)), \(W_X \) is the chemical erosion rate of \(X \) (M L\(^{-2}\) T\(^{-1}\)), and \(X_r, X_d, \) and \(X \) are the concentrations (M/M) of \(X \) in the bedrock, regolith, and dust, respectively. In the case of a chemically immobile element (e.g., Zr), \(W_{Zr} = 0 \) and equation (2) may be solved for the physical erosion rate \(E \) (equation (3)). This expression for \(E \) may be substituted into equations (1) and (2) to yield expressions for the bulk

\[
P = P_r + P_d = D = E + W \tag{3}
\]
The dust fraction \(f_d \) predicted by equation (13) versus the denominator in equation (13) for three example model scenarios (contour lines). Values for four parameters were held constant in each of these example scenarios at \(Z_{r_s} = 90 \text{ ppm}, T_{i_s} = 0.1 \%, \text{ and } T_{i_d} = 1 \%, \) and a range of values for the x axis was generated using a range of values in \(Z_{r_d} \) and the three values for \(T_{i_s} \). Predicted values of \(f_d \) approach infinity as \((T_{i_s}-T_{i_d})/T_{i_s} \) approaches \(Z_{r_s}-Z_{r_d}/Z_{r_s} \), which limits the applicability of equation (13) to field settings where this is not the case.

Figure 2. Dust fraction \(f_d \) predicted by equation (13) versus the denominator in equation (13) for three example model scenarios (contour lines). Values for four parameters were held constant in each of these example scenarios at \(Z_{r_s} = 90 \text{ ppm}, T_{i_s} = 0.1 \%, \text{ and } T_{i_d} = 1 \%, \) and a range of values for the x axis was generated using a range of values in \(Z_{r_d} \) and the three values for \(T_{i_s} \). Predicted values of \(f_d \) approach infinity as \((T_{i_s}-T_{i_d})/T_{i_s} \) approaches \(Z_{r_s}-Z_{r_d}/Z_{r_s} \), which limits the applicability of equation (13) to field settings where this is not the case.

The total supply rate of an element \(X \) to the regolith (equation (2)) may also be rewritten in terms of the total regolith production rate \(P_r + P_d \) and \(f_d \).

\[
P_X = (1 - f_d)(P_r + P_d)X_r + f_d(P_r + P_d)X_d
\]

Next we invoke the chemical immobility of two elements (here \(Z_r \) and \(T_i \)). If both \(Z_r \) and \(T_i \) are immobile, then \(W_{Zr} = 0 \) and \(W_{Ti} = 0 \), which when substituted into equation (2) yield equations (9) and (10).

\[
P_{Zr} = E Z_{r_s}
\]

\[
P_{Ti} = E T_{i_s}
\]

Equations (9) and (10), in conjunction with equation (8), yield two independent expressions for the physical erosion rate \(E \).

\[
E = (P_r + P_d) \left[(1 - f_d) \frac{Z_{r_s}}{Z_{r_s}} + f_d \frac{Z_{r_d}}{Z_{r_s}} \right]
\]

\[
E = (P_r + P_d) \left[(1 - f_d) \frac{T_{i_s}}{T_{i_s}} + f_d \frac{T_{i_d}}{T_{i_s}} \right]
\]}

Setting equations (11) and (12) equal to each other permits calculation of the fraction of the regolith’s parent material that was dust, \(f_d \).

\[
f_d = \left(\frac{T_{i_s}}{T_{i_s}} - \frac{Z_{r_s}}{Z_{r_s}} \right) \left[\frac{T_{i_s} - T_{i_d}}{T_{i_s}} - \frac{Z_{r_s} - Z_{r_d}}{Z_{r_s}} \right]^{-1}
\]

Note the requirements for calculating \(f_d \); one needs the concentrations of two immobile elements in the bedrock, regolith, and dust. The value of \(f_d \) is the critical quantity in this analysis. It can be substituted into equation (7) to yield the long-term dust incorporation rate \(P_d \), which can then be substituted into equations (3)–(5) to yield the physical erosion rate and the bulk and elemental chemical erosion rates. This expression for \(f_d \) is functionally different than a similar expression by Eberly et al. [1996] in which the dust fraction was defined as \(M_j/M_s \), where \(M_j \) was defined as the mass of dust that was mixed with a mass of rock \(M_s \) during the development of a unit mass of regolith \(M_s \). This definition implicitly assumes that all of the rock-derived and dust-derived mass that had been added to the regolith is still present in the sampled regolith; i.e., that \(M_f + M_d = M_s \). This definition, however, ignores chemical mass losses \(M_{aw} \) that may have occurred by erosion of solutes during regolith development; that is, it assumes \(M_{aw} \) is negligible in the full mass balance expression \(M_f + M_d = M_s + M_{aw} \). Unlike equation (13), therefore, Eberly et al.’s expression is only correct in the limiting and uncommon scenario where chemical weathering losses have been truly negligible during regolith development, and it systematically overestimates the dust fraction where regolith chemical weathering losses have been non-negligible.

Under this definition, the dust incorporation rate \(P_d \) may be rewritten as a function of the regolith production rate \(P_r \).

\[
P_d = \frac{P_d f_d}{1 - f_d}
\]

As Figure 2 makes clear, equation (13) loses its predictive power in cases where the denominator in equation (13) approaches zero, i.e., in cases where \((T_{i_s}-T_{i_d})/T_{i_s} \) approaches \(Z_{r_s}-Z_{r_d}/Z_{r_s} \). Aside from that limiting scenario, however,
this framework is useful in that it permits calculation of long-term physical and chemical erosion rates in places where dust incorporation is significant without requiring direct physical measurements of long-term dust fluxes. It is also valuable because it is applicable to actively eroding hillslopes; unlike estimating dust fluxes by measuring the thickness of dust deposited over a known time interval, this approach does not require assuming that erosion of the deposited dust has been negligible. It is also valuable because the dust incorporation rates it quantifies provide a long-term baseline against which modern dust fluxes may be compared.

We caution that the usefulness of this approach is likely to be limited to certain field sites. As stated above, this framework rests on the approximation that rates of regolith production and dust incorporation are steady in time, as are the compositions of the rock and dust being incorporated into the regolith; consequently, it will be most accurate in places where deviations from exact steady state are smallest [Ferrier and Kirchner, 2008]. Application of this method also requires that regolith production rates inferred from cosmogenic 10Be in quartz are not affected by 10Be in dust-borne quartz. In practice, standard laboratory procedures avoid this pitfall by analyzing 10Be only in quartz grains >250 microns in size, i.e., much larger than the <50 micron particles typical of dust [e.g., Reheis, 2006]. This approach also requires the existence of two immobile elements (e.g., Zr and Ti) in the system and the ability to determine their concentrations in dust. In cases where Zr and Ti are not equally immobile, differences between enrichments of Zr and Ti could be due to preferential losses of one of the elements (e.g., through chemical weathering of Ti-bearing minerals) or exogenous dust influxes or a combination of both. In such settings measurements of Zr and Ti enrichments alone cannot distinguish between these two causes. Thus, although multiple elements have been found to be equally immobile in several field studies [e.g., Merritts et al., 1992; Kurtz et al., 2000; White et al., 2001; Anderson et al., 2002], it is certainly not possible to apply this framework everywhere. For example, some studies have inferred mobility of Ti in solution in intensely weathered tropical regolith profiles [e.g., Cornu et al., 1999], while others have suggested that Zr may be preferentially physically mobile due to differences in density and particle size between

Figure 3. Field sites on Pilot Peak and Tail Holt Mountain in the Idaho Batholith, mapped on a 10-m shaded relief DEM. See Table 1 for a list of site characteristics. Inset map of northwestern United States shows the locations of our field sites in the South Fork Salmon River canyon (SF), the proposed dust source Eureka Flat (EF), and the distribution of last glacial loess deposits (gray shaded regions, adapted from Bettis et al. [2003]).
Field site locations were chosen to be between 45°34.406′ and 45°33.960′ latitude. Site characteristics, cosmogetic ages of granodiorite in the Idaho Batholith, and regolith production rates are provided in Table 1.

Field evidence of faulting suggests that anthropogenic disturbance across each transect along which our field sites are located (Figure 3), or chemical erosion rates. No roads cross the altitudinal uplift rates which might produce sharp gradients in physical rock and regolith at each site (Tables S1–S6 in the supplementary data). However, we suggest that in many environments, especially temperate climates where chemical weathering should be weak, multiple elements should be immobile, and it may be possible to use geologic considerations to constrain the probable source of dust and its composition.

3. Methods: Field Sites and Sample Collection in the Idaho Batholith

In 2005 we established a series of 17 field sites along two altitudinal transects on Pilot Peak and Tailholt Mountain in central Idaho to investigate controls on long-term chemical and physical erosion rates (Figure 3 and Table 1). Pilot Peak and Tailholt Mountain rise 1500 m and 1300 m above the South Fork of the Salmon River over horizontal distances of 5.1 km and 5.7 km, respectively. Both mountains lie within 87–78 Ma plutons of biotite muscovite granite and granite–granodiorite in the Idaho Batholith [Lund, 2004]. Neither mountain has mapped faults running through it or obvious field evidence of faulting [Lund, 2004], suggesting that neither mountain should be subject to sharp gradients in rock uplift rates which might produce sharp gradients in physical or chemical erosion rates. No roads cross the altitudinal transects along which our field sites are located (Figure 3), suggesting that anthropogenic disturbance across each transect has been minimal. At most elevations on both transects, ponderosa pine and Idaho bluebunch grasses dominate the vegetation, which grows in the thin soils (10–90 cm) mantling the hillslopes. Large (>1 m) granitic outcrops are common on the study transects and are more common on ridgelines than on hillslopes, with a spatial frequency that is highly variable.

A randomly chosen patch of ridgeline with an area of 10 m by 10 m, for example, might contain no outcrops at all (and this would be the case for most segments of the study transects), but a few places on the study transects are marked by outcrops that are clustered closely together, and a 10 m by 10 m patch of ridgeline at these locations would consist almost entirely of outcrops. Variations in climate are large across these transects: an expected moist atmospheric lapse rate of 5–6°C/km implies that the mean annual air temperature at the summits should be 8–9°C cooler than at the South Fork of the Salmon River, at the base of both transects. Because these altitudinal transects are home to large climatic variations and small non-climatic variations, these field sites offer an opportunity to isolate climatic effects on chemical erosion rates [Ferrier, 2009], which is the subject of a future companion paper. In the present paper, we restrict our attention to showing how equations (7) and (13) may be used to estimate dust incorporation rates at these field sites.

Because practical application of the mass balance approach (section 2) at any given site requires measurements of the mean concentrations of the eroding regolith and its parent rock, and because in nature rock and regolith have spatially variable compositions, we collected groups of rock and regolith samples at each site (Figure 3 and Table 1) and averaged their compositions to estimate the mean compositions of rock and regolith at each site (Tables S1–S6 in the auxiliary material). Field site locations were chosen to be on or close to ridgelines to minimize variations in regolith composition.

Table 1. Field Site Characteristics, Cosmogenic 10Be Concentrations, and Inferred Regolith Production Rates

<table>
<thead>
<tr>
<th>Site</th>
<th>Latitude (°N)</th>
<th>Longitude (°W)</th>
<th>Altitude (m)</th>
<th>Regolith H(θ)b (cm)</th>
<th>Distance to Ridge (m)</th>
<th>Slope (deg)</th>
<th>Shielding Factord</th>
<th>10Be (106 at/g)</th>
<th>P (t km−2 yr−1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilot Peak</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2283</td>
<td>45°10.263′</td>
<td>115°31.869′</td>
<td>2283</td>
<td>50 ± (11)</td>
<td>43–48</td>
<td>20–25</td>
<td>0.989</td>
<td>28.7 ± 0.7</td>
<td>167 ± 14</td>
</tr>
<tr>
<td>P2281N</td>
<td>45°10.270′</td>
<td>115°31.895′</td>
<td>2281</td>
<td>16 ± (7)</td>
<td>30–40</td>
<td>20–30</td>
<td>0.996</td>
<td>26.3 ± 0.7</td>
<td>183 ± 15</td>
</tr>
<tr>
<td>P2090S</td>
<td>45°10.156′</td>
<td>115°32.234′</td>
<td>2090</td>
<td>57 ± (7)</td>
<td>40–46</td>
<td>15–20</td>
<td>0.996</td>
<td>28.3 ± 0.6</td>
<td>150 ± 12</td>
</tr>
<tr>
<td>P1850N</td>
<td>45°09.867′</td>
<td>115°32.882′</td>
<td>1850</td>
<td>29 ± (5)</td>
<td>2–9</td>
<td>25</td>
<td>0.988</td>
<td>18.8 ± 0.4</td>
<td>194 ± 15</td>
</tr>
<tr>
<td>P1706N</td>
<td>45°09.675′</td>
<td>115°33.620′</td>
<td>1706</td>
<td>38 ± (3)</td>
<td>10–16</td>
<td>20–26</td>
<td>0.991</td>
<td>20.0 ± 0.5</td>
<td>166 ± 13</td>
</tr>
<tr>
<td>P1485N</td>
<td>45°09.438′</td>
<td>115°33.960′</td>
<td>1485</td>
<td>31 ± (2)</td>
<td>21–27</td>
<td>23–26</td>
<td>0.989</td>
<td>31.0 ± 0.6</td>
<td>91 ± 7</td>
</tr>
<tr>
<td>P1471S</td>
<td>45°09.419′</td>
<td>115°33.960′</td>
<td>1471</td>
<td>32 ± (5)</td>
<td>24–30</td>
<td>26</td>
<td>0.987</td>
<td>29.8 ± 0.7</td>
<td>94 ± 7</td>
</tr>
<tr>
<td>P1277S</td>
<td>45°09.259′</td>
<td>115°34.403′</td>
<td>1277</td>
<td>44 ± (21)</td>
<td>17–26</td>
<td>25–35</td>
<td>0.967</td>
<td>14.4 ± 0.3</td>
<td>171 ± 13</td>
</tr>
<tr>
<td>P1264N</td>
<td>45°09.276′</td>
<td>115°34.406′</td>
<td>1264</td>
<td>43 ± (30)</td>
<td>9–18</td>
<td>33</td>
<td>0.977</td>
<td>15.5 ± 0.4</td>
<td>159 ± 12</td>
</tr>
<tr>
<td>P1062S</td>
<td>45°09.228′</td>
<td>115°34.924′</td>
<td>1062</td>
<td>>75(1)</td>
<td>2–7</td>
<td>10–20</td>
<td>0.992</td>
<td>29.8 ± 0.7</td>
<td>71 ± 5</td>
</tr>
<tr>
<td>P1062N</td>
<td>45°09.238′</td>
<td>115°34.949′</td>
<td>1062</td>
<td>33 ± (2)</td>
<td>2–6</td>
<td>23–30</td>
<td>0.975</td>
<td>37.6 ± 1.0</td>
<td>55 ± 4</td>
</tr>
</tbody>
</table>

a Regolith production rates P_r were calculated with the CRONUS-Earth online denudation rate calculator [Balco et al., 2008], under the steady state assumption that regolith production rates equal denudation rates. Additional inputs to the CRONUS calculator at all sites were assumed to be: sample thickness 0 cm, parent material density 2.7 g/cm3, and the standard atmospheric scaling. The 10Be concentrations were measured at LLNL-CAMS on 15 July 2007 and referenced to isotopic standard 07KNSTD3110.

b Regolith thicknesses $H(θ)$ (mean ± s.e., from n measurements) are vertical distances between the parent rock and the hillslope surface.

d Distances are along the hillslope from the regolith sampling point to the ridgeline in the direction of steepest ascent.

Table Notes:

chemistry that can arise during downslope regolith transport [e.g., Green et al., 2006; Yoo et al., 2007]. All field sites lie 0–60 m from the ridge in the direction of steepest ascent, with the exception of site T1084, which lies near the base of a roughly planar hillslope at the toe of Tailholt Mountain and which is 400 m downslope of the nearest ridgeline (Figure 3 and Table 1). At each field site we collected 16 regolith samples within a ~10 m by 10 m plot to quantify horizontal variations in regolith composition and to minimize uncertainties in mean regolith composition. Each of these samples was collected at a depth of 10–15 cm, roughly the rooting depth of the bunch grasses. The absence of systematic vertical variations in regolith Ti and Zr concentrations at our field sites (described below; see also Figures S2–S18) suggest that the regolith samples we collected at 10–15 cm depth should be representative of the physically eroding regolith, which is what the mass balance method requires. These sixteen regolith samples are the samples from which mean regolith compositions were calculated at each site (Tables S4 and S6). In addition to the 16 horizontally distributed regolith samples at each site, within each plot we also collected a vertical series of samples from a single soil pit to measure vertical variations in composition within the regolith profile (Figures S2–S18). During a second field visit in 2006, we dug multiple pits down to the parent rock at each field site to measure regolith thickness (Table 1). To quantify the composition of the parent rock, we collected 40 granite samples at each site from outcrops within 50 m upslope of the regolith sampling plots. Because outcrops in the regolith sampling plots compose only 0–5% of the plot area, most outcrop samples were collected upslope of the sampled regoliths rather than within the regolith plots themselves. In total, we collected 916 rock and regolith samples across the 17 field sites. From this suite of rock and regolith samples we measured regolith production rates from cosmogenic 10Be in regolith-born quartz and the mean chemical compositions of the regolith and its parent rock at each field site. Here we describe the laboratory procedures for chemical and isotopic analysis of these samples.

4. Methods: Sample Preparation

At each field site we estimated the mean chemical composition of the regolith and its parent rock by averaging the chemical composition of 16 regolith samples and 40 rock samples. All rock and regolith samples were prepared for chemical analysis by X-ray fluorescence by standard procedures [Riebe, 2000]. All samples were split, and about 30 g of one of the splits was powdered in a tungsten carbide Spex shatterbox. Powdered samples were then baked at 500°C for 12 h to eliminate organic material. At this point, two sets of samples were prepared, one for major element chemistry and one for trace element chemistry. Major element samples were prepared by mixing 3.5000 ± 0.0001 g of lithium tetraborate with 0.5000 ± 0.0001 g of powdered sample, homogenizing this powder in a shaker for 15 min, melting the mixed powders in a platinum crucible above a Bunsen burner flame for 10 min, and pouring the melted mixture into a platinum tray. This yielded glass disks roughly 33 mm in diameter and 2 mm thick. Trace element samples were prepared by mixing 3.3 ± 0.1 g of powdered sample with five drops of polyvinyl alcohol and pressing the mixed powder into a pellet with a boric acid backing. Both trace element pellets and major element disks were then analyzed for elemental abundances on a Phillips 2400R X-ray fluorescence spectrometer. The chemistry of all 916 samples is listed in Tables S1 and S2, and Tables S3–S6 summarize the mean chemical compositions of rock and regolith at each site.

Regolith production rates were inferred from concentrations of 10Be in quartz extracted from amalgamated regolith samples at each site. From each of the sixteen near-surface regolith samples (i.e., those collected at a depth of 10–15 cm) at each site, we split approximately 150 g of regolith, and mixed these splits together. These amalgamated regolith samples were themselves split, and from one of these splits 39–55 g of quartz was isolated from the >250 micron size fraction by standard magnetic and chemical separations [Kohl and Nishiizumi, 1992; Riebe, 2000]. These quartz samples were spiked with known amounts of 10Be in solution, after which they were dissolved in a mixture of hydrofluoric and nitric acids, dried down in platinum crucibles, redissolved in sulfuric acid, dried down a second time, and redissolved in hydrochloric acid. Beryllium was then isolated from other elements in cation exchange columns and precipitated as beryllium hydroxide by raising the pH of the solution to 8 with ammonium hydroxide. Beryllium hydroxide was isolated from solution by centrifugation, placed in quartz crucibles, and baked at 750°C to oxidize the material to BeO. Each BeO sample was then mixed with niobium powder and packed into stainless steel sample holders for measurement at the Center for Accelerator Mass Spectrometry at Lawrence Livermore National Laboratory. Regolith production rates inferred from cosmogenic 10Be are listed in Table 1.

5. Chemical Evidence for Mafic Dust Incorporation in Idaho Batholith Regoliths

Several characteristics of the rock and regolith compositions at our field sites suggest that mafic material has been added to the otherwise granitic regoliths. First, the rock-to-regolith enrichments of the elements most commonly assumed to be immobile (Zr and Ti) are quite different from one another, whereas they should be identical if both Zr and Ti were immobile and derived from the underlying rock alone. Second, the differences in Ti and Zr enrichment are systematic: At all of the field sites except one, enrichments of Ti are higher than Zr enrichments. If dust incorporation rates were ignored in equation (4) (as is often done [Riebe et al., 2001, 2003, 2004a, 2004b; Green et al., 2006; Burke et al., 2007, 2009; Dixon et al., 2009a, 2009b]), estimates of W at our sites would be, on average, over twice as high when estimated with Ti than with Zr (Figures 4 and 5). Such differences in rock-to-regolith enrichments between immobile elements are not unique to these field sites. Indeed, it is more common in the literature to find disagreements in rock-to-regolith enrichments between different immobile elements [e.g., Green et al., 2006] than agreements [e.g., Anderson et al., 2002], suggesting that dust may play a significant role in setting regolith composition in many places. Third, at many of our field sites rock-to-regolith enrichments of several elements that are usually considered to be mobile (Mg, Fe, and Mn) are higher than those for presumably immobile Zr (Figure S21).
As an illustration of the effects of adding Ti concentrations to the sampled regoliths, in this figure we show Ti and Zr concentrations in the rock (filled circles), regolith (open squares), and the proposed dust source (open diamonds) [Sweeney et al., 2007] (Table S6) at two representative field sites (P2090S and T2364; Table 2). The arrow in each plot lies on a line that passes through the plot’s origin (0, 0) and the rock composition, and indicates the evolution of regolith composition that would be expected if dust incorporation were negligible and if Zr and Ti were equally immobile during chemical weathering. The deviation of the measured regolith composition from the expected chemical evolution vector suggests either that Ti-rich material has been added to the sampled regolith (e.g., from the proposed dust source) or that Zr is mobile relative to Ti. Similar plots for all 17 field sites are shown in the auxiliary material (Figure S1), and reveal that regoliths at 16 of the 17 sites show similar excesses of Ti relative to Zr (Table 1).

6. Eureka Flat: A Proposed Dust Source to the Canyon of the South Fork of the Salmon River

There are, to our knowledge, no direct measurements of dust fluxes or dust composition in the South Fork of the Salmon River canyon. This precludes the definitive calculation of long-term chemical and physical erosion rates at these field sites with equations (3)–(5). However, it is possible to constrain probable dust compositions using published values from the literature, and to use those compositions to estimate long-term dust incorporation rates at our field sites using equation (7).

We consider the most probable source of mafic dust to the Idaho Batholith to be the huge Palouse loess fields on the Columbia Plateau. The Palouse loess extends over >50,000 km² of southeastern Washington, northeastern Oregon, and northwestern Idaho, and its eastern edge lies within 100 km of Pilot Peak (Figure 3). The upper unit of the Palouse loess, which has been deposited over the past 15 kyr, is as much as 4.5 m thick [e.g., Bryan, 1927; Busacca et al., 1992, 2004; Sweeney et al., 2007]. Eureka Flat, an 80-km long deflationary plain 275 km WNW of our field sites in the South Fork of the Salmon River, has been proposed as the primary source of the Palouse loess on the basis of chemical and textural similarities between the loess and the glacial

Figure 4. Estimates of chemical erosion rates W at our Idaho field sites, calculated with equation (4) under the assumption that dust incorporation rates are negligible (i.e., $P_d = 0$). Y-coordinates for these data points were calculated using Ti as the lone immobile tracer in equation (4), and x-coordinates were calculated using Zr as the lone immobile tracer. This suggests that if dust incorporation rates were neglected at our field sites, then Ti-based estimates of chemical erosion rates would be, on average, over twice as high as Zr-based estimates. However, if Zr and Ti are both immobile and if dust incorporation rates are truly negligible, then Zr-based estimates of W should be identical to Ti-based estimates of W, and data points in this plot should lie along the 1:1 line. This systematic discrepancy suggests either that Ti-rich material has been added to the sampled regoliths or that Zr is mobile relative to Ti.

Figure 5. As an illustration of the effects of adding Ti-rich dust to the sampled regoliths, in this figure we show Ti and Zr concentrations in the rock (filled circles), regolith (open squares), and the proposed dust source (open diamonds) [Sweeney et al., 2007] (Table S6) at two representative field sites (P2090S and T2364; Table 2). The arrow in each plot lies on a line that passes through the plot’s origin (0, 0) and the rock composition, and indicates the evolution of regolith composition that would be expected if dust incorporation were negligible and if Zr and Ti were equally immobile during chemical weathering. The deviation of the measured regolith composition from the expected chemical evolution vector suggests either that Ti-rich material has been added to the sampled regolith (e.g., from the proposed dust source) or that Zr is mobile relative to Ti. Similar plots for all 17 field sites are shown in the auxiliary material (Figure S1), and reveal that regoliths at 16 of the 17 sites show similar excesses of Ti relative to Zr (Table 1).
outburst flood sediments blanketing Eureka Flat [Sweeney et al., 2007]. The sediments in Eureka Flat are of mixed grain size (primarily silt, sand, and clay), containing abundant material eroded from the Columbia Plateau basalt during repeated glacial outburst floods over the last ice age. XRF measurements show that the sediments are richer in Mg, Ti, and Fe than the granites at Pilot Peak and Tailholt Mountain are (Tables S5 and S6), and have a Ti/Zr ratio of 62 ± 10 (Zr = 165.8 ± 14.0 ppm, Ti = 1.036 ± 0.137%; Ti/Zr = 62 ± 10 [Sweeney et al., 2007] (Table S6)). Dust incorporation rates \(P_d \) were calculated with equation (7) from these estimates of \(f_d \) and regolith production rates \(P_r \) (Table 1). Rock compositions at sites T2364 and T1755 were calculated using subsets of the rock samples collected at these sites; see auxiliary material for details. All uncertainties in this table are standard errors.

Table 2. Zr and Ti Concentrations in Rock and Regolith at the Study Sites and Estimates of Dust Incorporation Rates \(P_d \)^a

<table>
<thead>
<tr>
<th>Site ID</th>
<th>Rock (ppm)</th>
<th>Regolith (ppm)</th>
<th>Rock (%)</th>
<th>Regolith (%)</th>
<th>Ti/Zr</th>
<th>(f_d) (%)</th>
<th>(P_d) (t km(^{-2}) yr(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2293S</td>
<td>117.0 ± 3.0</td>
<td>139.4 ± 1.1</td>
<td>0.231 ± 0.006</td>
<td>0.298 ± 0.005</td>
<td>19.7 ± 0.7</td>
<td>2.7 ± 1.0</td>
<td>4.7 ± 1.8</td>
</tr>
<tr>
<td>P2281N</td>
<td>117.0 ± 3.0</td>
<td>139.8 ± 1.2</td>
<td>0.231 ± 0.006</td>
<td>0.326 ± 0.006</td>
<td>19.7 ± 0.7</td>
<td>6.1 ± 1.4</td>
<td>11.9 ± 3.1</td>
</tr>
<tr>
<td>P2090S</td>
<td>114.9 ± 4.4</td>
<td>137.5 ± 1.0</td>
<td>0.223 ± 0.008</td>
<td>0.330 ± 0.005</td>
<td>19.4 ± 1.0</td>
<td>7.7 ± 1.5</td>
<td>12.6 ± 2.8</td>
</tr>
<tr>
<td>P1850N</td>
<td>123.2 ± 3.1</td>
<td>119.8 ± 3.0</td>
<td>0.220 ± 0.006</td>
<td>0.242 ± 0.008</td>
<td>17.9 ± 0.7</td>
<td>4.0 ± 1.2</td>
<td>8.0 ± 2.5</td>
</tr>
<tr>
<td>P1706N</td>
<td>122.8 ± 3.3</td>
<td>134.5 ± 0.9</td>
<td>0.200 ± 0.008</td>
<td>0.264 ± 0.005</td>
<td>16.3 ± 0.8</td>
<td>5.4 ± 1.3</td>
<td>9.5 ± 2.5</td>
</tr>
<tr>
<td>P1485N</td>
<td>126.6 ± 3.9</td>
<td>148.3 ± 1.3</td>
<td>0.224 ± 0.006</td>
<td>0.323 ± 0.005</td>
<td>17.7 ± 0.6</td>
<td>7.0 ± 1.2</td>
<td>6.9 ± 1.4</td>
</tr>
<tr>
<td>P1471S</td>
<td>126.9 ± 3.2</td>
<td>139.4 ± 1.4</td>
<td>0.224 ± 0.006</td>
<td>0.269 ± 0.004</td>
<td>17.7 ± 0.6</td>
<td>2.8 ± 0.7</td>
<td>2.7 ± 0.7</td>
</tr>
<tr>
<td>P1277S</td>
<td>118.6 ± 4.1</td>
<td>130.5 ± 1.9</td>
<td>0.204 ± 0.009</td>
<td>0.202 ± 0.005</td>
<td>17.2 ± 1.0</td>
<td>2.7 ± 0.9</td>
<td>4.5 ± 1.5</td>
</tr>
<tr>
<td>P1254N</td>
<td>118.6 ± 4.1</td>
<td>126.9 ± 1.3</td>
<td>0.230 ± 0.004</td>
<td>0.243 ± 0.006</td>
<td>17.2 ± 1.0</td>
<td>3.1 ± 1.0</td>
<td>5.1 ± 1.7</td>
</tr>
<tr>
<td>P1092S</td>
<td>129.5 ± 1.6</td>
<td>155.9 ± 2.9</td>
<td>0.226 ± 0.003</td>
<td>0.323 ± 0.013</td>
<td>17.0 ± 0.3</td>
<td>6.5 ± 1.3</td>
<td>4.9 ± 1.1</td>
</tr>
<tr>
<td>P1062N</td>
<td>129.5 ± 1.6</td>
<td>160.8 ± 1.3</td>
<td>0.220 ± 0.003</td>
<td>0.399 ± 0.007</td>
<td>17.0 ± 0.3</td>
<td>13.9 ± 2.2</td>
<td>8.8 ± 1.7</td>
</tr>
<tr>
<td>P1062S</td>
<td>129.5 ± 1.6</td>
<td>155.9 ± 1.9</td>
<td>0.220 ± 0.003</td>
<td>0.323 ± 0.013</td>
<td>17.0 ± 0.3</td>
<td>13.9 ± 2.2</td>
<td>8.8 ± 1.7</td>
</tr>
<tr>
<td>T2364</td>
<td>48.4 ± 1.1</td>
<td>63.9 ± 1.5</td>
<td>0.089 ± 0.003</td>
<td>0.162 ± 0.006</td>
<td>18.4 ± 0.7</td>
<td>5.1 ± 1.1</td>
<td>7.8 ± 1.9</td>
</tr>
<tr>
<td>T2073</td>
<td>82.5 ± 0.9</td>
<td>88.2 ± 0.9</td>
<td>0.143 ± 0.002</td>
<td>0.176 ± 0.003</td>
<td>17.3 ± 0.3</td>
<td>2.9 ± 0.7</td>
<td>6.5 ± 1.6</td>
</tr>
<tr>
<td>T1755</td>
<td>75.5 ± 1.5</td>
<td>77.3 ± 1.2</td>
<td>0.119 ± 0.004</td>
<td>0.150 ± 0.004</td>
<td>15.8 ± 0.6</td>
<td>3.6 ± 0.7</td>
<td>12.0 ± 2.7</td>
</tr>
<tr>
<td>T1508</td>
<td>70.3 ± 1.6</td>
<td>75.2 ± 1.0</td>
<td>0.121 ± 0.003</td>
<td>0.157 ± 0.004</td>
<td>17.2 ± 0.6</td>
<td>3.6 ± 0.8</td>
<td>9.1 ± 2.2</td>
</tr>
<tr>
<td>T1294</td>
<td>58.4 ± 1.8</td>
<td>69.1 ± 0.7</td>
<td>0.107 ± 0.003</td>
<td>0.139 ± 0.004</td>
<td>18.3 ± 0.8</td>
<td>1.5 ± 0.7</td>
<td>4.2 ± 2.1</td>
</tr>
<tr>
<td>T1084</td>
<td>61.3 ± 0.8</td>
<td>72.1 ± 1.0</td>
<td>0.108 ± 0.002</td>
<td>0.153 ± 0.004</td>
<td>17.6 ± 0.4</td>
<td>3.1 ± 0.7</td>
<td>7.7 ± 1.8</td>
</tr>
</tbody>
</table>

^aThe fraction of the regolith’s parent material derived from dust, \(f_d \), was calculated with equation (13) under the assumption that the measured regolith compositions (Tables S4 and S6) are a mixture of the sampled granite (Tables S3 and S5) and mafic dust from the Palouse loess (Zr = 165.8 ± 14.0 ppm, Ti = 1.036 ± 0.137%; Ti/Zr = 62 ± 10 [Sweeney et al., 2007] (Table S6)). Dust incorporation rates \(P_d \) were calculated with equation (7) from these estimates of \(f_d \) and regolith production rates \(P_r \) (Table 1). Rock compositions at sites T2364 and T1755 were calculated using subsets of the rock samples collected at these sites; see auxiliary material for details. All uncertainties in this table are standard errors.

Central Idaho lies downwind of the Oregon Cascades, which have intermittently ejected large quantities of material into the atmosphere. During the Holocene, the largest Cascadia eruption was at Mt. Mazama, where 50 km\(^3\) of material was thrown into the atmosphere roughly 7.7 ka [Bacon and Lanphere, 2006]. Mt. Mazama, however, cannot be the source of mafic-rich elements at our field sites, since the Mazama tephra has a Ti/Zr ratio of 16.6 ± 0.4 [Bacon and Druitt, 1988], similar to the sampled granite, which has Ti/Zr ratios that range from 15.8 ± 0.6 to 19.7 ± 0.7 (Table 2). Deposition of Mazama tephra thus could not have produced the observed differences between rock-to-regolith enrichments of Ti and Zr at our field sites. A second possible source of dust that we consider unlikely to have affected the sampled regoliths is the Snake River Plain in southern Idaho. Although there are large loess fields in southern and southeastern Idaho (Figure 3) [Bettis et al., 2003], winds across the Snake River Plain throughout the year are not directed toward the interior of the Idaho Batholith where the study sites lie (see wind data for Boise AP, Burley AP, Caldwell Airport, Idaho Falls AP, Jerome Airport, Mountain Home AFB, Pocatello AP, Rexburg AP, and Twin Falls AP at http://www.wrcc.dri.edu/htmlfiles/westwinddir.html; referenced 4 May 2011). Thus we consider the Snake River Plain unlikely to be the primary source of mafic dust to the study sites.

7. Estimated Dust Incorporation Rates

[17] Operating under the assumption that the same material that formed the Palouse loess also supplied dust of identical composition to our field sites, we calculate the dust-derived fraction of the regolith’s parent material, \(f_d \), and the long-term dust incorporation rate \(P_d \) using equations (13) and (7). These calculations show that the regoliths are dominantly derived from the underlying granite (the error-weighted mean and standard error of \(f_d \) is 3.3 ± 0.6%), and imply long-term mean dust incorporation rates of 5.0 ± 0.9 t km\(^{-2}\) yr\(^{-1}\) (error-weighted mean and standard error; Figure 6). At all of the
of the dust that fell on the sampled regoliths, the estimates of P_r should be reasonable approximations of the true dust incorporation rates at these field sites, even if the composition of the falling dust fluctuated over time.

As Table 2 shows, equation (13) yields an impossible result for one site (P1277S). This is the only field site where the rock-to-regolith enrichment of Ti is smaller than that of Zr, and which therefore does not fit the hypothesis that Ti-rich dust has been incorporated into the regolith at this site. Applying the dust model to site P1277S with the proposed dust source yields the impossible result that less than 0% of the regolith is derived from dust ($f_d = -2.7 \pm 0.9%$; equation (13)), which itself produces a negative calculated dust flux ($P_d = -4.5 \pm 1.5 \text{ t km}^{-2} \text{ yr}^{-1}$; equation (7)). Thus site P1277S, alone among the 17 field sites, does not fit the proposed dust model with the proposed dust source. It is not immediately clear why P1277S differs from all the other sites in this respect. However, it is notable that although the rock sample composition at this site is not unusual for rocks at the other ten field sites on Pilot Peak, the P1277S regolith samples are on one end of the compositional spectrum for the Pilot Peak regoliths, with more Si and less Al, Fe, Ti, Mg, Nb, and Rb than all other Pilot Peak regoliths (Tables S3–S4). This suggests that the rock samples collected on the ridgeline near site P1277S may be a poor reflection of the parent granite of the P1277S regolith.

8. Conclusions

The primary purpose of this paper is to present a simple model for estimating long-term dust incorporation rates to regolith in actively eroding terrain. We show that it may be used to infer long-term average rates of dust incorporation from measurements of regolith production rates and concentrations of two immobile elements (e.g., Zr and Ti) in the regolith, parent bedrock, and dust. This is, at its core, a steady state model. Although the model cannot capture any short-term variability in dust incorporation rates, the estimated dust incorporation rates it yields may be considered long-term average rates, which can be compared with contemporary measurements of dust deposition to estimate the effects of climate change and human activity on dust production and deposition. This is a complementary approach to other methods for estimating long-term dust fluxes, such as measuring the thickness and ages of loess deposits [e.g., Busacca, 2004], or attributing imbalances in Sr isotope fluxes into and out of catchments to dust deposition [Pett-Ridge et al., 2009].

We emphasize that our application of this method in the South Fork of the Salmon River canyon is not a definitive test of the method nor of the proposed dust source. A definitive test would require direct measurements of dust flux and composition, which are unavailable over the long timescales intrinsic to the approach outlined here. However, given that Eureka Flat has been a persistent source of massive amounts of mafic dust to nearby sites [Sweeney et al., 2007], and that the magnitude of dust incorporation rates we estimate below are consistent with dust fluxes measured elsewhere in the western United States [Reheis et al., 1995; Reheis and Kihl, 1995; Reheis, 2006], we suggest that the Palouse loess is a plausible source of dust and that this is a reasonable approach for estimating long-term dust incorporation rates at our field sites.
sites. We suggest this approach may provide a prac-

cial tool for estimating long-term dust incor-

dation rates into actively
eroding regolith, and thus can help quantify
aeolian inputs to

biogeochemical cycles in a variety of field

settings.

[21] Acknowledgments. This work was supported by NSF grant EAR-0643129, and K.L.F. was supported by a Lawrence Scholar Graduate Fellowship at Lawrence Livermore National Laboratory during this study. We thank Marith Reheis, one anonymous reviewer, and Associate Editor Simon Mudd for insights that substantially improved this manuscript; Jean Dixon for helpful comments on an earlier version of this manuscript; Cliff

Riebe for many fruitful discussions; and Alex Densmore and Simon Mudd for shepherding this manuscript through the review process. We are also grateful to the U.S. Forest Service for assistance with field access and forest

fire avoidance; Michael Ferrier, Marisa Palacios, and Leslie Hu for field

assistance; and Tim Teague, Ajay Limaye, Sheeya Ramesh, Greg Nishimura,

and Evan Kha for laboratory assistance.

References

profiles, mass–balance analysis, and rates of solute loss: Linkages

between weathering and erosion in a small, steep catchment, Geol.

Bacon, C. R., and T. H. Drutt (1988), Compositiondialional

the zoned calealkaline magma chamber of Mount Mazama, Crater Lake,

Bacon, C. R., and M. A. Lanphere (2006), Eruptive history and geochemical

of Mount Mazama and the Crater Lake region, Oregon, Geol. Am.

Baloé, J. O. Stone, N. A. Lifton, and T. J. Dunai (2008), A complete

Berg, A. J., J. E. Beget, H. W. Markewich, D. R. Muhs, N. Lancaster,

and Evan Kha for laboratory assistance.

Brantley, S. L., J. P. Sposito, and D. W. Okkonen (1991), The

Brimhall, G. H., C. J. Lewis, J. J. Ague, W. E. Dietrich, J. Hample,

P. Rix (1988), Metal enrichment in bauxites by deposition of

Burke, B. C., A. M. Heimsath, and A. F. White (2007), Coupling chemical

weathering with soil production across soil-mantled landscapes, Earth

Busacca, A. J., K. T. Nelstead, E. V. McDonald, and M. D. Purser (1992), Correlation of distal tephra layers in loess in the Channeled Scablands and

Chadwick, O. A., and J. O. Davis (1990), Soil-forming intervals caused by

