Do changes in soil properties after rooting by wild boars (Sus scrofa) affect understory vegetation in Swiss hardwood forests?

Sven Wirthner, Martin Schütz, Deborah S. Page-Dumroese, Matt D. Busse, James W. Kirchner, and Anita C. Risch

Abstract: Recovering from small fragmented populations, wild boars (Sus scrofa L.) have considerably increased their numbers and their habitat range in many European countries during the past two decades. Although several studies have focused on the impact of wild boar rooting on selected vegetation properties, little is known about effects on entire forest ecosystems. The main goal of our study was to assess how rooting by boars alters soil and vegetation properties. We measured soil chemical and biological properties (C and N concentrations, N availability, and microbial biomass C) as well as several vegetation characteristics (total plant cover, plant species diversity, and number and height of saplings) on paired rooted and non-rooted plots in six hardwood forests in Switzerland. We found that rooting by wild boars led to significant increases in mineral soil C and N concentrations and microbial biomass C, which could lead to improved growth conditions for plants. However, total plant cover and sapling counts were reduced on rooted plots, possibly due to mechanical disturbance or due to reduced plant available N (measured as supply rate in contrast with the observed increase in total stocks of mineral soil N). In view of these results, simple characterizations of wild boar rooting as beneficial or detrimental to forest ecosystems should be handled with care.

Résumé : Après avoir récupérés à partir de petites populations fragmentées, les sangliers (Sus scrofa L.) ont considérablement augmenté leur nombre et l’étendue de leur habitat dans plusieurs pays européens au cours des deux dernières décennies. Bien que plusieurs études aient mis l’emphase sur l’impact de la fouille des racines par le sanglier sur certaines propriétés de la végétation, les effets sur les écosystèmes forestiers tout entiers sont peu connus. L’objectif principal de notre étude consistait à évaluer de quelle façon la fouille des racines par les sangliers modifie les propriétés du sol et de la végétation. Nous avons mesuré les propriétés chimiques et biologiques du sol (concentrations de C et de N, disponibilité de N et biomasse microbienne de C), ainsi que plusieurs caractéristiques de la végétation (couvert végétal total, diversité des espèces végétales et nombre et hauteur des gaules) dans des parcelles appariées avec et sans fouille des racines établies dans six forêts feuillues suisses. Nous avons observé que la fouille des racines par les sangliers entraînait une augmentation significative des concentrations de C et de N ainsi que de la biomasse microbienne de C dans le sol minéral, ce qui pouvait créer de meilleures conditions de croissance pour les plantes. Cependant, le couvert végétal total et le nombre de gaules étaient plus faibles dans les parcelles soumises à la fouille des racines, possiblement à cause de la perturbation mécanique ou de la moindre grande disponibilité de N pour les plantes (mesurée par le taux d’apport, contrairement à l’augmentation observée dans les stocks totaux de N dans le sol minéral). À la lueur de ces résultats, on devrait éviter de simplement caractériser la fouille des racines par les sangliers de bénéfique ou de nuisible pour les écosystèmes forestiers.

Introduction

At the beginning of the last century, wild boars (Sus scrofa L.) were close to extinction in many European countries, including Switzerland, during the past two decades (Apollonio et al. 2010). Reasons for this widespread expansion include the boars’ opportunistic feeding behavior, high reproductive potential, and adaptability to a wide variety of habitats (i.e., high ecological plasticity: Boitani et al. 1995; Taylor et al. 1998). Wild boars are omnivorous and obtain a considerable proportion of their diet by rooting (grubbing) in the soil searching for plant seeds, roots, bulbs, and invertebrate and vertebrate animals (e.g., Bratton et al. 1982; Barber and Coblenz 1987; Hone 1988). Rooting involves breaking through the surface layer of vegetation followed by excavation of the detected food item, thereby disturbing up to 80% of the soil surface (Genov 1981; Howe et al. 1981; Risch et
al. 2010). Excavation may be superficial, affecting the surface organic horizons only, but rooting typically affects the organic horizons and mineral soil combined to depths of 15 cm or more (Genov 1981; Kotanen 1995).

In temperate forests, boar rooting can have a large impact on C and nutrient cycling. The addition of energy-rich organic material mixed into the mineral soil alters C and nutrient concentrations (Nannipieri et al. 2003) and can stimulate microbial growth and activity (Mallik and Hu 1997) and therefore accelerate decomposition processes. Only a few researchers have investigated how rooting habits of wild boars affect forest soil C concentrations, nutrient cycling processes, or soil microbial properties (e.g., Groot Bruinderink and Hazebroek 1996; Mohr et al. 2005; Siemann et al. 2009) (see Table 1). These changes in soil properties could indirectly impact understory vegetation and (or) sapling growth, and wild boar rooting may also directly (and adversely) affect or damage the understory vegetation (e.g., through seed predation and mechanical damage). Several authors have studied how wild boar or feral hog populations alter understory plant cover (e.g., Peart and Patten 1992; Cuevas et al. 2010), plant community structure (e.g., Aplet et al. 1991; Siemann et al. 2009), and plant regeneration and growth potential (e.g., Lacki and Lancia 1986; Ickes et al. 2001; Sanguinetti and Kitzberger 2010) (see Table 1). In contrast, we only found three studies that investigated both above- and belowground parameters (Singer et al. 1984; Lacki and Lancia 1986; Groot Bruinderink and Hazebroek 1996) (see Table 1). These authors assessed the effects of wild boars on soil N and (or) organic matter (OM) concentrations as well as plant cover and regeneration and growth potentials, but none of these studies included nutrient dynamics and soil microbial properties. The goal of our study was to provide a more comprehensive understanding of how boar rooting might affect the entire plant–soil system by investigating rooting effects on soil chemical and biological properties (C and N concentrations, N availability, and microbial biomass C) as well as understory vegetation characteristics (total plant cover, plant species diversity, and number and height of saplings) in mixed hardwood forests, the forest types most frequently used as boar habitat in Switzerland.

Materials and methods

Study area and sampling design

The study was conducted in hardwood and mixed hardwood forests located north of Zurich (47°23’N, 8°31’E) in the state of Zurich, Switzerland. The mean annual temperature is 9.2 °C and the mean annual precipitation is 1137 mm (Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.).) All six sites were classified as typical beech (Fagus sylvatica L.) dominated stands that also contained other hardwoods such as oaks (Quercus spp.) and European hornbeam (Carpinus betulus L.), and conifers (Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.). All six sites were classified as typical Galio oederi – Fagetum following Keller et al. (1998). The understory was dominated by tree saplings (mainly F. sylvatica and sycamore (Acer pseudoplatanus L.)), two perennial herbs (Oxalis acetosella L. and Anemone nemorosa L.), a perennial graminoid (Carex pilosa Scop.), and an annual herb (Impatiens parviflora DC.). All sites were located within 50 km of each other, with the closest distance between two sites exceeding 1 km. Elevations ranged from 550 to 670 m above sea level. All sites were located on sandy-loam textured soils with soil pH ranging between 2.7 and 3.6 (Table 2). Each forest site was inhabited by wild boars throughout the year and rooting was widespread. Risch et al. (2010) showed that 27.2%–53.8% of the forest soils of our sites were disturbed by boars between 2006 and 2008.

We established a paired-plot design consisting of a rooted (disturbed) and undisturbed plot in each of the six forests in early spring of 2006. Both plots were 10 m × 10 m in size and were fenced with 1.3 m high knotted mesh (Ursus 130/ 11/15; Hortima AG, Hausen, Switzerland: mesh size at 0– 50 cm height = 10 cm × 15 cm, mesh size at 50–110 cm = 15 cm × 15 cm, and mesh size at 110–130 cm = 20 cm × 15 cm) tightened around 15 cm square wooden posts (1.6 m long) to prevent boars (and roe deer) from entering. Two 2.5 mm diameter wires were affixed at 1.4 and 1.5 m height to prevent other animals from jumping over the 1.3 m mesh. Measurements and soil sampling started just after plot establishments and were continued for up to 48 months (see details below).

Since rooting is generally visible for approximately 3 years in these forest types, our undisturbed plots had not been rooted for 3 years. To determine if boars specifically select foraging sites within a homogeneous stand or randomly grub in the soil, we established a third randomly chosen, non-rooted, and non-fenced 10 m × 10 m plot at each study site at the beginning of the study (May 2006). These random plots were all rooted by boars by the end of the study, and therefore, we assume that our randomly chosen non-rooted but fenced plots were sufficient to be compared with the respective rooted plots. However, we cannot rule out that some of the differences in ecosystem properties that we measured already existed prior to rooting. Unfortunately, such differences could not be accounted for because it is not possible to predict where the boars are going to root and therefore “pre-treatment” sampling was not possible (see also Risch et al. 2010).

Soil sampling and analyses

Soil sampling was conducted just after plot establishment in early June 2006 (time = 0 months) and again 2 years after plot establishment (time = 24 months). During each sampling campaign, we randomly collected three mineral soil cores (disturbed) and undisturbed plot in each of the six forests in early June 2006 (time = 0 months) and again 2 years after plot establishment (time = 24 months). During each sampling campaign, we randomly collected three mineral soil cores (5 cm diameter) from each rooted and non-rooted plot at least 1 m from the fence to avoid edge effects. Samples were taken across a total depth of 45 cm after removing the organic horizons. Soil sampling was conducted at fixed depths with a soil corer (AMS, American Falls, Idaho), since no clear soil horizon delineation was possible after rooting. Subsamples were oven dried at 65 °C (for 48 h), passed through a 2 mm sieve, and finely ground. Total C and N concentrations were analyzed on a LECO induction furnace (LECO Corporation, St. Joseph, Michigan) at 950 °C. Values obtained from the three samples at each depth were averaged for each plot.

Microbial biomass was determined at 0 and 24 months using the substrate-induced method of Anderson and Domsch (1978). Fifty gram subsamples from all samples (poled for
Table 1. Studies reporting wild boar (*Sus scrofa*) rooting effects on above- and belowground properties and processes.

<table>
<thead>
<tr>
<th>Forest type</th>
<th>Wild boars</th>
<th>Soil N concentration</th>
<th>Soil N availability (flux)</th>
<th>Soil C concentration</th>
<th>Soil microbial biomass C</th>
<th>Total plant cover</th>
<th>Plant community structure</th>
<th>Plant growth</th>
<th>Forest regeneration potential</th>
<th>Source</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed hardwood forest</td>
<td>Native</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>–</td>
<td>This study</td>
<td>Switzerland</td>
<td></td>
</tr>
<tr>
<td>Grassland and conifer forest</td>
<td>Native</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Welander 1995</td>
<td>Sweden</td>
<td></td>
</tr>
<tr>
<td>Mixed hardwood and conifer forest</td>
<td>Native</td>
<td>0</td>
<td>0 (OM)</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>–/0</td>
<td>–</td>
<td>Groot Bruinderink and Hazebroek 1996</td>
<td>Netherlands</td>
<td></td>
</tr>
<tr>
<td>Hardwood (rain) forest</td>
<td>Native</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–/0</td>
<td>–</td>
<td></td>
<td>Ickes et al. 2001</td>
<td>Malaysia</td>
<td></td>
</tr>
<tr>
<td>Hardwood forest</td>
<td>Native</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0</td>
<td>0</td>
<td>–</td>
<td>Mohr and Topp 2001</td>
<td>Germany</td>
<td></td>
</tr>
<tr>
<td>Hardwood forest</td>
<td>Native</td>
<td>0</td>
<td>0</td>
<td>–/0</td>
<td>–</td>
<td>0</td>
<td>0</td>
<td>–</td>
<td>Mohr et al. 2005</td>
<td>Germany</td>
<td></td>
</tr>
<tr>
<td>Mixed woodland</td>
<td>Native</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0</td>
<td>0</td>
<td>–</td>
<td>Gómez and Hodar 2008</td>
<td>Spain</td>
<td></td>
</tr>
<tr>
<td>Mixed hardwood forest</td>
<td>Native</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>Risch et al. 2010</td>
<td>Switzerland</td>
<td></td>
</tr>
<tr>
<td>Gray beech forest</td>
<td>Non-native</td>
<td>–</td>
<td>–</td>
<td>–/0</td>
<td>–</td>
<td>0</td>
<td>0</td>
<td></td>
<td>Bratton 1974</td>
<td>Tennessee, North Carolina</td>
<td></td>
</tr>
<tr>
<td>Gray beech forest</td>
<td>Non-native</td>
<td>–</td>
<td>–</td>
<td>–/0</td>
<td>–</td>
<td>0</td>
<td>0</td>
<td></td>
<td>Bratton 1975</td>
<td>Tennessee, North Carolina</td>
<td></td>
</tr>
<tr>
<td>Savannah, grassland, pine/shrub thicket</td>
<td>Non-native</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>Baron 1982</td>
<td>Mississippi</td>
<td></td>
</tr>
<tr>
<td>Rain forest</td>
<td>Non-native</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ralph and Maxwell 1984</td>
<td>Hawaii</td>
<td></td>
</tr>
<tr>
<td>Hardwood forest</td>
<td>Non-native</td>
<td>+/-</td>
<td>–</td>
<td>–/0</td>
<td>–</td>
<td>0</td>
<td>0</td>
<td></td>
<td>Singer et al. 1984</td>
<td>Tennessee, North Carolina</td>
<td></td>
</tr>
<tr>
<td>Hardwood forest</td>
<td>Non-native</td>
<td>+ (OM)</td>
<td>+</td>
<td>0</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td>Lacki and Lancia 1986</td>
<td>Tennessee, North Carolina</td>
<td></td>
</tr>
<tr>
<td>Hardwood (rain) forest</td>
<td>Non-native</td>
<td></td>
<td></td>
<td>+/–0</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td></td>
<td>Aplet et al. 1991</td>
<td>Hawaii</td>
<td></td>
</tr>
<tr>
<td>Hardwood forest</td>
<td>Non-native</td>
<td></td>
<td></td>
<td>+/–0</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td>Peart and Patten 1992</td>
<td>California</td>
<td></td>
</tr>
<tr>
<td>Hardwood forest</td>
<td>Non-native</td>
<td>0 (nitrate)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>Moody and Jones 2000</td>
<td>California</td>
<td></td>
</tr>
<tr>
<td>Oak woodland</td>
<td>Non-native</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Switzer and Vuren 2002</td>
<td>California</td>
<td></td>
</tr>
<tr>
<td>Hardwood (rain) forest</td>
<td>Non-native</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mitchell et al. 2007</td>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>Mixed forest</td>
<td>Non-native</td>
<td>–</td>
<td>0</td>
<td>+/–0</td>
<td>–</td>
<td>0</td>
<td>0</td>
<td></td>
<td>Siemann et al. 2009</td>
<td>Texas</td>
<td></td>
</tr>
<tr>
<td>Mast conifer forest</td>
<td>Non-native</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sanguinetti and Kitzberger 2010</td>
<td>Argentina</td>
<td></td>
</tr>
<tr>
<td>Hardwood woodland, shrubs, dunes</td>
<td>Non-native</td>
<td></td>
<td></td>
<td>+/-0</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td>Cuevas et al. 2010</td>
<td>Argentina</td>
<td></td>
</tr>
</tbody>
</table>

Note: +, positive effect; –, negative effect; 0, no effect found; blank cell, property not measured; OM, organic matter.
Plant species diversity was calculated as the Shannon index of diversity. Total plant cover was significantly lower on the rooted plots compared with the non-rooted plots (Table 3). Nitrogen availability was significantly lower on the rooted plots (mean ± SE: 115.87 ± 23.74 µg·10 cm⁻²·6 weeks⁻¹) compared with the non-rooted plots (160.06 ± 29.37 µg·10 cm⁻²·6 weeks⁻¹) (number of measurements in each plot = 15) and varied significantly between the two sampling dates (Fig. 1).

Table 2. Site and soil characteristics of the top 15 cm of the mineral soil for the six sites under study.

<table>
<thead>
<tr>
<th>Site</th>
<th>Elevation (m)</th>
<th>pH</th>
<th>Available water (g·100 g soil⁻¹)</th>
<th>Rock content (%)</th>
<th>Soil particle size distribution (%)</th>
<th>Soil texture class</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sand</td>
<td>Silt</td>
</tr>
<tr>
<td>1</td>
<td>550</td>
<td>3.12</td>
<td>20.41</td>
<td>41.90</td>
<td>73.2</td>
<td>18.0</td>
</tr>
<tr>
<td>2</td>
<td>550</td>
<td>3.56</td>
<td>12.72</td>
<td>41.79</td>
<td>74.4</td>
<td>16.1</td>
</tr>
<tr>
<td>3</td>
<td>560</td>
<td>2.81</td>
<td>12.60</td>
<td>33.46</td>
<td>75.8</td>
<td>17.1</td>
</tr>
<tr>
<td>4</td>
<td>610</td>
<td>2.68</td>
<td>21.36</td>
<td>41.00</td>
<td>72.5</td>
<td>21.0</td>
</tr>
<tr>
<td>5</td>
<td>650</td>
<td>2.69</td>
<td>21.09</td>
<td>17.58</td>
<td>67.2</td>
<td>26.0</td>
</tr>
<tr>
<td>6</td>
<td>670</td>
<td>2.59</td>
<td>10.93</td>
<td>55.65</td>
<td>69.2</td>
<td>22.8</td>
</tr>
</tbody>
</table>

Note: Soil pH was measured on a 2:1 water–soil paste.

Each plot and sampling date were immediately put on ice when collected, sieved through a 2 mm sieve, and stored in a cold room at 4 °C until further processing. Deionized water was added as needed to bring all samples to 60% water-filled pore space. The samples were then incubated at room temperature for 10 days prior to analysis to allow spurious microbial activity associated with the sampling disturbance to subside (to measure only basal respiration). Microbial biomass C was determined using 25 g of mineral soil (dry mass equivalent) and a glucose concentration of 5 g·kg soil⁻¹. CO₂ production was analyzed 1–2 h following the addition of glucose using a LI-COR 6200 gas analyzer (LI-COR Biosciences, Lincoln, Nebraska).

Statistical analyses

A linear mixed-model procedure approach was used to test for treatment (rooted and non-rooted) and season (time) effects on mineral soil C and N concentrations, microbial biomass, N availability, total plant cover, plant species diversity, and number and height of saplings. These parameters were a function of the two fixed effects treatment (rooted and non-rooted) and time and the random effect site. We also adjusted this model for temporal autocorrelation using a first-order autoregressive (AR(1)) model, as the independence assumption of our data points in time was not met (Zuur et al. 2009). Because the vegetation data were strongly skewed and the sample sizes were small, the assumptions underlying traditional parametric statistics were not met. Thus, the continuous data were transformed to rank data using fractional ranking, which was then used in the same linear mixed-model approach as described above. All statistical analyses were performed with the R statistical package nlme version 2.4.1 (R Development Core Team 2006).

Results

Rooting effects on soil properties

Mineral soil C and N concentration and microbial biomass C (0–45 cm depth) were significantly higher on the rooted compared with the non-rooted plots (Table 3). Time effects could only be found for microbial biomass C, with significantly higher values measured 2 years after plot establishment (t = 24) compared with values measured immediately after plot establishment (t = 0) (Table 3). Nitrogen availability was significantly lower on the rooted plots (mean ± SE: 115.87 ± 23.74 µg·10 cm⁻²·6 weeks⁻¹) compared with the non-rooted plots (160.06 ± 29.37 µg·10 cm⁻²·6 weeks⁻¹) (number of measurements in each plot = 15) and varied significantly between the two sampling dates (Fig. 1).

Rooting effects on plant community properties

Total plant cover was significantly lower on the rooted plots compared with the non-rooted plots but did not signifi-
significantly vary between different sampling dates (Fig. 2). The same pattern was found for the number of saplings (Fig. 3). In contrast, we could not detect a rooting effect on sapling height, while sapling height varied significantly between different sampling dates (Fig. 4), indicating normal plant growth over time. Finally, plant species diversity (Fig. 5) showed no significant rooting effect and also no significant difference between the different sampling dates. In general, plant species richness was rather low on both rooted and non-rooted plots. Averaged over the three sampling events, we found only 5.03 different species on rooted plots and 5.00 different species on non-rooted plots.

Discussion

Our results showed that rooting by wild boars was associated with higher soil C and N concentrations and microbial biomass C. Together with the elevated CO₂ emissions detected on rooted plots in another subproject of the study (Risch et al. 2010), these findings suggest enhanced decomposition and faster turnover rates (mineralization) of C in rooted soils. Similar findings were reported by Lacki and Lancia (1983) who found higher OM concentrations in rooted compared with non-rooted plots in the Great Smoky Mountains National Park, USA (see also Table 1 for comparison of our data with those of other studies). The authors explained their findings by stimulated OM decomposition on boar-rooted sites. In contrast, in other studies (Groot Bruin-
derink and Hazebroek 1996; Moody and Jones 2000; Mohr et al. 2005), no differences in OM, C, and N concentrations were found between rooted and non-rooted plots. Given the higher turnover rates detected after boar rooting on our study sites, we were surprised that plant available N was not elevated but significantly lower on the rooted compared with the control plots. These results stand in contrast with findings by Singer et al. (1984) who reported higher nitrate-N and ammonium-N concentrations on rooted plots indicating alteration in N transformation processes in Great Smoky Mountains National Park. We can think of three potential explanations for the reduced N availability on the rooted compared with the non-rooted plots in our study, which we discuss below.

(i) Nitrogen removal by plant uptake. Increased N uptake, storage, or recycling by the vegetation could be responsible for the lower plant available N. Yet in our study, we did not detect higher plant growth; instead, total plant cover and the number of saplings were reduced on the rooted plots. Thus, alterations of understory N uptake likely cannot explain the lower availability of N. However, it is possible, as suggested by Singer et al. (1984), that N was taken up by tree roots and tree growth was accelerated on rooted plots, as shown by Lacki and Lancia (1986) who found greater shoot elongation of beech trees growing on rooted plots. Because we did not assess tree growth in our study, we cannot determine whether this mechanism would explain the lower N in our study.

(ii) Immobilization by microorganisms. It is possible that plant available N was immobilized by microorganisms on our rooted plots. Rooting by wild boars incorporates OM from the litter layer into the mineral soil (Groot Bruinderink and Hazebroek 1996), which increases resource availability (OM and C) and therefore favors the growth of the microbial communities. Since the C/N ratio of the incorporated OM is relatively high (typical for leaf litter), the soil microbes scavenge the soil solution to obtain enough N, which is required for the balance of nutrients (Homyak et al. 2008). Consequently, the increased microbial biomass found in our study could indicate that N was immobilized (incorporated into microbial cells), which resulted in depleted soil N (Marhan et al. 2010). In contrast with our results, investigations conducted in steep oak forests in Germany revealed lower microbial biomass on rooted compared with non-rooted loamy soils (0–5 cm) (Mohr and Topp 2001; Mohr et al. 2005).
These investigators found generally lower contents of organic C and total N in rooted plots compared with their control plots, which may explain the lower microbial biomass that they found at their rooted plots. We are not aware of any other study assessing the effect of wild boars on soil microbial biomass.

(iii) **Loss by leaching and erosion.** Nutrients may have been leached and lost from the soil. Since the understory vegetation, especially the herbaceous layer, is often reduced on heavily rooted soils (e.g., Bratton 1974, 1975; Siemann et al. 2009), which was also found in our study, nutrient uptake might be greatly reduced for some time after rooting (Singer et al. 1984). Thus, leaching of mineral N may be higher on rooted plots compared with plots with an intact herbaceous layer. In particular, due to their negative charge, nitrate ions are not adsorbed by the negatively charged colloids that dominate most soils (Gundersen et al. 2006). Therefore, nitrate ions move freely downward with drainage water and are readily leached. Moreover, by reducing soil bulk density, boar rooting may also accelerate soil erosion and therefore affect nutrient leaching directly. Supporting this idea, Mohr and Topp (2001) explained the decreases in organic C and total N of boar rooted soils in very steep oak stands as resulting from soil erosion and therefore loss of some of the freshly rooted material.

In addition to the impact on N availability, boars may influence understory vegetation directly by foraging (seed predation), uprooting, or mechanically damaging plants, therefore inhibiting certain plant species while favoring others. Yet, rooting had no effect on plant species diversity at our study sites. Several other studies found differences in plant species composition, but, with the exception of Weiland (1995) and Ickes et al. (2001), they focused on the impact of feral pigs in forests where they have been introduced (e.g., Aplet et al. 1991; Peart and Patten 1992; Cuevas et al. 2010) or in grassland ecosystems (Kotanen 1995; Hone 2002; Cushman et al. 2004) (see Table 1). Where boars are an invasive species, they may affect the diversity and functioning of ecosystems differently than in systems where they are native (e.g., Siemann et al. 2009). Thus, one possibility for the highly variable outcome of boar rooting on plant species composition could be related to the intensity and frequency of rooting between the studies. Unfortunately, comparative data on intensity and frequency of rooting are not available. Another possible explanation for the variable results could be related to differences in the size of the plots used in the various studies (scale effects).

Overall, the net effect of disturbance by wild boars on understory vegetation in our study is complex and rather difficult to interpret. Yet, with the results of this present study, taking into account above- and belowground effects of rooting, we are able to depict a more complete picture of the role that boars play in forest ecosystems. Obviously, by rooting the soil, wild boars may enhance decomposition and accelerate turnover rates (mineralization) but, on the other hand, also diminish plant available N and reduce total plant cover and sapling counts. Thus, “friend-or-foe” thinking in wild boar/forest debates must be handled with care. Given that boars were shown to influence up to 53.8% of the forest soils within the larger surroundings of our study areas (Risch et al. 2010) and that the total area of Switzerland with more than 10 animals culled per 10 km² (numbers comparable with the numbers at our study sites) covered by hardwood or mixed hardwood forests amounts to 410 km² (Risch et al. 2010), we can assume that boars likely affect forest ecosystem functioning not only at the plot level but also at greater scales.

Consequently, this study contributes to the growing understanding of animal–plant–animal–soil, and plant–soil interactions in forest ecosystems, which can serve to address ecosystem stability/resilience, biodiversity, and sustainable management issues. This knowledge will be valuable given the potential increases in wild boar populations and habitat range predicted for Switzerland (Geisser and Rey 2004) and other European countries.

Acknowledgements

We thank Dieter Trummer, Lieven Dekoninck, Florian Risch, Barbara Moser, Ulrich Wasem, and Manuel Lingg for their help with establishing the fences and Dieter Trummer, Manuel Lingg, and Verena Hechinger for their help during field work. We are grateful to Alice Ratcliff and Joanne Tirocke for their help with analyzing the soil samples in the laboratory. Our thanks also go to the local foresters and hunting organizations for their support of our study and for access to the field sites. In addition, we thank the anonymous reviewers for their helpful comments on the manuscript and the “Vegetation & Soil” subproject of the Swiss National Forest Inventory for the funding of this study.

References

R Development Core Team. 2006. R statistical package nlme, version 2.4.1. Available from http://www.r-project.org/

