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Supporting Information for Kirchner and Neal, "Universal fractal scaling in stream chemistry 
and its implications for solute transport and water quality trend detection" 
 
 
Materials and Methods 

Study Sites.  Our chemical time series come from Plynlimon, Wales, one of the most intensively 
studied research watersheds worldwide, with over 500 scientific publications over more than 40 years 
(1, 2).  Streamflow samples were collected at two gauging stations (Upper Hafren and Lower Hafren) 
along the Afon Hafren, the headwaters of the River Severn (see location map, Fig. S1).  Both 
catchments are small; the drainage areas at the Upper Hafren and Lower Hafren sampling points are 
1.22 and 3.58 km2, respectively.  The Upper and Lower Hafren are underlain by acidic soils overlying 
fractured mudstone and shale bedrock.  The Upper Hafren is a relatively undisturbed moorland 
catchment with dwarf shrub heath and bog vegetation.  Below the Upper Hafren, the Lower Hafren 
catchment is a Sitka spruce plantation that was established around 1940 and has been thinned, 
harvested and re-planted in phases since 1985.  Apart from the stream gauging structures and access 
roads, there are no permanent structures in either catchment, and no permanent human habitation. 

 

 

Fig. S1.  Map of sampling sites.  Bulk deposition was sampled adjacent to the Carreg Wen weather 
station at the edge of the Hafren catchment.  Streamflow was sampled upstream from the Upper 
Hafren and Lower Hafren flow gauging structures.   

Sampling Procedures.  Bulk deposition was sampled using continuously open collectors in a 
moorland clearing at Carreg Wen, at the edge of the Upper and Lower Hafren catchments (Fig. S1).  
Plynlimon is only 20 km from the western coast of Britain, and this maritime influence is reflected in 
episodically high sea salt concentrations in rainfall.  The site is relatively far from industrial emission 
sources, but is influenced by long-range transboundary air pollution as well as emissions in the U.K. 
and Wales.  Plynlimon's climate is humid, with catchment-averaged annual precipitation of ~2500 
mm/yr, of which only about 20% evaporates or transpires and about 80% runs off as streamflow (3).   

 Bulk deposition and streamflow were sampled manually once each week, beginning in 1983 
at Lower Hafren and 1990 at Upper Hafren (4).  During a two-year intensive sampling campaign 
(2007-2009), this manual sampling was supplemented by autosamplers that collected 24 samples per 
week, equaling one sample every seven hours (5).   
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 For logistical reasons, the intensive 7-hourly sampling was suspended at the Lower Hafren 
after one year, but continued for a second year at the Upper Hafren and at the Carreg Wen 
precipitation monitoring site.  Here we focus on data from the Upper Hafren, both because its 
intensive sampling record is twice as long, and because its long-term data are relatively unaffected by 
land-use disturbance. 

 Due to equipment failures, there are gaps in the 7-hour sampling, with the result that roughly 
22 months of bulk deposition and Upper Hafren streamflow samples were collected over a span of 23 
months, and roughly 9 months of Lower Hafren streamflow samples were collected over a span of 12 
months.  The weekly sampling records have no long sampling gaps except between mid-February and 
mid-May of 2001, when access to the entire site was interrupted during an outbreak of foot-and-
mouth disease. 

 

Analytical Methods.  On return to the laboratory, the samples were filtered (0.45 µm) followed by 
analysis using standard methods.  Chemical analysis was by ICP-OES (for major cations, B, total S, 
and Si), ICP-MS (for trace elements), ion chromatography (for anions), potentiometry (for pH), Gran 
titration (for alkalinity), conductivity meter (for electrical conductivity), Shimadzu analysers (for 
DOC and TDN) and Seal discrete analyser (for NH4

+). The resulting chemical time series were 
carefully quality controlled, but values were not censored using a detection limit cutoff, in order to 
avoid the associated distortion of low concentrations (6).   

 Several solutes that are available in the original source data have been omitted from this 
paper, because reliable measurements are missing from either the weekly or 7-hourly streamflow data 
sets.  Specifically, Y has been omitted because it has been measured weekly but not 7-hourly; 
conversely, Sb has been omitted because reliable Sb values are available in the 7-hourly data but not 
the weekly long-term record.  I- has been omitted because it is almost entirely missing from the 7-
hourly data set.  F- concentrations have been omitted because their measurement resolution is coarse, 
leading to a grainy, "stepped" time series and therefore a risk of spectral artifacts.  The NO2

- record is 
both grainy and short, and thus has also been excluded.   

 Chemical time series of 45 solutes are presented here, including alkali metals (Li, Na, K, Rb, 
and Cs), alkaline earths (Be, Mg, Ca, Sr, and Ba), transition metals (Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, 
Cu, Zn, Mo, Cd, Sn and Pb), nonmetals (B, NO3

- , NH4
+, SO4

-2, total S, Si, As, and Se), halogens (Cl- 
and Br-), lanthanides and actinides (La, Ce, Pr, and U), as well as total dissolved nitrogen (TDN), 
dissolved organic nitrogen (DON), dissolved organic carbon (DOC), Gran alkalinity, pH, and 
electrical conductivity.  Across these 45 solutes, mean concentrations in the weekly and 7-hourly 
samples range over 6 orders of magnitude, from parts per million to parts per trillion (Tables S1 and 
S2).  The sources and sinks for these solutes also vary widely, with 90% or more of Li, Be, Al, Si, Sc, 
Mn, Fe, Co, and U in streamwater being derived from within-catchment sources and, conversely, 
more than 90% of NH4

+ and Pb in atmospheric deposition being retained (or, in the case of NH4
+, 

transformed to other forms of N) within the catchment (Table S3).  The study sites, sampling, 
chemical analysis, and data quality control are described more fully elsewhere (4, 5, 7), and the 
original data sets themselves, along with complete metadata, are available in the online Supporting 
Information accompanying this paper. 
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Fig. S2 (page 1 of 2).  Water quality time series in Upper Hafren streamflow, Plynlimon, Wales, at 7-
hour intervals for one year (left panels) and weekly intervals for 21 years (right panels).  Shading in 
right-hand panels shows 2008, the year covered by left-hand panels.   
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Fig. S2 (page 2 of 2).  Water quality time series in Upper Hafren streamflow, Plynlimon, Wales, at 7-
hour intervals for one year (left panels) and weekly intervals for 21 years (right panels).  Shading in 
right-hand panels shows 2008, the year covered by left-hand panels (except Cu and Sn, for which 
2007 data are shown).   
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Table S1.  Volume-weighted mean concentrations (± standard deviations) in 7-hourly samples of precipitation 
and Upper and Lower Hafren streamflow, Plynlimon, Wales.  

Analyte Precipitation Upper Hafren Lower Hafren 
 mean±s.d. mean±s.d. mean±s.d. 
Water flux mm/hr 0.34±0.77 0.32±0.39 0.25±0.38 
Conductivity μS/cm 27.7±45.1 28.4±4.7 41.8±5.7 
pH 4.71±0.65 5.09±0.47 4.70±0.39 
Gran alkalinity μEq/l -27.1±39.5 -6.4±26.2 -22.0±24.9 
Nutrients and anions, in order of increasing atomic number 
DOC mg/l 0.72±1.45 3.35±2.09 3.38±1.55 
NO3

- mg(N)/l 0.14±0.26 0.14±0.07 0.18±0.06 
NH4

+ mg(N)/l 0.177±0.183 0.028±0.039 0.026±0.019 
TDN mg/l 0.335±0.537 0.279±0.093 0.305±0.068 
DON mg/l -0.018±0.029 0.101±0.081 0.075±0.045 
SO4

-2 mg(SO4)/l 1.21±1.36 1.92±0.30 3.01±0.40 
Cl- mg/l 5.69±11.70 5.29±1.09 7.19±1.36 
Br- μg/l 18.1±45.3 8.7±3.1 11.8±3.5 
Metals and trace elements, in order of increasing atomic number 
Li μg/l 0.04±0.11 1.49±0.32 1.90±0.29 
Be μg/l -0.003±0.004 0.018±0.009 0.042±0.017 
B μg/l 2.49±3.14 3.39±0.52 4.10±0.40 
Na mg/l 2.58±6.23 3.13±0.50 3.97±0.50 
Mg mg/l 0.31±0.74 0.51±0.11 0.66±0.12 
Al μg/l 2.9±10.1 121.6±63.2 197.8±81.3 
Si mg/l 0.02±0.02 1.20±0.45 1.25±0.37 
S mg/l 0.39±0.57 0.64±0.09 0.99±0.13 
K mg/l 0.11±0.22 0.13±0.08 0.14±0.04 
Ca mg/l 0.29±0.62 0.41±0.12 0.62±0.16 
Sc μg/l n/a 0.25±0.17 0.25±0.13 
Ti μg/l 0.02±0.10 0.32±0.11 0.27±0.10 
V μg/l 0.18±0.24 0.09±0.04 0.11±0.04 
Cr μg/l 1.01±8.89 0.14±0.08 0.24±0.08 
Mn μg/l 0.6±2.1 16.6±3.2 29.5±7.4 
Fe μg/l 3.1±10.7 123.2±78.2 116.3±59.7 
Co μg/l 0.01±0.03 0.68±0.15 1.35±0.39 
Ni μg/l 0.12±0.20 0.69±0.15 1.31±0.27 
Cu μg/l n/a 5.9±7.1 1.7±0.7 
Zn μg/l 6.6±9.1 11.0±5.7 12.0±3.7 
As μg/l 0.075±0.087 0.228±0.067 0.247±0.062 
Se μg/l 0.110±0.143 0.077±0.043 0.092±0.035 
Rb μg/l 0.042±0.095 0.222±0.125 0.260±0.070 
Sr μg/l 2.32±4.43 3.33±0.74 3.97±0.78 
Mo μg/l 0.196±0.758 0.019±0.022 0.014±0.018 
Cd μg/l n/a 0.026±0.011 0.044±0.014 
Sn μg/l 0.035±0.399 0.042±0.031 0.056±0.025 
Cs μg/l -0.002±0.004 0.016±0.005 0.020±0.006 
Ba μg/l 6.73±11.50 1.67±0.45 2.34±0.49 
La μg/l 0.017±0.094 0.017±0.008 0.028±0.010 
Ce μg/l 0.018±0.121 0.049±0.025 0.083±0.033 
Pr μg/l 0.003±0.015 0.008±0.004 0.015±0.006 
Pb μg/l n/a 0.29±0.25 0.55±0.38 
U μg/l -0.0031±0.0033 0.0024±0.0027 0.0049±0.0041 
Analytes marked "n/a" were not measured in precipitation or yielded suspect values, and were therefore excluded from 
further analysis.  Lower Hafren means cover only the first year of the two-year sampling program, and thus cannot be 
directly compared to means from Upper Hafren or precipitation.    Mean and standard deviation of pH were calculated from 
H+.  Analytes presented as ions are analyzed as ions; all others are total concentrations. 
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Table S2.  Volume-weighted mean concentrations (± standard deviations) in long-term weekly sampling of 
precipitation and Upper and Lower Hafren streamflow, Plynlimon, Wales. 

Analyte Precipitation Upper Hafren Lower Hafren 
 mean±s.d. mean±s.d. mean±s.d. 
Water flux mm/hr 0.29±0.29 0.28±0.43 0.26±0.44 
Conductivity μS/cm 24.7±18.9 32.7±8.0 43.3±9.8 
pH 4.92±0.61 4.95±0.39 4.73±0.30 
Gran alkalinity μEq/l -10.9±19.0 -3.9±19.5 -16.3±18.9 
Nutrients and anions, in order of increasing atomic number  
DOC mg/l 0.53±0.45 2.48±1.72 2.69±1.81 
NO3

- mg(N)/l 0.17±0.22 0.20±0.12 0.30±0.15 
NH4

+ mg(N)/l 0.201±0.267 0.015±0.014 0.015±0.026 
TDN mg/l 0.32±0.32 0.34±0.10 0.45±0.15 
DON mg/l 0.041±0.074 0.158±0.092 0.188±0.102 
SO4

-2 mg(SO4)/l 1.02±0.53 1.81±0.34 2.80±0.52 
Cl- mg/l 4.33±4.48 5.70±1.62 7.10±1.94 
Br- μg/l 13.8±13.9 10.8±4.9 15.1±5.2 
Metals and trace elements, in order of increasing atomic number 
Li μg/l 0.08±0.12 1.64±0.41 2.00±0.45 
Be μg/l 0.000±0.004 0.019±0.010 0.065±0.032 
B μg/l 3.9±6.9 4.2±1.4 5.1±1.5 
Na mg/l 2.27±2.38 3.30±0.64 3.97±0.72 
Mg mg/l 0.28±0.30 0.57±0.14 0.71±0.16 
Al μg/l 17.2±39.6 156.6±83.1 291.7±133.2 
Si mg/l 0.09±0.34 1.19±0.49 1.24±0.43 
S mg/l 0.47±0.34 0.76±0.17 1.27±0.31 
K mg/l 0.11±0.10 0.18±0.08 0.20±0.09 
Ca mg/l 0.20±0.28 0.45±0.13 0.71±0.19 
Sc μg/l 0.00±0.07 0.37±0.21 0.40±0.19 
Ti μg/l 0.21±0.40 0.51±0.31 0.53±0.33 
V μg/l 0.22±0.14 0.14±0.09 0.17±0.08 
Cr μg/l 1.04±2.47 0.29±0.28 1.46±3.29 
Mn μg/l 1.1±2.0 19.5±4.8 38.2±12.2 
Fe μg/l 7.6±15.8 126.0±66.4 123.4±59.8 
Co μg/l 0.04±0.17 0.79±0.23 1.74±0.62 
Ni μg/l 0.38±0.78 1.06±0.51 1.89±0.65 
Cu μg/l 3.1±7.3 3.3±11.1 2.9±5.3 
Zn μg/l 12.0±15.8 19.2±14.4 20.3±12.2 
As μg/l 0.08±0.06 0.28±0.11 0.31±0.09 
Se μg/l 0.14±0.09 0.13±0.05 0.15±0.06 
Rb μg/l 0.10±0.11 0.29±0.15 0.36±0.17 
Sr μg/l 1.92±1.73 3.86±0.94 4.68±1.14 
Mo μg/l 0.037±0.165 0.023±0.016 0.026±0.025 
Cd μg/l 0.045±0.152 0.035±0.022 0.058±0.036 
Sn μg/l 0.104±0.106 0.093±0.118 0.093±0.121 
Cs μg/l 0.005±0.009 0.020±0.010 0.031±0.011 
Ba μg/l 5.0±13.5 2.7±0.9 4.4±2.5 
La μg/l 0.031±0.101 0.021±0.014 0.034±0.023 
Ce μg/l 0.017±0.085 0.053±0.028 0.095±0.038 
Pr μg/l 0.007±0.018 0.010±0.006 0.015±0.008 
Pb μg/l 10.80±42.27 0.43±0.48 0.82±0.79 
U μg/l 0.0001±0.0032 0.0046±0.0039 0.0090±0.0045 
Precipitation and Lower Hafren measurements span 10 May 1983 to 11 October 2011.  Upper Hafren measurements span 17 
July 1990 to 11 October 2011.  Mean and standard deviation of pH were calculated from H+.  Analytes presented as ions are 
analyzed as ions; all others are total concentrations. 
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Table S3.  Catchment mass balances: fractions of deposition retained within the catchment (negative values) or 
output flux generated from within the catchment (positive values) at Upper and Lower Hafren, Plynlimon, 
Wales (percentages ± standard errors). 

Analyte Upper Hafren Lower Hafren 
 mass balance mass balance 
 %±s.e. %±s.e. 
Conductivity μS/cm 6.1±2.6 27.9±1.8 
H+ μg/l -25.5±3.8 18.1±3.7 
DOC mg/l 73.2±1.0 74.9±0.8 
NO3

- mg(N)/l -5.7±4.5 29.7±3.1 
NH4

+ mg(N)/l -94.0±0.3 -93.9±0.4 
TDN mg/l -16.0±5.0 8.3±5.4 
DON mg/l 67.7±3.5 72.5±3.0 
SO4

-2 mg(SO4)/l 29.8±3.5 53.9±2.2 
Cl- mg/l 5.5±3.4 22.9±2.6 
Br- μg/l -37.1±3.5 -13.5±4.5 
Li μg/l 94.2±0.3 95.1±0.2 
Be μg/l 100.0±1.2 100.0±0.4 
B μg/l -12.2±5.0 3.6±5.3 
Na mg/l 14.7±3.0 27.9±2.4 
Mg mg/l 39.0±2.1 49.9±1.7 
Al μg/l 86.3±1.0 92.5±0.5 
Si mg/l 90.7±1.1 90.9±1.1 
S mg/l 23.2±2.1 53.2±1.1 
K mg/l 21.5±2.7 29.6±2.2 
Ca mg/l 45.3±2.5 64.7±1.6 
Sc μg/l 100.0±0.8 100.0±0.8 
Ti μg/l 48.5±4.7 49.8±4.6 
V μg/l -47.3±2.2 -36.5±2.2 
Cr μg/l -77.7±1.8 9.8±8.4 
Mn μg/l 92.9±0.4 96.3±0.2 
Fe μg/l 92.5±0.5 92.2±0.5 
Co μg/l 94.2±0.8 97.3±0.4 
Ni μg/l 54.9±2.9 74.4±1.6 
Cu μg/l -13.9±10.8 -26.4±6.3 
Zn μg/l 22.1±3.7 25.1±3.3 
As μg/l 62.9±1.4 65.3±1.2 
Se μg/l -27.5±2.6 -15.6±2.7 
Rb μg/l 58.0±1.8 65.2±1.4 
Sr μg/l 38.1±1.9 48.1±1.5 
Mo μg/l -50.8±8.1 -43.9±9.2 
Cd μg/l -37.1±7.9 2.2±12.2 
Sn μg/l -28.1±5.0 -29.1±4.9 
Cs μg/l 68.1±2.4 79.0±1.5 
Ba μg/l -56.0±3.7 -31.0±5.8 
La μg/l -43.8±7.4 -13.4±11.3 
Ce μg/l 61.1±7.9 77.7±4.5 
Pr μg/l 14.7±11.6 42.4±7.7 
Pb μg/l -96.8±0.4 -94.0±0.8 
U μg/l 97.1±3.7 98.5±1.9 
Mass balances, expressed as the percentage of streamflow output derived from within the catchment, i.e., (output flux – 
deposition flux)/output flux, if output flux>deposition flux, and as the (negative) percentage of bulk deposition retained 
within the catchment, i.e., (output flux – deposition flux)/deposition flux, if output flux<deposition flux.  The resulting 
values will range from +100 for solutes entirely produced within the catchment to -100 for solutes completely retained 
within the catchment.  For solutes whose input and output fluxes balance, the result will be zero.  Fluxes are calculated from 
volume-weighted means of long-term weekly samples (Table S2), combined with 1983-2004 average precipitation and 
runoff water fluxes reported by Marc and Robinson (3) for the Wye River (moorland site, proxy for the Upper Hafren) and 
Severn River (mostly forested, proxy for the Lower Hafren) catchments at Plynlimon.   
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Transformation of Time Series.  Several solutes exhibited strongly skewed distributions or strong 
non-stationarity in variance.  To make their distributions more manageable and/or to equalize their 
variance, we transformed these variables using the scaled hyperbolic arcsine transform: 
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where xref is a reference value for x.  When |x|< xref, equation (S1) approximates a linear function of x, 
and when |x|> xref, equation (S1) approximates a logarithmic function of x.  This transformation is 
useful for solutes whose concentrations span many orders of magnitude but can also extend to zero or 
slightly below, due to stochastic errors in measurements of small concentrations.  Conventional 
logarithmic transformations are problematic for such time series because they amplify small 
fluctuations in near-zero values.  The hyperbolic arcsine avoids this distortion, while providing a 
nearly logarithmic transformation of high values.   

 Roughly one-fourth of the streamflow chemistry time series required transformation (NH4
+, 

Ti, V, Cr, Ni, Cu, Zn, Mo, Sn, Pb, and U).  In streamflow samples, small measurement errors set the 
lower limit to precision.  Therefore for streamflow concentrations, we typically set xref equal to a small 
multiple (1-10) of the standard deviation of measured blanks for each solute (similar to a conventional 
analytical detection limit).  Transformed variables are indicated by designation "tr" in place of the 
measurement units in the Supporting Information data files; thus, for example, Sc_ug/l_UHF denotes 
scandium values at Upper Hafren in micrograms per liter, whereas Ti_tr_UHF denotes hyperbolic-
arcsine-transformed titanium values at Upper Hafren. 

 The great majority of precipitation chemistry time series were strongly skewed and/or 
nonstationary, and required transformation (all analytes except pH, DON, and Sc).  In precipitation, 
concentrations typically range over many orders of magnitude, with very high concentrations in 
occasional low-volume samples (where a relatively large amount of dry deposition is dissolved in a 
relatively small volume of water), superimposed on a baseline of much lower concentrations (which 
are themselves noisy on a percentage basis).  For the precipitation data, the best variance-equalizing 
transformations typically had xref values that were close to the mean or median concentration.   

 Logarithmic transformations were used for stream discharge, because they yielded reasonably 
balanced distributions at our sites, whereas the hyperbolic arcsine was used for precipitation due to 
the large number of zero values.   

 

Normalization for Discharge Variations.  Several analytes in streamflow (particularly pH, 
alkalinity, Ca, Al, and Si) are strongly correlated with the logarithm of stream discharge (Table S4, 
Fig. S3), reflecting hydrologically driven shifts in the mixing ratio between acidic shallow subsurface 
flows and deeper, more alkaline groundwaters (8).  To minimize the confounding influence of 
discharge variations, and thereby to more clearly see the underlying chemical dynamics per se (9, 10), 
we removed the discharge-dependent component from each solute's time series.   

 We fitted smooth spline curves (Fig. S3) to the relationship between concentration and the log 
of discharge (or, for precipitation, the hyperbolic arcsine of rainfall volume) for each solute at each 
site, and then subtracted the fitted values from each measured concentration.  For consistency, we 
corrected all of the concentration time series for their correlations with discharge or precipitation 
volume, including those for which these correlations were weak (and for which the flow-correction 
procedure therefore has little effect).  Table S4 reports the percentage of the variance in each time 
series that was accounted for by the spline fits illustrated in Fig. S3.  Flow-corrected concentrations 
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are indicated by the designation "fc" in the Supporting Information data files; thus, for example, 
Ca_mg/l_UHF denotes calcium values at Upper Hafren in milligrams per liter, whereas 
fc_Ca_mg/l_UHF denotes flow-corrected calcium values at Upper Hafren. 

 Removing the confounding influence of discharge variations affects the resulting power 
spectra to varying degrees (Fig. S4), depending on the strength of the concentration-discharge 
relationship.  For example, 84 percent of the variance in pH is explained by variations in the logarithm 
of discharge (Fig. S3, Table S4), so the pH time series (Fig. S2) and their un-corrected power spectra 
(Fig. S4) strongly resemble the time series and power spectrum of log(Q).  When the discharge-
dependent component of the pH time series is removed, however, the underlying chemical dynamics 
are revealed to have a clear 1/f spectral signature (Fig. S4).  In the five cases noted above (pH, 
alkalinity, Ca, Al, and Si) the 1/f spectral signature of the chemical dynamics is substantially 
overprinted by the power spectrum of log(Q), and in all five cases, the flow-corrected concentrations 
remove this overprinting.  For the 40 other solutes, the flow-corrected and un-corrected concentrations 
both have substantially similar 1/f power spectra.  

 The solutes shown in Fig. S4 have been selected to show a range of discharge-dependence.  
The discharge-dependence of pH (R2=0.84) is the strongest of any of the solutes.  More than five-
sixths of the solutes have weaker discharge-dependence than Mg (R2=0.48), which is shown second in 
Fig. S4.  Fully three-fourths of the solutes have weaker discharge-dependence than Co (R2=0.35), and 
Mn (R2=0.23) lies near the mean and median discharge-dependence (R2=0.25 and 0.20, respectively) 
of the 45 solutes.  The figures quoted here are for solutes in Upper Hafren streamflow; solutes in 
Lower Hafren exhibit weaker discharge-dependence overall (Table S4). 

 

Estimation of Power Spectra.  Data gaps occurred intermittently due to autosampler failure or 
analytical problems, and also whenever rainfall yielded insufficient volume for chemical analysis.  
Such gapped time series require special Fourier analysis techniques, particularly for colored noise 
spectra, because spectral leakage from low frequencies with high power can contaminate the higher 
frequencies in the spectrum where the true signal is weaker.  We used an adaptation of Foster's 
weighted wavelet transform (11) to suppress this leakage in estimating the spectrum. 

 Foster's weighted wavelet transform is formally equivalent to a weighted least-squares 
multiple regression fit of a time series (xi , ti) to a constant and two basis functions, namely the sine 
and cosine waves at a specified frequency 

    iii tataax  sincos 210    (S2)  

where a0, a1, and a2 are where best-fit regression coefficients, and where each data point is weighted 
by a Gaussian function of the difference between its time ti and the center time of the wavelet, t*:  

    2*2exp ttcw ii    (S3)  

In equation (S3), c is a parameter that controls how fast the Gaussian weight falls off with distance 
from the center.  In terms of the equivalent standard deviation, the width of the Gaussian bell curve is 

  






cc 2

112
  (S4)  

where λ is the period of oscillation corresponding to the angular frequency ω.  As with any windowed 
Fourier transform, the wider the window (i.e., the smaller the value of c), the sharper the frequency 
resolution in the resulting power spectrum.  We set c=0.001 in order to clearly resolve seasonal and 
diurnal cycles in the concentration time series.  
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Fig. S3.  Concentration-discharge relationships for five selected analytes in weekly 
and 7-hourly samples (orange and blue points, respectively) of bulk deposition (left 
panels), Upper Hafren streamwater (center panels), and Lower Hafren streamwater 
(right panels), showing spline fits used to normalize for discharge variations.  Solutes 
with the notation "tr" in place of the units (mg/l or μg/l) have been hyperbolic arcsine 
transformed, in order to correct severe skew or nonstationarity in variance.  Stream 
discharge has been log transformed and bulk deposition water volume has been 
hyperbolic arcsine transformed.
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Table S4.  Strength of concentration-discharge relationships: percentage of 
concentration variance accounted for by smooth spline fits to concentration-
discharge relationships, similar to the examples shown in Fig. S3. 

Analyte Precipitation Upper Hafren Lower Hafren 
Conductivity μS/cm 9.0 1.9 15.7 
pH 3.4 83.9 84.1 
Gran alkalinity μEq/l 3.3 74.5 71.0 
DOC mg/l 13.8 38.9 22.4 
NO3

- mg(N)/l 22.2 2.1 18.5 
NH4

+ mg(N)/l 24.4 2.6 1.1 
TDN mg/l 18.6 6.3 8.2 
DON mg/l 5.8 11.2 3.0 
SO4

-2 mg(SO4)/l 10.9 31.7 20.5 
Cl- mg/l 1.8 3.5 6.4 
Br- μg/l 0.6 12.9 16.0 
Li μg/l 3.3 34.6 13.4 
Be μg/l 2.0 43.1 40.5 
B μg/l 4.9 0.7 2.2 
Na mg/l 3.1 33.9 3.4 
Mg mg/l 2.6 47.6 14.7 
Al μg/l 10.2 53.7 59.6 
Si mg/l 0.6 79.2 54.4 
S mg/l 13.1 16.6 7.0 
K mg/l 2.8 8.9 12.3 
Ca mg/l 13.2 79.3 49.8 
Sc μg/l 2.7 23.5 11.8 
Ti μg/l 6.9 0.5 0.4 
V μg/l 11.7 23.2 16.9 
Cr μg/l 3.6 4.2 2.8 
Mn μg/l 21.5 23.2 36.9 
Fe μg/l 16.3 29.4 15.8 
Co μg/l 8.1 35.0 42.7 
Ni μg/l 17.9 10.7 22.8 
Cu μg/l 13.0 9.3 5.6 
Zn μg/l 15.5 5.9 14.7 
As μg/l 10.1 10.6 14.6 
Se μg/l 9.3 1.5 0.5 
Rb μg/l 14.9 16.0 14.5 
Sr μg/l 3.9 32.6 9.2 
Mo μg/l 2.9 25.8 43.1 
Cd μg/l 23.7 10.6 12.1 
Sn μg/l 4.1 0.6 0.3 
Cs μg/l 10.0 28.2 2.1 
Ba μg/l 5.8 4.5 15.8 
La μg/l 4.0 40.0 31.4 
Ce μg/l 8.0 48.0 55.0 
Pr μg/l 3.1 47.8 43.2 
Pb μg/l 9.1 19.8 28.0 
U μg/l 5.3 14.5 6.8 

 

 When evaluated at evenly spaced points in time, the combination of sinusoidal basis functions 
with a Gaussian weighting function will behave like the well-known Morlet wavelet, as shown in Fig. 
(S5).  When evaluated on an unevenly sampled time series (xi , ti), this approach also offers several 
important advantages over conventional wavelet or Fourier transform methods.  The most important 
of these, for our purposes, is that because the fitted constant term in equation (S2) varies as the center 
time t* changes, this approach effectively filters out fluctuations on time scales that are long with 
respect to σ as defined in equation (S4).  In this way it helps to suppress spectral leakage from 
stronger, lower-frequency (longer-wavelength) signals, which would otherwise contaminate spectral 
power estimates for weaker signals at higher frequencies.  Alternatively, setting c=0 makes all the 
weights wi=1 and yields Ferraz-Mello's Date-Compensated Discrete Fourier Transform, or DCDFT 
(12).  The DCDFT fits equation (S2) to the entire time series at once, by multiple regression.  Because 
it fits the constant term a0 jointly with the basis functions cos(ωti) and sin(ωti), the DCDFT avoids 
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distortions that can arise when this constant term is omitted (13, 14), as is the case, for example, in the 
more widely known Lomb-Scargle Fourier Transform, or LSFT (15, 16).  However, neither the 
DCDFT nor the LSFT suppresses spectral leakage from lower frequencies to higher frequencies, 
which is the great advantage of Foster's wavelet-based approach. 
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Fig. S4.  Sample power spectra, with and without flow-correction (colored and gray symbols, 
respectively), of solute concentrations in Upper Hafren streamflow.  The spectrum of the logarithm of 
discharge (dark gray and black symbols) is non-fractal, scaling as white noise at low frequencies and 
steepening to 1/f 2 at frequencies of roughly 80-600/year (short gray lines show slopes of 0 and 2 for 
comparison).  The spectra of the un-corrected solute concentrations (light gray symbols) reflect the 
non-fractal signature of discharge to varying degrees, depending on the strength of the correlation 
between concentration and discharge.  The spectra of the flow-corrected concentrations (colored 
symbols), by contrast, exhibit fractal 1/f scaling (long gray lines show slopes of 1 for comparison), 
regardless of the degree of discharge-dependence in the un-corrected time series.  Spectra for 
individual analytes have been shifted by arbitrary factors to allow them to be visualized together, but 
pairs of flow-corrected and un-corrected spectra for individual analytes are plotted on consistent axes 
(thus differences between them reflect real differences in spectral power).  Quoted R2 values from 
Table S4 express the fraction of concentration variance explained by spline fits to the log of discharge 
(see Fig. S3). 

 The drawback to Foster's approach, however, is that when equation (S2) is estimated by 
multiple regression on unevenly sampled data, the values of the fitted coefficients can become 
unrealistically large, and thus the spectral power estimates can become unreliable, whenever the 
variance-covariance matrix becomes singular or nearly so.  This results in spurious spikes in the 
power spectrum.  These spurious spikes become more frequent as the weighting window becomes 
narrower, the sampling times become more uneven, and the mesh of sampled frequencies ω becomes 
denser.   

We avoid this problem entirely by re-casting the weighted regression in equations (S2-S3) as a 
convolution instead.  Specifically, we convolve the time series xi (ti) with the two basis functions 
cos(ωti) and sin(ωti), with each point weighted by wi as defined in (S3), after first transforming 
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cos(ωti) and sin(ωti) so that they are orthogonal to each other and to the constant term a0 in equation 
(S2).  Because the (transformed) basis functions are orthogonal to one another and to the constant 
term a0, their convolutions with the time series (xi , ti) will yield the same results as multiple 
regression (equation S2) in well-posed cases, and well-behaved results in poorly posed cases. 

0

-10 0 10
time/ (dimensionless)  

Fig. S5.  Morlet wavelet pair (sine and cosine terms in gray and black, respectively) corresponding to 
the weighting function in Eq. (S3) for c=0.001.  Horizontal axis is time divided by the period of the 
analyzed wave (λ=2π/ω).   

 The key equations are as follows.  First we determine a time-shift factor, τ, for which cos[ω(ti-
τ)] and sin[ω(ti-τ)] are mutually orthogonal; that is, for which their weighted cross-product is zero.  
This time-shift factor for a set of sampling times ti and associated weights wi varies with the angular 
frequency ω as: 
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    (S5)  

 If we visualize the basis functions cos[ω(ti-τ)] and sin[ω(ti-τ)] as a series of points on the unit 
circle, the time-shift factor τ rotates this circle until the weighted linear correlation between the points 
equals zero (i.e., the two basis functions become orthogonal).  This use of a time-shift factor is 
conceptually similar to the approach of Scargle (16).  However, the time-shift factor given by Scargle 
in his equation (11) only yields orthogonal sine and cosine basis functions in the special case that the 
means of cos(ωti) and sin(ωti) are both identically zero.  This special case rarely arises in unevenly 
spaced time series.  The resulting breakdown of orthogonality – which has apparently remained 
unrecognized by many who use the Scargle approach – can lead to substantial amplitude and phase 
errors (13, 14), even when the signal being analyzed is a pure sinusoidal wave.  By contrast, the time-
shift factor in equation (S5) correctly orthogonalizes the sine and cosine functions in all cases. 

 From the time-shifted basis functions, one can then calculate the sine and cosine coefficients 
for an individual wavelet as 
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 (S7)  

The formulation of equations (S6) and (S7) guarantees orthogonality between the weighted sine and 
cosine functions and the constant term a0, by convolving the weighted time series with the weighted 
basis functions after subtracting each of their means.   This approach thus achieves the same benefits 
as the local fitting of a0 in Foster's approach, without the associated instabilities in poorly posed cases.  
The leading terms cos(ωτ) and sin(ωτ) in equations (S6) and (S7) serve to undo the time shift τ, to 
yield the correct Fourier coefficients a1 and a2 for the original time base.  The spectral power estimate 
from each individual wavelet is then calculated as: 

       
n

n
ttaaS eff

X minmax
2
2

2
15.0   (S8)  

where tmax-tmin expresses the time interval covered by the n sampled points, and neff is the "effective" 
number of points, a correction for the unevenness of the weighting among the points, calculated 
following Foster (11) as: 
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 We estimate spectral power for wavelets centered at evenly spaced points along the length of 
the time series using equations (S5-S9).  These individual spectral power estimates are then pooled by 
taking their mean, weighted by the degrees of freedom associated with each estimate, which equals 
neff   -3.  For neff<3, the degrees of freedom, and thus the associated weight of the spectral power 
estimate, are assigned a value of zero. 

 Further computational details can be found in the computer code spectral_analysis.c, which is 
available, along with all necessary input files and selected output files, from the corresponding author. 
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Smoothing and Alias-filtering of Power Spectra.  Conventional Fourier transform methods 
typically yield noisy spectral power estimates for individual frequencies.  The resulting wedge-shaped 
power spectrum, which is narrow at low frequencies and becomes ever-wider at high frequencies, can 
be problematic in at least two respects.  First, it can be difficult to see the shape of the broad-band 
spectrum within the wedge of widely varying spectral estimates at high frequencies.  And second, this 
wedge can appear steeper than the average broad-band power spectrum is, because the logarithmic 
axis amplifies downward fluctuations more than upward fluctuations (for an illustrative example, see 
Fig. 3 of ref. 17).   

 The weighted wavelet approach outlined above analyzes the time series in overlapping 
windows, which scale with the wavelength of the analyzed wave.  This windowing has the effect that 
spectral power estimates at any frequency will represent the average spectral power over a range of 
neighboring frequencies.  The range over which frequencies are averaged is constant in logarithmic 
terms, meaning that at higher frequencies, where spectral estimates are more uncertain, a greater 
number of them are averaged together and thus the uncertainty in the broad-band average becomes 
roughly constant on a logarithmic scale.  This is desirable for our purposes, because we are primarily 
interested in the spectral slope of the broad-band noise.  (Our spectral analysis code also provides for 
analogous smoothing of Fourier transforms that are performed without local windowing.  The power 
spectrum is smoothed using a Gaussian window with a width of 0.05 log units in frequency, which 
yields a similar degree of smoothing as the wavelet-based approach outlined above, with c=0.001.) 

 Regardless of the spectral analysis method one uses, spectral estimates are generally 
contaminated by aliasing of spectral power from above the Nyquist frequency, because the gapped 
sampling has a regular (weekly or seven-hourly) time base.  This spectral aliasing leads to an artificial 
flattening of the spectrum at high frequencies and can be particularly severe in 1/f  noises (17), 
because these typically contain significant power above the Nyquist frequency.  We used Kirchner's 
filtering method (17) to correct for this spectral aliasing.  The weekly time series has a lower Nyquist 
frequency than the 7-hourly time series, and this will be reflected in a greater degree of spectral 
aliasing.  Conversely, because the 7-hourly time series is less affected by aliasing, it can help in 
inferring an accurate spectral model for the aliasing filter, which can then be applied to spectra 
derived from both the 7-hourly and weekly data. 

 Therefore we have adapted Kirchner's alias-filtering method so that it fits a single spectral 
model jointly to the smoothed spectra of both the 7-hourly and weekly data.  Our approach allows a 
constant offset between the 7-hourly and weekly spectra, because some solutes exhibit different 
variance during the two years that were intensively sampled than they do on average over the decades 
of our long-term time series.  The only user-determined parameter in our alias-filtering method is the 
corner frequency fc, above which the spectrum is assumed to steepen significantly.  We set fc at 
1460/year, corresponding to a wavelength of 6 hours, based on high-frequency measurements of pH 
and conductivity at Plynlimon (18, 19) showing that at time scales shorter than about 3 hours, both 
concentrations and stream discharge become relatively smooth functions of time.  The choice of fc has 
only a weak effect on the measured spectral slopes.  The alias-filtered spectra for all 45 solutes at both 
sampling sites are shown in Fig. S6. 

 

Estimation of Spectral Slopes.  To estimate the spectral slope (Fig. 3, Table S5), we fitted a single 
least-squares regression slope jointly to the alias-filtered weekly and 7-hourly spectra.  As with the 
alias-filtering routine, we allowed a constant offset between the two spectra, to account for possible 
differences in overall variance between the two intensively sampled years and the decades of long-
term data.  The reported uncertainties in the slopes are corrected for the effects of the spectral 
smoothing on the correlations among the regression residuals.  Further computational details can be 
found in the computer code alias_filter.c, which is available, along with all necessary input files and 
selected output files, from the corresponding author. 
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Fig. S6.  Power spectra for all 45 water quality parameters in 7-hourly and weekly streamwater 
samples (light and dark colors, respectively) from Upper Hafren (a-c) and Lower Hafren (d-f).  Gray 
reference lines show 1/f scaling; spectra for individual analytes have been shifted by arbitrary factors 
to allow them all to be visualized together.   

Comparison with Cl- spectra in Kirchner et al. (2000).  In a previous analysis (20), we estimated 
the spectral slope for Cl- in Lower Hafren streamflow to be 0.97, substantially lower than our estimate 
of 1.40±0.06 in Table S5 for the same solute in the same stream.  This difference arises for several 
reasons.  In the earlier paper, we used the Lomb-Scargle Fourier Transform, which tends to 
underestimate spectral slopes (as we now show in the benchmark tests reported below).  Secondly, in 
the earlier paper the spectra were not alias-filtered (because the alias filtering method had not yet been 
developed), which will also result in flatter spectral slopes.  Finally, of course, the two data sets 
themselves are not identical; our earlier paper was based on 14 years of weekly sampling and three 
years of daily sampling, whereas the present work is based on 28 years of weekly sampling and one 
year (at Lower Hafren) of 7-hourly sampling.  The 7-hourly sampling extends the spectrum to 
significantly higher frequencies, where it appears to begin a roll-off toward a steeper spectral slope.  
The downward curvature in the spectrum was not visible with the previous daily sampling.  All of 
these factors make the spectral slope estimate in the present paper steeper than in our earlier paper.  
Figure S7 compares the spectra from the Lower Hafren chloride time series in our earlier paper with 
those of the present work, all analyzed using the methods described above.  The spectra are visually 
similar, as one would expect for analyses of overlapping data sets, and overall they are consistent with 
the spectral slope of 1.40 reported in Table S5 (represented by the gray line in Figure S7). 
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Table S5.  Power-law spectral slopes  (± standard errors) 

Analyte Precipitation Upper Hafren Lower Hafren 
Conductivity μS/cm 0.349±0.021 1.316±0.043 1.398±0.096 
pH 0.407±0.021 1.009±0.011 1.069±0.020 
Gran alkalinity μEq/l 0.419±0.018 0.952±0.027 1.024±0.028 
DOC mg/l 0.322±0.020 1.177±0.047 1.250±0.073 
NO3

- mg(N)/l 0.327±0.012 1.275±0.074 1.289±0.111 
NH4

+ mg(N)/l 0.343±0.046 0.831±0.013 0.599±0.089 
TDN mg/l 0.371±0.033 0.975±0.029 0.970±0.052 
DON mg/l 0.237±0.040 0.975±0.027 0.821±0.043 
SO4

-2 mg(SO4)/l 0.327±0.030 1.199±0.035 1.160±0.041 
Cl- mg/l 0.410±0.023 1.294±0.054 1.399±0.060 
Br- μg/l 0.417±0.029 0.859±0.022 0.870±0.030 
Li μg/l 0.412±0.024 0.985±0.018 1.007±0.036 
Be μg/l 0.341±0.034 0.882±0.020 0.880±0.033 
B μg/l 0.406±0.016 1.139±0.027 1.134±0.030 
Na mg/l 0.475±0.026 1.228±0.031 1.347±0.051 
Mg mg/l 0.458±0.025 1.067±0.060 1.347±0.114 
Al μg/l 0.307±0.012 1.086±0.042 0.961±0.028 
Si mg/l 0.393±0.035 1.189±0.020 1.288±0.055 
S mg/l 0.323±0.019 1.207±0.034 1.276±0.055 
K mg/l 0.334±0.024 1.014±0.032 0.997±0.029 
Ca mg/l 0.361±0.014 0.926±0.063 1.056±0.043 
Sc μg/l 0.313±0.032 1.115±0.021 1.292±0.038 
Ti μg/l 0.328±0.022 1.040±0.022 1.131±0.036 
V μg/l 0.369±0.020 1.019±0.021 1.065±0.036 
Cr μg/l 0.530±0.021 1.016±0.030 0.922±0.028 
Mn μg/l 0.275±0.013 1.045±0.027 1.091±0.028 
Fe μg/l 0.317±0.010 1.064±0.044 1.153±0.085 
Co μg/l 0.186±0.010 1.087±0.025 1.019±0.027 
Ni μg/l 0.277±0.012 0.973±0.027 0.903±0.029 
Cu μg/l 0.292±0.037 1.212±0.060 0.989±0.028 
Zn μg/l 0.341±0.014 0.980±0.025 0.939±0.016 
As μg/l 0.364±0.024 1.005±0.030 1.199±0.046 
Se μg/l 0.313±0.021 0.851±0.019 0.853±0.028 
Rb μg/l 0.335±0.012 0.942±0.021 1.168±0.030 
Sr μg/l 0.397±0.017 0.990±0.064 1.073±0.047 
Mo μg/l 0.597±0.023 0.836±0.021 0.948±0.027 
Cd μg/l 0.278±0.033 0.847±0.034 0.795±0.044 
Sn μg/l 0.272±0.022 1.026±0.055 0.884±0.090 
Cs μg/l 0.327±0.014 0.913±0.017 1.058±0.022 
Ba μg/l 0.513±0.019 0.978±0.034 0.897±0.043 
La μg/l 0.244±0.017 1.073±0.037 1.014±0.051 
Ce μg/l 0.331±0.016 1.170±0.049 1.188±0.050 
Pr μg/l 0.308±0.032 1.083±0.055 1.097±0.040 
Pb μg/l 0.528±0.075 0.918±0.015 0.852±0.029 
U μg/l 0.402±0.029 1.086±0.028 1.133±0.040 
Best-fit spectral slopes from jointly alias-filtered power spectra of weekly and 7-hourly flow-corrected concentration time 
series (see methods).  Standard errors are corrected for the loss of degrees of freedom that arises from the spectral smoothing 
that is inherent in our spectral analysis methods.  All spectral slopes are statistically significant at p<0.0001.  

Benchmark Tests of Spectral Methods.  We conducted a series of benchmark tests to examine the 
accuracy of our estimates of spectral slopes.  Using the method of Billah and Shinozuka (21), we 
created synthetic noises with known spectral slopes and exactly the same gapped sampling as our real 
data.  That is, in place of the 45 real-world chemical time series, we substituted 45 synthetic time 
series with a single, pre-determined spectral slope, but sampled at the same times as each of the real-
world solutes.  Importantly, however, the frequencies we used to generate the synthetic noises 
extended far beyond the frequencies that can be analyzed in the real-world sampling; they ranged 
from 0.005/yr (which is 7-10 times lower than the lowest measurable frequency in records of 21-28 
years) to 14,600/yr (which is 10 times the corner frequency fc defined above, and over 20 times the 
Nyquist limit for 7-hourly sampling).  Thus we avoided a common pitfall of many benchmark tests, 
which generate synthetic noises that are band-limited to precisely the frequencies that can be analyzed 
under the specified sampling, and which thereby artificially conceal the problems of spectral leakage 
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(from low frequencies) and spectral aliasing (from high frequencies) that afflict real-world spectral 
analyses.  Further computational details can be found in the computer code benchmark_generator.c, 
which is available from the corresponding author. 
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Fig. S7.  Lower Hafren streamflow Cl- power spectra calculated in the present work (light and dark 
blue symbols representing weekly and 7-hourly sampling, respectively), compared to the same 
spectral methods applied to the data of ref. (20), with orange and red symbols representing weekly 
and daily sampling, respectively.  Gray line indicates a spectral slope of 1.40 (see Table S5). 

 

Fig. S8.  Benchmark tests for spectral analysis of Upper Hafren water quality data.  Each panel shows 
the distribution of spectral slopes estimated from synthetic benchmark time series with spectral power 
scaling as 1/f , with  ranging from 0 to 2 in steps of 0.25 (gray lines).  These benchmark time series 
were sampled at the same times and with the same gaps as the 45 water quality parameters in Upper 
Hafren streamflow.  They were then analyzed by the same methods as those used for the real-world 
water quality data (our variant of Foster's Weighted Wavelet Transform, left column), and by the 
Date-Compensated Discrete Fourier Transform, or DCDFT (12, 22) (right column).  Results from the 
Lomb-Scargle Fourier Transform, or LSFT (15, 16) are visually indistinguishable from those 
obtained with the DCDFT.  All spectra were alias-filtered by the identical procedure used with the 
real-world data.  Spectral slopes measured in the real-world Plynlimon stream water quality data 
range from 0.83 to 1.32; over this range, the measurement bias in our method averages only 0.017, 
whereas the average measurement bias with the DCDFT or LSFT is -0.17, ten times as large.  Over 
the range of spectral slopes from =0.25 to =2, the measurement bias in our method never exceeds 
0.02, whereas the bias in the DCDFT or the LSFT can exceed 0.5 for spectral slopes near =2. 
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Fig. S9.  Benchmark tests for spectral analysis of Plynlimon precipitation chemistry data.  Each panel 
shows the distribution of spectral slopes estimated from synthetic benchmark time series with spectral 
power scaling as 1/f , with  ranging from -0.5 to 1 in steps of 0.25 (gray lines).  These benchmark 
time series were sampled at the same times and with the same gaps as the 45 water quality parameters 
in Plynlimon rainfall.  They were then analyzed by the same methods as those used for the real-world 
precipitation data (our variant of Foster's Weighted Wavelet Transform, left column), and by the 
Date-Compensated Discrete Fourier Transform, or DCDFT (12, 22) (right column).  Results from the 
Lomb-Scargle Fourier Transform, or LSFT (15, 16) are visually indistinguishable from those 
obtained with the DCDFT.  All spectra were alias-filtered by the identical procedure used with the 
real-world data.  Rainfall sampling times are more unevenly spaced than streamflow sampling times 
(due to sampling intervals with insufficient rainfall); this greater irregularity in sampling results in 
some degree of flattening in the measured spectral slopes.  Spectral slopes measured in the real-world 
Plynlimon rainfall water quality data range from 0.19 to 0.60.  Over this range, the measurement bias 
in our method averages only -0.06; the average measurement bias in the DCDFT or LSFT is over four 
times larger, averaging -0.26. 

 We then analyzed these synthetic time series using exactly the same methods as we used with 
the real-world data.  Over the range of spectral slopes measured in the real-world stream chemistry 
data (0.83 to 1.32), our spectral slope estimates have an average measurement bias of only 0.017.  As 
the left-hand plots in Fig. S8 show, across benchmark spectral slopes ranging from 0.25 to 2 the 
measurement bias in our methods never exceeds 0.02.  By contrast, the Date-Compensated Discrete 
Fourier Transform (DCDFT) exhibits a negative bias due to spectral aliasing, which becomes stronger 
for steeper spectral slopes.  Over the range of spectral slopes measured in the real-world stream 
chemistry data, the measurement bias in the DCDFT or the Lomb-Scargle Fourier Transform (LSFT) 
averages -0.17, ten times larger than the bias in our methods.  Both the DCDFT and the LSFT exhibit 
strong bias for spectral slopes steeper than =1 (see right-hand plots in Fig. S8). 

 Benchmark tests for the rainfall time series show larger discrepancies than are seen in the 
streamflow time series, most likely because the rainfall time series are more sparsely and irregularly 
sampled (since rainfall concentrations cannot be measured when no rain falls).  Nonetheless, over the 
range of spectral slopes measured in the real-world Plynlimon rainfall chemistry time series, the 
measurement bias in our method averages only -0.06 (left-hand plots in Fig. S9).  Over the same 
range, the measurement bias in the DCDFT or LSFT is over four times as large, averaging -0.26. 
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Fig. S10.  Root-mean-square (RMS) differences between successive averages of all 45 water quality 
parameters in 7-hourly and weekly samples (solid and open symbols, respectively) of Upper Hafren 
and Lower Hafren streamwater (upper and lower panels, respectively), over intervals from 7 hours to 
5-10 years.  RMS traces for individual parameters have been rescaled by arbitrary factors, so that they 
can all be visualized together.  Thin gray reference lines show trends for non-self-averaging behavior, 
in which averages over longer and longer timescales do not converge, and thus the expected 
difference between successive averages remains constant.  Heavy gray line shows the slope of -0.5 
predicted by the Central Limit Theorem for self-averaging behavior, in which averages converge 
proportionally to the number of points being averaged.  Hyperbolic arcsine transforms were used for 
9 parameters (NH4, Ti, V, Cr, Ni, Cu, Zn, Sn, and Pb) that had strongly skewed distributions or 
strong non-stationarity in variance.  All time series were corrected for correlations with the log of 
stream discharge (see methods). 

RMS Differences Between Successive Averages.  We tested for non-self-averaging behavior in the 
chemical time series using the root-mean-square (RMS) differences between adjacent pairs of local 
averages, as a function of the length of the averaging time scale (Fig. 4, Fig. S10).  This quantity is 
proportional to the Allan deviation, and thus to the square root of the Allan variance.  The Allan 
deviation and Allan variance (23) were developed specifically to quantify the uncertainty in time 
series that may not be statistically stationary, and therefore may not have well-defined variances or 
standard deviations.   

We began by defining an averaging time scale τ and dividing the sample time series y(t) into intervals 
of length τ.  We then calculated local means of y(t) over each of these intervals: 
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In equation (S10), the index k takes on values from 0 to 3, and has the effect of creating four different 
series of local means, staggered by τ/4.  This reduces the influence that any patterns in the time series 
might have, if they happened to coincide with the boundaries between adjacent averaging intervals.  
We then calculated the RMS differences between adjacent pairs of the local means as: 

   2,1,)( jkjky yyRMS    (S11) 

We excluded any local means from equation (S11) if, because of sampling gaps, they included less 
than half the expected number of individual data points.  Further computational details can be found 
in the computer code RMS_averages.c, which is available, along with all necessary input files and 
selected output files, from the corresponding author. 

 

Trends as Functions of Scale.  For Figs. 5a and 5b, we calculated linear regression trends over each 
interval of length τ, as defined above (Fig. S11 gives an illustrative example).  We excluded any 
intervals that, due to sampling gaps, had less than 75% of the expected number of data points for the 
specified τ.  We calculated the statistical significance of each trend (relative to a null hypothesis of 
slope=0) using Student's t-test (two-tailed).  We likewise calculated the statistical significance of the 
change in slope between pairs of adjacent trend lines using Student's t-test (two-tailed, with pooled 
variance).  Further computational details can be found in the computer code trend_lines.c, which is 
available, along with all necessary input files and selected output files, from the corresponding author. 

 

 

Fig. S11.  Linear trends of two contrasting lengths (left and right panels) fitted to synthetic white 
noise and 1/f noise (top and bottom panels, respectively).  Both synthetic noises have true means and 
long-term trends of zero.  When fitted to white noise, individual trend lines have 95% confidence 
bounds that enclose the true trend of zero approximately 95% of the time, as expected (panel A).  As 
the trend lines become longer, their slopes converge toward the true trend of zero proportionally to 
the square root of the number of points, and their confidence bounds contract by the same proportion 
(panel B).  Trend lines fitted to 1/f noise have 95% confidence bounds that enclose the true trend of 
zero much less than 95% of the time, corresponding to a "false positive" rate of much greater than 5% 
(panel C).  As the trend lines become longer, their confidence bounds contract faster than their slopes 
converge toward the true trend of zero; thus the "false positive" rate increases (panel D). 
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Conceptual Models for Origins of 1/f Scaling in Water Quality 

 Here we illustrate how, as stated in the main text of the paper, "random chemical fluctuations 
across the landscape – arising from atmospheric deposition or biogeochemical processes, for example 
– can be transformed into 1/f fluctuations in stream chemistry by both Fickian and so-called 
'anomalous' dispersion."  The central concept behind the analysis presented here is that catchments are 
spatially extended systems, so chemical signals in subsurface flow originating at different points on 
the landscape will travel different distances to the stream, and will undergo different degrees of 
dispersion as they are transported to it.  This mixture of length scales is reflected in a mixture of 
dispersion time scales, which is broadly analogous to the mixture of relaxation timescales that has 
often been invoked to explain 1/f noise in physical systems (24, 25).  Here we demonstrate 
mathematically that spatially distributed dispersive transport can convert white-noise fluctuations in 
chemical inputs into 1/f fluctuations in stream chemistry.  We demonstrate this for two different cases: 
advection and dispersion of spatially coherent input fluctuations (for example from rainfall), and 
anomalous transport of spatially uncorrelated input fluctuations.   

 

Case 1: Advection and Dispersion of Spatially Coherent Input Fluctuations.  Chemical inputs 
delivered to a small catchment by rainfall are spatially coherent; as rain falls, it delivers water and 
solutes across the catchment almost simultaneously.  It has previously been shown that catchment-
scale advection and dispersion can convert white-noise fluctuations in rainfall solute concentrations 
into 1/f fluctuations in stream chemistry (26).  It has also been shown that in such a system, chemical 
retardation will further damp fluctuations on all scales by a constant ratio, beyond the damping 
expected from dispersive transport, but will not change the 1/f spectral slope (27).  These previous 
results were obtained by deriving a characteristic travel-time distribution for water and solutes, which 
does not yield a closed-form solution for the power spectrum.   

 Here we derive a closed-form expression for the power spectrum of the concentrations in the 
stream, in terms of the spectrum of the concentrations in rainfall.  The underlying thought experiment 
is similar to that of Kirchner et al. (26): a uniform field of rain falling on a hillslope and traveling 
downslope by advection and dispersion toward the stream.  But that earlier work injected a delta-
function pulse of chemical tracer into the rainfall and calculated the resulting distribution of travel 
times to the stream.  Here instead we adopt a Fourier representation of the process and ask how a 
sinusoidal wave of a given frequency is transmitted from rainfall to the stream.  If we give the input 
sinusoidal wave a power spectral density of 1, the solution to this problem directly yields the transfer 
function (the output spectral power, as a proportion of the input spectral power, at any frequency). 

 We assume that transport is governed by the advection-dispersion equation, potentially with 
chemical retardation and decay:   
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 (S12)  

where the variables C, t and x are concentration, time and distance, respectively, Rd is the retardation 
factor (dimensionless),  is dispersivity, ν is velocity, and λ is a decay coefficient (with dimensions of 
1/time).  Here we attribute chemical retardation to reversible exchange between solutes in solution 
and adsorbed or solid phases of the same solutes.  The decay coefficient, on the other hand, accounts 
for reactions that irreversibly remove solutes from solution.  Because transport by hydrodynamic 
dispersion dominates over molecular diffusion at the scales of interest, we ignore molecular diffusion 
and replace the diffusion coefficient D with ν in equation (S12).  We ignore transport within the 
stream network itself, since this is very rapid compared to transport in the subsurface, and instead 
consider the stream network simply as a collector of chemical signals from the surrounding hillslopes.  
(We also point out that the use of  to represent dispersivity should not be confused with the use of 
the same symbol elsewhere in the paper to represent spectral slope.  Likewise the use of λ as a decay 
coefficient should not be confused with the use of λ in spectral analysis to represent wavelength.  
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Unfortunately, convention requires the use of these same symbols to represent different quantities in 
different contexts.) 

 Our task is to use equation (S12) to model the propagation of sinusoidal inputs from all points 
along the hillslope to the stream.  We start with the solution for a sinusoidal input at an individual 
point, and then integrate this solution across the hillslope.  If we drive the advection-dispersion-
reaction system described in equation (S12) with a periodic boundary condition at x=0: 

    tietC ,0  (S13)  

the resulting behavior at a distance x downslope can be shown (28) to be: 

   )(, bxtiax eetxC     (S14)  

where the exponential damping factor a (with dimension 1/length) is: 
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and the phase shift factor b (with dimension 1/length) is: 
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and ϕ and ψ (both with dimension 1/length2) are: 
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The signal observed in the stream will be the average of the contributions from all points up-slope, 
from x=0 (the stream) to x=L (the top of the hillslope).  Mathematically this is calculated as the 
normalized integral: 
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From equation (S18) one can see that the average concentration in the stream will be a sinusoid that is 
damped and phase-shifted relative to the boundary condition that was applied over the whole 
hillslope.  The spectral power of the stream concentration sinusoid is found by multiplying equation 
(S18) by its complex conjugate.  The solution can be shown to be, after some algebra: 
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   (S19)  

 The interpretation of equation (S19) relies on equations (S15-S17), and therefore is not 
obvious by inspection.  To understand the behavior of these equations, it is helpful to re-express their 
parameters in more concise terms.  We begin by defining the mean residence time τ0 of water on the 
hillslope as the mean travel distance (L/2) divided by the velocity ν.  We can then express all the 
components of equation (S19) in terms of three dimensionless groups: the Peclet number Pe (the ratio 
between the mean travel distance and the diffusivity), the Damköhler number Da (the ratio between 
the mean travel time and the reaction timescale), and the dimensionless frequency ω* (the frequency 
scaled by the travel time and the retardation factor): 
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We now note that in equation (S19), a and b occur only as the dimensionless products aL and bL.  By 
substituting (S20) into (S15-S17) and (S19), one can show that: 
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and: 
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 The behavior of equation (S19) can now be summarized in terms of three dimensionless 
frequency domains (see Fig. S12).  For ω*<(Da+1), the spectral power in the stream approaches a 
constant, whose value has an upper limit of 1 for Da=0, and decreases with increasing Da and Pe.  If 
ω*>(Da+1) and ω*>Pe, aL and bL both scale as ω0.5 and the spectral power in the stream approaches 
≈1/(4 Pe ω*); it therefore scales as 1/f.  Between these two limits, for (Da+1)<ω*<Pe, the average 
spectral power in the stream approaches ≈1/(2ω*)2, and therefore scales as 1/f 2.   

 In cases where irreversible reactions can be ignored (λ=0 and therefore Da=0), equations 
(S21) and (S22) simplify to: 
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and: 
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The scaling behavior of equation (S19) can be inferred directly from the frequency domains identified 
above, in the limiting case of Da=0.  For ω*<1, the spectral power in the stream approaches a 
constant value of 1 (no damping).  Conversely, when ω*>Pe, aL and bL both scale as ω0.5, and the 
spectral power in the stream becomes ≈1/(4 Pe ω*); it therefore scales as 1/f.  Between these two 
limits, for 1<ω*<Pe, the average spectral power in the stream is ≈1/(2ω*)2, and therefore scales as 
1/f 2.  

 As Fig. S12 shows, when Da≈0 and Pe>>1, the transfer function oscillates as a function of 
frequency.  This is a mathematical artifact of our idealized assumption that the hillslope everywhere 
has a fixed length L, and that therefore, if the Peclet number is high (and thus input signals are not 
strongly dispersed), the inputs along the length of the hillslope can either constructively or 
destructively interfere when they reach the stream.  In real-world settings, however, this phenomenon 
is unlikely, given the variability of hillslope lengths in typical catchments.   



 25

 

 

Fig. S12.  Transfer functions expressing spectral damping of spatially coherent input fluctuations by 
advection and dispersion along an idealized one-dimensional hillslope, for a range of Peclet and 
Damköhler numbers (Pe and Da, respectively).  Gray dashed line denotes a pure white-noise input.  
As predicted by equations (S19)-(S22), the dimensionless frequency marking the transition between 
1/f and 1/f 2 scaling is mostly determined by the Peclet number, and the dimensionless frequency at 
which the flat response spectrum rolls off to 1/f or 1/f 2 scaling is largely determined by the 
Damköhler number.  

 Although flow and transport in the subsurface are sometimes simulated using Peclet numbers 
of order 100, 1000, 10,000 or even larger (e.g., ref. 29), field measurements of advective-dispersive 
transport typically yield Peclet numbers of order 10, with a typical range of roughly 1-100, for 
transport at typical hillslope length scales of hundreds of meters (30).  It is also important to note that 
the dispersivity parameter  in equation (S12) accounts for large-scale dispersion in the widest sense, 
including the fact that rain falling at the same distance x from the stream, but in different parts of the 
catchment, will travel by different flow paths at different speeds.  This can result in a much wider 
spread in transit times than might be expected for flow along a single flow path.  Thus the catchment-
scale effective Peclet number describing the net effect of multiple spatially distributed flows should 
generally be much smaller than the Peclet number along an individual flow path.  We therefore 
believe that effective Peclet numbers of order 10 or less are reasonable for describing advective-
dispersive transport at the whole-catchment scale. 

 

Case 2: Anomalous Transport of Spatially Uncorrelated Chemical Fluctuations.  Laboratory 
investigations and field studies have called into question the advection-dispersion equation (S12) as a 
description of chemical transport in fracture networks and other highly heterogeneous environments 
(31-35).  An alternative description is provided by so-called anomalous transport, in which the long-
tailed behavior frequently observed in groundwater flow is explained using several different 
theoretical frameworks, including continuous-time random walks (31) and fractional derivative 
methods (36).  In classical Fickian dispersion, as described by the advection-dispersion equation, the 
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mean position )(t  of a chemical plume advects linearly with time, and the width of the plume, as 
quantified by the standard deviation )(t , grows as the square root of time.  From this it follows that 
the standard deviation also grows as the square root of the transport distance: 

 2/12/1 ~)(,~)(,~)(   tttt   (S25) 

In anomalous transport, on the other hand, the mean and standard deviation both evolve as power 
functions of time (31), 

    tttt ~)(,~)(  (S26) 

where the exponent β is typically between 0 and 1.  Regardless of the specific value of β (as long as 
β>0), equation (S26) implies directly that in anomalous transport, the standard deviation grows 
linearly with the transport distance: 

  ~)(   (S27) 

 Now, as a thought experiment, we imagine that chemical reactions perturb solute 
concentrations randomly in space and time throughout the catchment.  These perturbations will then 
be transported and dispersed as groundwater flows toward the stream.  If the original perturbations are 
random in time, then although the transport process itself is fully deterministic, the arrival times for 
the (transported and dispersed) perturbations reaching the stream will be stochastic.  (As before, we 
ignore transport within the stream network itself, since this is very rapid compared to transport in the 
subsurface.)  What will be the spectral signature of this random series of perturbations, which have 
originated at different points across the landscape and therefore have been dispersed by different 
amounts by the time they reach the stream? 

 The key to this question was provided over 40 years ago by Halford (37), who showed that 
under very general conditions, random series of perturbations will generate 1/f  power spectra if they 
obey the simple constraint: 

 32 ~)()(  AP   (S28) 

where σ is a measure of the characteristic duration of an individual perturbation, and P(σ) and A2(σ) 
are the probability of occurrence and the mean-square amplitude, respectively, of perturbations with 
characteristic duration σ.  (Equation (S28) is equivalent to equation (30) of Halford (37); the sign of 
alpha is reversed because Halford denoted power-law spectra as f  spectra, whereas we follow the 
1/f  notation that is now more commonly used.)  If random perturbations obey equation (S28) over 
some range of time scales σmin< σ< σmax, Halford's analysis predicts 1/f  scaling over the 
corresponding range of frequencies (2πσmax)

-1<<f<<(2πσmin)
-1.   

 If chemical perturbations can arise at any distance from the stream up to the hillslope length 
L, then possible transport distances   will be evenly distributed between 0 and L.  It therefore follows 
directly from equation (S27) that the standard deviations of these perturbations will be evenly 
distributed between 0 and σ(L).  In other words, P(σ) will be roughly constant (scaling as σ 0) over that 
range of σ.  Conservation of mass further requires that as perturbations become more dispersed, their 
amplitudes are reduced proportionally; thus A2(σ) ~ σ-2.  Therefore under the conditions envisaged in 
our thought experiment, equation (S28) becomes 

 1~~)()( 3202   AP   (S29) 

Equation (S29) implies that such a random series of perturbations, when filtered by the catchment, 
should have a 1/f power spectrum above a low-frequency limit determined by σmax=σ(L), which 
represents the plume spreading expected for the longest transport distances.  In practice there should 
be a high-frequency limit as well, determined by the duration of the original perturbations themselves, 
or by dispersion occurring within the channel network. 
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 Equation (S29) can be extended straightforwardly to account for variations in the geometry of 
the catchment.  If the shape of the catchment is such that the incremental drainage area per unit 
channel length increases (or, alternatively, decreases) with distance from the stream, then P(σ) will 
scale approximately as σγ, γ>0 (or, alternatively, γ<0), rather than as σ 0.  In this case, equation (S29) 
would predict a spectral slope of ≈1+ γ rather than ≈1.    
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