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The chemical dynamics of lakes and streams affect their suitability
as aquatic habitats and as water supplies for human needs.
Because water quality is typically monitored only weekly or
monthly, however, the higher-frequency dynamics of stream
chemistry have remained largely invisible. To illuminate a wider
spectrum of water quality dynamics, rainfall and streamflow were
sampled in two headwater catchments at Plynlimon, Wales, at 7-h
intervals for 1–2 y and weekly for over two decades, and were
analyzed for 45 solutes spanning the periodic table from H+ to U.
Here we show that in streamflow, all 45 of these solutes, including
nutrients, trace elements, and toxic metals, exhibit fractal 1/fα

scaling on time scales from hours to decades (α = 1.05 ± 0.15,
mean ± SD). We show that this fractal scaling can arise through
dispersion of random chemical inputs distributed across a catch-
ment. These 1/f time series are non–self-averaging: monthly,
yearly, or decadal averages are approximately as variable, one
from the next, as individual measurements taken hours or days
apart, defying naive statistical expectations. (By contrast, stream
discharge itself is nonfractal, and self-averaging on time scales of
months and longer.) In the solute time series, statistically signifi-
cant trends arise much more frequently, on all time scales, than
one would expect from conventional t statistics. However, these
same trends are poor predictors of future trends—much poorer
than one would expect from their calculated uncertainties. Our
results illustrate how 1/f time series pose fundamental challenges
to trend analysis and change detection in environmental systems.
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Trends in stream chemistry are widely used to monitor the
environmental health of the surrounding landscape (1–3),

and the chemical dynamics of aquatic environments can affect
the health, genetics, diversity, and ecology of their organisms (4–
7). Solute dynamics in streamwater also provide important clues
to the structure and function of headwater drainage basins,
which regulate the delivery of water, sediment, nutrients, and
contaminants to rivers and lakes downstream (8, 9). Time series
of chemically passive tracers, including Cl−, 18O, and 2H, can be
used to measure time scales of storage, mixing, and transport in
drainage basins and stream networks (10, 11). Time series of
chemically reactive solutes, on the other hand, can be used to
infer runoff flow paths and quantify biogeochemical processes
(12, 13).
Long-term trends in stream water quality have been docu-

mented for decades (1–3), and high-frequency dynamics have
more recently been studied for individual solutes of interest (14–
16), but until now, data limitations have hindered efforts to
systematically survey the dynamics of stream chemistry across
a wide range of solutes and time scales. For this purpose, the
hydrochemical time series at Plynlimon, Wales, provide a data
resource that is unique worldwide. Rainfall and streamflow in

two headwater catchments, the Upper and Lower Hafren (SI
Appendix, Fig. S1), have been sampled at 7-h intervals for 1–2 y
(17, 18) and weekly for over two decades (19). Each of these
samples has been analyzed for dozens of solutes, spanning six
orders of magnitude in concentration and including every row of
the periodic table (SI Appendix, Tables S1 and S2). The 45
analytes presented here include alkali metals (Li, Na, K, Rb, and
Cs), alkaline earths (Be, Mg, Ca, Sr, and Ba), transition metals
(Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Cd, Sn, and Pb),
nonmetals (B, NO3

−, NH4
+, SO4

−2, total S, Si, As, and Se),
halogens (Cl− and Br−), and lanthanides and actinides (La, Ce,
Pr, and U), as well as total dissolved nitrogen (TDN), dissolved
organic nitrogen (DON), dissolved organic carbon (DOC), Gran
alkalinity, pH, and electrical conductivity.
These water quality time series vary on all measurable time

scales, from hours to decades (Fig. 1 and SI Appendix, Fig. S2),
and thus are natural candidates for spectral analysis. Spectral
analysis is widely used for detecting periodic signals, but is
also particularly useful for evaluating persistence in time series
(20). A spectral slope of zero indicates a time series with no
persistence (white noise). Spectral slopes between zero and
1 indicate a stationary time series with weak persistence,
whereas spectral slopes steeper than 1 imply nonstationarity
and strong persistence (20). Time series with spectral slopes of
1, termed 1/f noises because their spectral power is inversely
proportional to frequency, mark the threshold between statio-
narity and nonstationarity.

Results and Discussion
All 45 solutes in streamflow show clear fractal 1/f α power spec-
tra, with power-law slopes close to α = 1 (Figs. 2 and 3 and SI
Appendix, Fig. S6). Many solutes exhibit seasonal cycles in
streamwater (19) and their associated spectral peaks are clearly
visible, but only in five cases (DOC, NO3

−, K, Fe, and As) do
they account for more than 30% of the variance in the long-term
record. Likewise, many solutes exhibit diurnal cycles, particularly
during low-flow recessions (17), but they never account for more
than 3% of the variance in the high-frequency data sets.
Thus, the dominant feature of the streamflow concentration

spectra is the clear inverse proportionality between spectral power
and frequency, termed 1/f scaling. This fractal scaling cannot go on
forever in either direction; each spectrum must be shallower than
1/f below some low-frequency limit (otherwise it implies a time
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series with infinite variance), and each spectrum must also be
steeper than 1/f 2 above some high-frequency limit (otherwise it
implies that the underlying process is discontinuous). Nonetheless,
most of the 45 solutes show clear 1/f scaling that spans 3–4 orders
of magnitude, from hours to decades, the full range of time scales
visible in the data.
The spectral slopes of all 45 solutes cluster in relatively narrow

ranges: 1.03 ± 0.11 and 1.06 ± 0.15 (means ± SDs) in Upper and
Lower Hafren streamwater, respectively (Fig. 3 and SI Appendix,
Table S5). In bulk precipitation, these same solutes have much
flatter power spectra, with slopes of 0.36 ± 0.09. There is a ten-
dency for anions and other weakly sorbing solutes in streamwater
to have steeper spectral slopes than the average (e.g., Cl−, NO3

−,
SO4

−2, and DOC, as well as conductivity and Na, which are
strongly correlated with Cl− in these maritime catchments), but
there are exceptions to this rule (e.g., Br−). Solutes that are
weakly sorbing may most clearly express the spectral effects of
dispersive mixing in the subsurface (SI Appendix). By contrast,
there is a tendency toward shallower spectral slopes for some
trace elements (e.g., Be, Se, Br−, Mo, Cd, and Pb), which could
arise because some of these elements are likely to be strongly
sorbed to particulates (again, Se and Br− are exceptions) and
thus may undergo more episodic transport. Regardless of these
individual differences, the most striking feature of the solute
spectra is their overall consistency with 1/f scaling.
For chemically passive solutes derived primarily from atmo-

spheric deposition, including 18O, 2H, and (in maritime settings)
Cl−, these catchments act as fractal filters, converting nearly
white-noise atmospheric inputs into fractal 1/f streamflow out-
puts (10, 21, 22). The spectral slopes of Cl−, a chemically passive
tracer of sea salt deposition, are 0.41 ± 0.02 in precipitation and
1.29 ± 0.05 and 1.40 ± 0.06 in Upper and Lower Hafren
streamflow, respectively (means ± SEs), implying that these
catchments act as spectral filters with a 1/f fractal signature (i.e.,
the ratio between the output and input spectra scales as 1/f).
Fractal filtering of atmospheric inputs has been previously ob-
served for Cl−, not only at Plynlimon (10) but also in other
geologically diverse catchments (21, 23, 24), suggesting that our
observations may be broadly applicable.

Origins of Fractal Scaling. The 1/f scaling that we observe is not
restricted to atmospherically sourced, chemically passive solutes
like Cl−, but instead is universal across a wide range of solutes,
with widely varying chemical characteristics and diverse sources
in the natural environment. For example, mass balance calcu-
lations show that Li, Be, Mn, Fe, Co, and U are predominantly

(>90%) derived from sources within the Upper Hafren catch-
ment rather than from atmospheric deposition (SI Appendix,
Table S3). Nonetheless, these analytes all have spectral slopes of
0.88–1.09, similar to the 1/f signature of atmospherically sourced
tracers. Likewise, the toxic metals Be, Cr, Co, Ni, Cu, Zn, As, Se,
and Pb have widely varying degrees of chemical reactivity, but
they all have spectral slopes of 0.85–1.21 in Upper Hafren
streamwater. And the universal spectral signature is not attrib-
utable to strong correlations between the time series of the
various solutes, because the average r2 between pairs of solutes is
less than 0.1.
Thus, the mechanisms behind the observed 1/f scaling cannot

depend on the particular chemical characteristics of the solutes
themselves. One-over-f noise was first observed almost a century
ago in electrical circuits (25), and later in a wide variety of nat-
ural phenomena (26, 27), with many diverse theoretical models
being proposed to explain it (28). Many proposed explanations
involve superpositions of random fluctuations that relax or dif-
fuse over a wide range of time scales (29). Analogous mecha-
nisms operate in catchments, where chemical signals originate
from many different points on the landscape and undergo widely
varying degrees of dispersion as they are transported to the
stream. Under these general conditions, as we show in the SI
Appendix, random chemical fluctuations across the landscape—
arising from atmospheric deposition or biogeochemical pro-
cesses, for example—can be transformed into 1/f fluctuations in
stream chemistry by both Fickian and so-called “anomalous”
dispersion. Other models have also been proposed, including
continuous-time random walks (30) and simulations combining
advective–dispersive groundwater transport with spatially explicit
subsurface heterogeneity (31), with in-channel mixing (32), and
with vadose-zone and land-surface processes (33). (One-over-f
noises are also often attributed to self-organized criticality, but
this is not a plausible explanation here because the physical
mechanisms controlling solute concentrations in natural waters
do not resemble critical phase transitions.) In addition to the
hillslope-scale advection–dispersion processes outlined in the SI
Appendix, in larger river basins the branching structure of the
river network could introduce additional geomorphological dis-
persion of chemical fluctuations (34). However, because travel
through the channel network is much faster than hillslope
transport, hillslope processes should normally dominate the
transport response observed at the basin scale (35).
In contrast to the solute concentrations, stream discharge itself

is distinctly nonfractal, scaling as white noise (slope of zero) at
low frequencies and approximately as a random walk (slope of 2)
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Fig. 1. Water quality time series in Upper Hafren streamwater, Plynlimon, Wales, at 7-h intervals for 1 y (Left) and weekly intervals for 21 y (Right). Four
examples from the 45 water quality parameters are shown: pH (an indicator of acid–base status), chloride (a passive chemical tracer, derived mostly from sea
salt deposition), nitrate (a nutrient that exhibits both diurnal and seasonal cycles), and cobalt (a trace metal which can function as both a micronutrient and
a toxin). Shaded band (Right) shows the time interval covered on Left. Time series for all 45 solutes are shown in SI Appendix, Fig. S2.
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at high frequencies (Fig. 2). This spectral behavior can be readily
explained by the steep nonlinear dependence of discharge on
catchment water storage (36), which prevents catchment storage
from either filling too far (because any excess will run off) or
draining too much (because discharge will rapidly decline). Thus,
on time scales much longer than individual storm recessions,
average stream discharge must approximately equal average at-
mospheric forcing by precipitation and evapotranspiration. On

monthly and longer time scales, this forcing resembles white
noise at Plynlimon, and thus discharge does as well. On much
shorter time scales, catchment storage integrates fluctuations in
atmospheric forcing over time. This integro-differential re-
lationship (36) implies that storage fluctuations (and thus dis-
charge fluctuations, which are functionally linked to them)
should have a spectral slope equaling that of the atmospheric
forcing, plus 2, at these shorter time scales—hence the spectral
slope near 2 at high frequencies.

Implications for Water Quality Trend Detection. The universal 1/f
scaling of solute concentrations, as shown in Figs. 2 and 3 and SI
Appendix, Fig. S6, poses significant challenges to detecting
changes and quantifying trends in water quality. This 1/f scaling
implies that these time series contain equal spectral power (and
thus equal variance) in each octave of frequency; this has the
important consequence that averages taken over longer and
longer intervals of time do not converge toward a stable value
(27, 37), in contrast to white noise processes, for which the
central limit theorem guarantees convergence at the familiar rate
of n−0.5. Despite its longstanding importance as a limit to mea-
surement precision (27, 37), this non–self-averaging behavior has
often remained unrecognized in environmental analysis.
Fig. 4 and SI Appendix, Fig. S10 illustrate the issue. Here we

plot the rms differences between adjacent pairs of local averages,
as a function of the length of time over which those averages are
calculated. The leftmost points show the rms differences be-
tween successive individual 7-h samples; the next points show the
rms differences between successive means of two 7-h samples,
and so forth. The rightmost points show the rms deviations be-
tween successive 5- or 10-y averages (depending on the length of
the available record), each composed of roughly 250 or 500
weekly samples. As the figures show, these long-term averages
are typically about as variable, one from the next, as individual
weekly or 7-h samples.
The non–self-averaging behavior described by the horizontal

rms traces in Fig. 4 and SI Appendix, Fig. S10 contrasts sharply
with the convergence of means predicted by the central limit
theorem (shown by the slope of the heavy gray lines). The ob-
served non–self-averaging behavior goes beyond just long-term
persistence, as exemplified by the well-known Hurst effect (38),
which often describes stationary processes in which means con-
verge, but do so more slowly than n−0.5 (weak self-averaging).
However, the rms traces also show little evidence of non-
stationary drift or secular trends, which would cause the rms
values to increase with increasing time scale. Instead, the rms
traces, along with the 1/f power spectra, suggest that these solute
time series are poised at the threshold separating stationarity
from nonstationarity.
In contrast to the solute concentrations, both stream discharge

and its logarithmic transform (shown in black and dark gray in
Fig. 4) exhibit conventional self-averaging behavior (shown by
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Fig. 2. Power spectra for concentration time series of 16 selected solutes in
Upper Hafren streamwater at Plynlimon, Wales, from 22 mo of sampling at
7-h intervals (darker symbols) and up to 21 y of weekly sampling (lighter
symbols). Power spectra from weekly and 7-h sampling of the logarithm of
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concentration spectra are close to 1/f scaling, shown by gray lines. In contrast,
stream discharge exhibits white noise scaling for frequencies below ∼5 per
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show slopes of zero and 2 for comparison). Spectra for individual solutes have
been shifted by arbitrary factors to allow them to be visualized together.
Spectra for all 45 solutes and both sites are shown in SI Appendix, Fig. S6.
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the slope of the heavy gray lines) at time scales longer than ∼1
mo, with averages becoming steadily less variable over longer
averaging time scales. The time scales over which discharge is
self-averaging correspond approximately to the frequency range
where the discharge spectrum exhibits white-noise scaling (Fig.
2). The solute concentrations, by contrast, show no general
tendency toward white-noise scaling at low frequencies or toward
self-averaging behavior at long time scales.
The non–self-averaging behavior of the solute concentrations

implies that their long-term variability is much greater than one
would expect from their short-term behavior. One practical
consequence of this phenomenon is that statistically significant
trends in water quality can arise much more frequently, on all
time scales, than one might expect. These trends are also poor
predictors of future trends. For example, among the 45 solutes
and the two streamflow sampling sites, there are a total of 1,655
individual solute-years for which annual trends can be fitted from
the weekly sampling data, and 18% of these trends—180× the
number expected to arise by chance—are statistically significant

at P < 0.001 when assessed by conventional t tests (Fig. 5A).
However, these same trends are unreliable guides to future
trends; for example, 11% of the annual trends in the weekly data
are statistically different (P < 0.001) from the immediately pre-
ceding annual trends of the same solutes.
Surprisingly, having more data makes these problems much

worse. The counterintuitive behavior outlined above becomes
more pronounced, not less, with longer time series and more
intensive sampling. As Fig. 5 shows, 65% of all of the 10-y linear
regression trends in streamwater are statistically significant at
P < 0.001 by conventional t tests, and over 60% of such 10-y
trends are significantly different (P < 0.001) from the immediately
preceding 10-y trends in the same solutes, indicating that even
such long-term trends are unreliable predictors of future trends.
Even higher proportions of statistically significant trends, and
higher proportions of statistically significant differences between
successive trends, are found in the 7-h water quality time series
than in the weekly data (Fig. 5).
These examples show that water quality can be surprisingly

dynamic and unpredictable across a wide range of solutes and
time scales. This behavior defies naive expectations that water
quality should have stable means and smooth trends, and con-
founds conventional statistical approaches that assume a clear
separation of time scales between the signal and the surrounding
noise. Such approaches will overestimate the significance, and
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underestimate the uncertainty, of trends in multiscale time series
(39). Alternative statistical methods are available for handling
such time series (40–43), but outside of climate trend detection
(42, 44), they have rarely been applied in environmental analysis.
The prevalence of coherent but continually shifting trends is

characteristic of the non–self-averaging behavior of these 1/f
time series. In contrast to classical examples of 1/f “noise” (37),
however, the non–self-averaging in these natural systems does
not primarily arise from measurement uncertainties per se. Thus,
the 1/f noise in water quality is not strictly noise, but rather
a signal reflecting natural processes; it arises primarily because
catchments store, transport, and dispersively mix solutes over
a wide range of space and time scales, as described in the
SI Appendix.
In addition to these storage, transport, and mixing processes,

water quality dynamics will also reflect the time series behavior
of chemical inputs and within-catchment chemical reactions.
Unambiguously distinguishing these different influences on wa-
ter quality time series can be problematic. This problem high-
lights the need for better estimates of the time scales over which
catchments store and mix solutes. These time scales can be used
to set an approximate upper bound on the length of trends that
could plausibly be artifacts of solute storage and mixing, and
conversely to set a lower bound on the length of trends that
could be unambiguously attributed to external forcing or bio-
geochemical processes.
Two aspects of catchment storage complicate efforts to

quantify storage time scales, however. First, catchment storage
includes both a dynamic component, which fills and drains in
response to precipitation, and a residual component that remains
even under dry conditions. Although dynamic storage can be
inferred from streamflow variations (36), residual storage often
accounts for most of a catchment’s total storage and chemical
“memory” (36, 45). The relatively large volume of residual
storage, in comparison with the relatively small range of dy-
namic storage variations, implies that catchments’ chemical
memory can be much longer than their timescales of hydrologic
response to rainfall. Residual storage cannot be estimated from
catchment hydrologic behavior, but rather must be inferred
from the behavior of passive tracers such as Cl−, 2H, and 18O
(10, 21, 45).
Second, to the extent that this residual storage is bypassed by

high flows (rather than flushed out by them), a catchment’s
chemical memory can be much longer and more variable than
one would infer from its steady-state mean residence time, as
estimated by dividing the storage volume by the mean flow rate.
The fractal 1/f spectra observed in passive tracers in many diverse
catchments (21) imply that catchment storage is not character-
ized by conventional “mixing-tank” dynamics with a fixed char-
acteristic timescale, for which the expected spectral scaling
would be 1/f 2 (10, 46). Although catchments are often modeled
as well-mixed reservoirs, such conceptual models are not con-
gruent with physical reality: a catchment simply has no com-
partment where its entire subsurface storage is continually and
completely mixed, and there is no physical mechanism by which
such mixing could occur. Instead, the observed 1/f spectra are
much more consistent with dispersive mixing processes, operat-
ing in heterogeneous subsurface media and exhibiting a broad
spectrum of residence time scales (21, 46, 47), which may also
vary with changes in the temporal patterns of rainfall and
evapotranspiration (48–50).
The universal 1/f spectrum of stream chemistry implies that

catchment storage, transport, and mixing can generate visually
and statistically convincing trends in surface water quality across
a wide range of solutes and time scales. These trends may be
hard to distinguish from other water quality trends that arise

from long-term changes in nutrient or pollutant inputs, for ex-
ample, or from biogeochemical reactions. Inferring changes in
catchment inputs or biogeochemical process rates from temporal
patterns in stream water quality must therefore be approached
with caution.

Materials and Methods
Sampling and Chemical Analysis. Our chemical time series come from two
small catchments, Upper Hafren and Lower Hafren (1.22 and 3.58 km2, re-
spectively) at Plynlimon, Wales (SI Appendix, Fig. S1). The Upper Hafren is
predominantly moorland, whereas the Lower Hafren is predominantly Sitka
spruce plantation. Bulk deposition was sampled using continuously open
collectors in a moorland clearing at Carreg Wen at the edge of the Upper
and Lower Hafren catchments. Bulk deposition and streamflow were sam-
pled manually once each week, beginning in 1983 at Lower Hafren and 1990
at Upper Hafren (19). During a 2-y intensive sampling campaign (2007–
2009), this manual sampling was supplemented by autosamplers that col-
lected 24 samples per week, one sample every 7 h (17). On return to the
laboratory, the samples were filtered (0.45 μm) followed by analysis using
standard methods, including inductively coupled plasma (ICP) optical emis-
sions spectroscopy (for major cations, B, total S, and Si), ICP-MS (for trace
elements), and ion chromatography (for anions). Sampling sites and meth-
ods are described in more detail in the SI Appendix, and the raw data and
metadata are provided in Datasets S1 and S2.

Conditioning of Time Series.We transformed several time series that exhibited
strong nonstationarity in variance or strongly skewed distributions. We also
normalized each time series for correlations with stream discharge to min-
imize the confounding influence of streamflow variations (51, 52). At Plyn-
limon, acidic soils overlie more alkaline bedrock (53), resulting in strong
correlations between several analytes and the logarithm of stream dis-
charge. For five solutes in particular (pH, alkalinity, Ca, Al, and Si), the un-
derlying chemical fluctuations are obscured by streamflow variations, with
the result that the 1/f spectral signature of the chemical dynamics is strongly
overprinted by the spectrum of log(Q) (SI Appendix, Fig. S4). Likewise, for
these five solutes, the non–self-averaging behavior of the chemical dynamics
is overprinted, at time scales of months and longer, by the self-averaging
behavior of log(Q). Correcting the chemical time series for flow-dependent
variations by taking residuals of smooth splines fitted to the concentration–
discharge relationship (SI Appendix, Fig. S3 and Table S4) reveals the un-
derlying 1/f spectral signature and the corresponding non–self-averaging
behavior for these five solutes. That is, the power spectra (Fig. 2) and rms
traces (Fig. 4) of these five solutes closely resemble those of the other 40
solutes when the time series are flow-corrected, but would more closely
resemble those of log(Q) if the time series were not flow-corrected. For the
other 40 solutes, flow-correcting the chemical time series does not sub-
stantially affect the power spectra or the rms traces. Nonetheless, for the
sake of consistency, all 45 chemical time series were flow-corrected before
analysis (see SI Appendix for details).

Estimation of Power Spectra. Data gaps occurred intermittently due to
autosampler failure or analytical problems, and also whenever rainfall
yielded insufficient volume for chemical analysis. Such gapped time series
require special Fourier analysis techniques, particularly for reddened spectra
such as 1/f α noises, because spectral leakage from low frequencies with high
power can contaminate the higher frequencies in the spectrum where the
true signal is weaker. We used an adaptation of Foster’s weighted wavelet
transform (54) to suppress this leakage in estimating the spectrum. Because
the gapped sampling has a regular (weekly or 7-h) time base, we used
Kirchner’s filtering method (55) to correct for spectral aliasing, which would
otherwise lead to artificial flattening of the spectrum at high frequencies. In
the SI Appendix we describe the computational details of our spectral
methods and present the results of benchmark tests. All of our source codes
(written in C) are available from the corresponding author.

ACKNOWLEDGMENTS. The Centre for Ecology and Hydrology (CEH) has
supported the Plynlimon hydrochemical monitoring study for nearly three
decades. For their long-term contributions to this effort, we thank the
Plynlimon field staff at CEH Bangor, led by Brian Reynolds, and the analytical
laboratory staffs at CEH Wallingford and CEH Lancaster, led by Margaret
Neal and Phil Rowland, respectively. During early phases of this work, J.W.K.
received support from the Berkeley Water Center and the Miller Institute for
Basic Research.

Kirchner and Neal PNAS | July 23, 2013 | vol. 110 | no. 30 | 12217

EA
RT

H
,A

TM
O
SP

H
ER

IC
,

A
N
D
PL

A
N
ET

A
RY

SC
IE
N
CE

S
EN

V
IR
O
N
M
EN

TA
L

SC
IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1304328110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1304328110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1304328110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1304328110/-/DCSupplemental/sd01.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1304328110/-/DCSupplemental/sd02.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1304328110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1304328110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1304328110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1304328110/-/DCSupplemental/sapp.pdf


1. Smith RA, Alexander RB, Wolman MG (1987) Water-quality trends in the nation’s
rivers. Science 235(4796):1607–1615.

2. Stoddard JL, et al. (1999) Regional trends in aquatic recovery from acidification in
North America and Europe. Nature 401(6753):575–578.

3. Monteith DT, et al. (2007) Dissolved organic carbon trends resulting from changes in
atmospheric deposition chemistry. Nature 450(7169):537–540.

4. Handy RD (1994) Intermittent exposure to aquatic pollutants: Assessment, toxicity
and sublethal responses in fish and invertebrates. Comp Biochem Physiol C Pharmacol
Toxicol Endocrinol 107(2):171–184.

5. Reinert KH, Giddings JM, Judd L (2002) Effects analysis of time-varying or repeated
exposures in aquatic ecological risk assessment of agrochemicals. Environ Toxicol
Chem 21(9):1977–1992.

6. Gordon AK, Mantel SK, Muller NWJ (2012) Review of toxicological effects caused by
episodic stressor exposure. Environ Toxicol Chem 31(5):1169–1174.

7. Lepori F, Keck F (2012) Effects of atmospheric nitrogen deposition on remote fresh-
water ecosystems. Ambio 41(3):235–246.

8. Peterson BJ, et al. (2001) Control of nitrogen export from watersheds by headwater
streams. Science 292(5514):86–90.

9. Alexander RB, Boyer EW, Smith RA, Schwarz GE, Moore RB (2007) The role of head-
water streams in downstream water quality. J Am Water Resour Assoc 43(1):41–59.

10. Kirchner JW, Feng X, Neal C (2000) Fractal stream chemistry and its implications for
contaminant transport in catchments. Nature 403(6769):524–527.

11. McGuire KJ, McDonnell JJ (2006) A review and evaluation of catchment transit time
modeling. J Hydrol (Amst) 330(3-4):543–563.

12. Burns DA, et al. (2001) Quantifying contributions to storm runoff through end-
member mixing analysis and hydrologic measurements at the Panola Mountain Re-
search Watershed (Georgia, USA). Hydrol Processes 15(10):1903–1924.

13. Boyer EW, Hornberger GM, Bencala KE, McKnight DM (1997) Response characteristics
of DOC flushing in an alpine catchment. Hydrol Processes 11(12):1635–1647.

14. Bowes MJ, Smith JT, Neal C (2009) The value of high-resolution nutrient monitoring:
A case study of the River Frome, Dorset, UK. J Hydrol (Amst) 378(1-2):82–96.

15. Cassidy R, Jordan P (2011) Limitations of instantaneous water quality sampling in
surface-water catchments: Comparison with near-continuous phosphorus time-series
data. J Hydrol (Amst) 405(1-2):182–193.

16. Pellerin BA, et al. (2012) Taking the pulse of snowmelt: In situ sensors reveal seasonal,
event and diurnal patterns of nitrate and dissolved organic matter variability in an
upland forest stream. Biogeochemistry 108(1-3):183–198.

17. Neal C, et al. (2012) High-frequency water quality time series in precipitation and
streamflow: From fragmentary signals to scientific challenge. Sci Total Environ 434:
3–12.

18. Neal C, et al. (2013) High-frequency precipitation and stream water quality time series
from Plynlimon, Wales: An openly accessible data resource spanning the periodic
table. Hydrol Processes, 10.1002/hyp.9814.

19. Neal C, et al. (2011) Three decades of water quality measurements from the Upper
Severn experimental catchments at Plynlimon, Wales: An openly accessible data re-
source for research, modelling, environmental management and education. Hydrol
Processes 25(24):3818–3830.

20. Witt A, Malamud BD (2013) Quantification of long-range persistence in geophysical
time series: Conventional and benchmark-based improvement techniques. Surv Ge-
ophys, in press.

21. Godsey SE, et al. (2010) Generality of fractal 1/f scaling in catchment tracer time series,
and its implications for catchment travel time distributions. Hydrol Processes 24(12):
1660–1671.

22. Kirchner JW, Tetzlaff D, Soulsby C (2010) Comparing chloride and water isotopes as
hydrological tracers in two Scottish catchments. Hydrol Processes 24(12):1631–1645.

23. Shaw SB, Harpold AA, Taylor JC, Walter MT (2008) Investigating a high resolution,
stream chloride time series from the Biscuit Brook catchment, Catskills, NY. J Hydrol
(Amst) 348(3-4):245–256.

24. Koirala SR, Gentry RW, Perfect E, Mulholland PJ, Schwartz JS (2011) Hurst analysis of
hydrologic and water quality time series. J Hydrol Eng 16(9):717–724.

25. Johnson JB (1925) The Schottky effect in low frequency circuits. Phys Rev 26(1):71–85.
26. Mandelbrot BB, Wallis JR (1969) Some long-run properties of geophysical records.

Water Resour Res 5(2):321–340.
27. Press WH (1978) Flicker noises in astronomy and elsewhere. Comments Astrophys 7(4):

103–119.

28. Weissman MB (1988) 1/f noise and other slow, nonexponential kinetics in condensed
matter. Rev Mod Phys 60(2):537–571.

29. Dutta P, Horn PM (1981) Low-frequency fluctuations in solids: 1/f noise. Rev Mod Phys
53(3):497–516.

30. Scher H, Margolin G, Metzler R, Klafter J, Berkowitz B (2002) The dynamical foun-
dation of fractal stream chemistry: The origin of extremely long retention times.
arXiv:cond-mat/0202326.

31. Fiori A, Russo D (2008) Travel time distribution in a hillslope: Insight from numerical
simulations. Water Resour Res 44(12):W12426, 10.1029/2008WR007135.

32. Lindgren GA, Destouni G, Miller AV (2004) Solute transport through the integrated
groundwater-stream system of a catchment. Water Resour Res 40(3):W03511,
10.1029/2003WR002765.

33. Kollet SJ, Maxwell RM (2008) Demonstrating fractal scaling of baseflow residence
time distributions using a fully-coupled groundwater and land surface model. Geo-
phys Res Lett 35(7):L07402, 10.1029/2008GL033215.

34. Rinaldo A, Marani A, Rigon R (1991) Geomorphological dispersion. Water Resour Res
27(4):513–525.

35. Botter G, Rinaldo A (2003) Scale effect on geomorphological and kinematic disper-
sion. Water Resour Res 39(10):1286, 10.1029/2003WR002154.

36. Kirchner JW (2009) Catchments as simple dynamical systems: catchment character-
ization, rainfall-runoff modeling, and doing hydrology backward. Water Resour Res
45:W02429 10.01029/02008WR006912.

37. Halford D (1968) A general mechanical model for jfjα spectral density random noise
with special reference to flicker noise 1/jfj. Proc IEEE 56(3):251–258.

38. Hurst HE (1951) Long-term storage capacity of reservoirs. Trans Am Soc Civ Eng 116:
770–799.

39. Cohn TA, Lins HF (2005) Nature’s style: Naturally trendy. Geophys Res Lett 32:L32402.
40. Beran J (1994) Statistics for Long-Memory Processes (Chapman & Hall/CRC, New York).
41. Fadili MJ, Bullmore ET (2002) Wavelet-generalized least squares: A new BLU estimator

of linear regression models with 1/f errors. Neuroimage 15(1):217–232.
42. Bloomfield P, Nychka D (1992) Climate spectra and detecting climate change. Clim

Change 21(3):275–287.
43. Koutsoyiannis D (2003) Climate change, the Hurst phenomenon, and hydrological

statistics. Hydrol Sci J 48(1):3–24.
44. Mann ME (2011) On long range dependence in global surface temperature series.

Clim Change 107(3-4):267–276.
45. Birkel C, Soulsby C, Tetzlaff D (2011) Modelling catchment-scale water storage dy-

namics: Reconciling dynamic storage with tracer-inferred passive storage. Hydrol
Processes 25(25):3924–3936.

46. Kirchner JW, Feng X, Neal C (2001) Catchment-scale advection and dispersion
as a mechanism for fractal scaling in stream tracer concentrations. J Hydrol (Amst)
254(1-4):81–100.

47. Feng XH, Kirchner JW, Neal C (2004) Measuring catchment-scale chemical retardation
using spectral analysis of reactive and passive chemical tracer time series. J Hydrol
(Amst) 292(1-4):296–307.

48. Hrachowitz M, Soulsby C, Tetzlaff D, Malcolm IA, Schoups G (2010) Gamma distri-
bution models for transit time estimation in catchments: Physical interpretation of
parameters and implications for time-variant transit time assessment. Water Resour
Res 46(10):W10536, 10.1029/2010WR009148.

49. Birkel C, Soulsby C, Tetzlaff D, Dunn S, Spezia L (2012) High-frequency storm event
isotope sampling reveals time-variant transit time distributions and influence of di-
urnal cycles. Hydrol Processes 26(2):308–316.

50. Botter G (2012) Catchment mixing processes and travel time distributions. Water
Resour Res 48(5):W05545, 10.1029/2011WR011160.

51. Kirchner JW, Dillon PJ, LaZerte BD (1993) Separating hydrological and geochemical
influences on runoff chemistry in spatially heterogeneous catchments. Water Resour
Res 29(12):3903–3916.

52. Kirchner JW, Hooper RP, Kendall C, Neal C, Leavesley G (1996) Testing and validating
environmental models. Sci Total Environ 183(1-2):33–47.

53. Neal C, Robson AJ, Smith CJ (1990) Acid neutralization capacity variations for the
Hafren forest streams, mid-Wales: Inferences for hydrological processes. J Hydrol
(Amst) 121(1-4):85–101.

54. Foster G (1996) Wavelets for period analysis of unevenly sampled time series. Astron J
112(4):1709–1729.

55. Kirchner JW (2005) Aliasing in 1/f(α) noise spectra: Origins, consequences, and rem-
edies. Phys Rev E Stat Nonlin Soft Matter Phys 71(6 Pt 2):066110.

12218 | www.pnas.org/cgi/doi/10.1073/pnas.1304328110 Kirchner and Neal

www.pnas.org/cgi/doi/10.1073/pnas.1304328110

