4.10 Earthquake Hydrology

M. Manga and C.-Y. Wang, University of California Berkeley, Berkeley, CA, USA
© 2007 Elsevier B.V. All rights reserved.

4.10.1 Introduction

For thousands of years, changes in the amount, direction, and rate of water flow in streams and in fluid pressure in the subsurface have been documented following large earthquakes. Examples include the formation of new springs, disappearance of previously active springs, increased discharge in streams by an order of magnitude that persists for weeks or even months, fluctuations in water levels in wells by several meters, and permanent changes in water levels in wells coincident with earthquakes located thousands of kilometers away. Such observations, although often simply assigned to the category of curious phenomena, provide unique insight into hydrogeologic processes and, in particular, their correlation with tectonic processes at spatial and temporal scales that otherwise could not be studied.

Hydrologic responses are not unexpected: earthquakes cause strain, and strain changes fluid pressure and alters hydrogeologic properties such as permeability, which controls the rate of fluid flow. What is more surprising about many hydrologic responses, however, is their large amplitude and the great distances over which they occur.

This review is divided into two main parts. First we describe the processes by which fluid pressure and hydrologic properties can change following an earthquake. Next we review hydrologic phenomena attributed to earthquakes and summarize our current state of understanding about the processes that cause these phenomena. We then conclude with a brief discussion of hydrologic precursors.

4.10.2 Hydrologic Response to Stress

Earthquakes change the static stress (i.e., the offset of the fault generates a static change in stress in the crust) and also cause dynamic stresses (from the
seismic waves). Both stresses increase as the seismic moment of the earthquake, but they decay very differently with distance r. Static stresses decrease as $1/r^3$. By comparison, dynamic stresses, which are proportional to the seismic wave amplitude, decrease more gradually. A standard empirical relationship between surface-wave amplitude and magnitude has dynamic stress decreasing as $1/r^{1.66}$ (e.g., Lay and Wallace, 1995). Other factors such as directivity, radiation pattern, and crustal structure will also influence the amplitude of shaking. However, the significant difference in the dependence on distance is a robust feature distinguishing static and dynamic stresses.

Table 1, reproduced from Manga and Brodsky (2006), lists and compares the magnitude of earthquake stresses with other external stresses of hydrologic interest. Both static and dynamic stresses may be significant in the near and intermediate field (within up to a few fault lengths), but only dynamic stresses are larger than tidal stress in the far-field (many fault lengths away).

4.10.2.1 Effect of Static Stress

4.10.2.1.1 Poroelastic flow and deformation

In response to stresses, porous solids deform, the pressure of fluids within pores changes, and pore fluids can flow. The basic theory of poroelasticity, first developed by Biot (1941, 1956a, 1956b), describes the coupling between changes in stress σ, strain ϵ, pore pressure p, and the material properties that relate these three variables. A complete discussion and derivation of the theory, even its simplest forms, is beyond the scope of this review, but several key relationships are useful for understanding the hydrological response to earthquakes and interpreting observations. Wang’s (2000) text on linear poroelasticity, and review papers by Rice and Cleary (1976), Roeloffs (1996), and Neuzil (2003), provide thorough and pedagogic reviews.

Consider an isothermal, linear, isotropic poroelastic material, subjected to a stress, σ_{ij}. The material will respond by deforming with the total strain ϵ_{ij}, given by

$$\epsilon_{ij} = \frac{1}{2G} \left[\sigma_{ij} - \nu \sigma_{kk} \delta_{ij} \right] + \frac{\alpha}{3K} \rho \delta_{ij}$$ \[1\]

where G is the shear modulus, K is the bulk modulus, ν is the Poisson’s ratio, and α is the Biot–Willis coefficient, which is the ratio of the increment in fluid content to the volumetric strain at constant pore pressure. The increment in fluid content, denoted ψ, is the change in fluid mass per unit volume divided by the density of the fluid at the reference state and is given by

$$\psi = \frac{\alpha}{3K} \sigma_{kk} + \frac{\alpha}{K} \rho$$ \[2\]

B is called Skempton’s coefficient and has a value between 0 and 1, with ‘hard rocks’ such as sandstone and granite having values between about 0.5 and 0.9 and unconsolidated materials having a value close to 1. The variable B is related to the porosity ϕ and to the compressibilities of the pore fluid, solid grains, and saturated rock. The sign convention is chosen so that negative σ_{kk} indicates compression.

First we consider the so-called ‘undrained’ limit in which there is no flow of pore fluid, that is, $\psi = 0$ (the opposite extreme, termed ‘drained’, corresponds to the limit in which there is no change in fluid pressure, that is, $p = 0$). The change in pore pressure p caused by a change in mean stress σ_{kk} can be found from eqn [2]:

$$p = -\frac{B}{3} \sigma_{kk}$$ \[3\]
Equation [3] can be expressed in terms of the volumetric strain ε_{kk} using constitutive relationship [1] and physical relationship [2]:

$$p = -\frac{B}{3}\sigma_{kk} = -BK_u\varepsilon_{kk} = -\frac{2GB}{3} \frac{1 + \nu}{1 - 2\nu^2}\varepsilon_{kk}$$

[4]

where the subscript u indicates a value under undrained conditions. The variable G should have the same value in drained and undrained conditions for a linear poroelastic material.

If there are gradients of fluid pressure, there will be a flux of fluid q (volume/area per unit time) governed by the Darcy's equation

$$q = -\frac{k}{\mu} \nabla p$$

[5]

where the pressure p is the excess pressure, that is, the pressure difference from hydrostatic, k is permeability, and μ is fluid viscosity; p, as defined, is equivalent to the hydraulic head multiplied by ρg, where ρ is the density of the fluid and g the gravitational acceleration.

Darcy's equation, coupled with the continuity equation governing conservation of mass, if the permeability k and μ are constant, leads to pore pressure being governed by an inhomogeneous diffusion equation

$$\frac{\alpha}{kB} \left[\frac{B}{3} \frac{\partial \sigma_{kk}}{\partial t} + \frac{\partial p}{\partial t} \right] = \frac{k}{\mu} \nabla^2 p$$

[6]

The term involving the time derivative of stress couples the mechanical deformation and the fluid flow. The time derivative of stress will not appear in the case of uniaxial strain and constant vertical stress, both reasonable approximations for near-surface aquifers (but not rigorously correct if there is two- or three-dimensional flow), and can be neglected for very compressible fluids such as gases (Wang, 2000). In these cases, the evolution of fluid pressure resulting from the flow is uncoupled from that for the stress and can be solved independently. Then eqn [6] reduces to the form commonly used to model groundwater flow:

$$S \frac{\partial p}{\partial t} = \frac{k}{\mu} \nabla^2 p \quad \text{or} \quad \frac{\partial p}{\partial t} = D \nabla^2 p$$

[7]

where S is standard hydrogeologic specific storage and is equal to volume of water released per unit change in head while maintaining no lateral strain and constant vertical stress, and D is called the hydraulic diffusivity.

Assuming that eqn [7] is a good approximation, the timescale τ for changes in pore pressure to diffuse or relax can be calculated by $\tau \sim L^2/D$, where L is the length scale over which the pressure diffuses. Typical values of D are 10^{-10} to 10^{-4} m2/s, with small values characterizing low-permeability rocks (e.g., shale), and large values characterizing coarse, unconsolidated sediments or highly permeable rocks (e.g., gravel and karst, respectively). A value of 10^0 m2/s$^{-1}$ would be typical of sandstone aquifers. For a 100 m thick aquifer, then, pore pressure changes will diffuse on timescales that range from minutes to many decades, and with a timescale of hours for a sandstone aquifer.

On examining hydrological observations, we see that many of the most dramatic hydrologic phenomena mentioned in Section 4.10.1, and in particular those that involve water discharge at the Earth’s surface, cannot be explained by traditional linear poroelasticity theory. The reason is quite straightforward. Consider the case in which a stress change σ_{kk} causes an undrained pressure change p given by eqn [3]. For a (very large) static stress change of 1 MPa (see Table 1), eqn [3] implies pressure changes of 0.1–0.3 MPa. This would cause a 10–30 m change in water level in a well. To bring the pore pressure back to its original value requires the removal of an increment of fluid content

$$\psi = \frac{3(\nu - \nu_a)}{2GB(1 + \nu)(1 + \nu_a)} \sigma_{kk}$$

[8]

Using values for Berea sandstone (Wang, 2000) of $\nu = 0.17$, $\nu_a = 0.33$, $G = 5.6$ GPa, and $B = 0.75$, we obtain $\psi = 3.5 \times 10^{-3}$. For a 100 m thick aquifer with porosity $\phi = 0.4$, this is equivalent to about 1 mm of water per unit area discharged at the surface—an amount that is small compared to that needed to explain the excess discharge in stream following large earthquakes (see Table 1 in Manga (2001)).

Equations [1]–[3] apply for linear, isotropic porous materials. In this limit, shear stresses cause no change in pore pressure. In natural rocks, however, shear stresses can induce changes in pore pressure because of anisotropy or the nonlinear elastic behavior of rocks (e.g., Hamiel et al., 2005).

4.10.2.1.2 Permanent deformation

At shear strains from 10^{-3} to 10^{-2}, brittle rocks, sediments, and soils show permanent deformation. At even greater shear strains ($\sim 10^{-2}$), failure occurs. The changes in porosity of sediments and soils
during permanent deformation may be many orders of magnitude greater than that during elastic deformation. Thus, under undrained conditions, permanent deformation can be associated with significant changes in pore pressure and groundwater flow.

During permanent deformation, the cohesion among the grains of sediments and soils is disrupted and the grains tend to move to reach a new state of equilibrium. The basic characteristics of deformation, however, depend on the consolidation state of sediments and soils. For loose deposits, shear deformation causes grains to move into pre-existing pores. This reduces the original porosity, and thus the volume of sediments (soils) decreases—a process commonly known as consolidation. Shear deformation of dense deposits, in contrast, will cause sediment grains to roll over each other and, in so doing, create new porosity; thus, the volume of sediments (soils) increases—a process commonly known as dilatancy. In both cases, a critical state is eventually reached in undrained deformation, beyond which porosity no longer changes with continued shearing.

The deformation behavior of brittle rocks is distinctly different from that of sediments and soils, leading to different predictions for the hydrologic and seismic consequences under applied stresses. Laboratory measurements show that beyond the elastic limit, shearing of consolidated rocks causes microcracks to open and the volume of rock to increase—that is, they become dilatant (e.g., Brace et al., 1966). At still higher deviatoric stresses, microcracks may coalesce and localize into a shear zone, leading to eventual rupture (Lockner and Beeler, 2002). Repeated rupturing of the brittle crust along a fault zone can produce pulverized gouge material with significant porosity. Geologic investigations of exhumed fault zones in California (e.g., Chester et al., 1993, 2004) and in Japan (e.g., Mizuno, 2003, 2004) and in Japan (Wibberley and Shimamoto, 2005) have demonstrated that some fault zones are composed of fluid-saturated, porous fault gouge several hundred meters thick. Attempts to image the structure of fault zones by using conventional seismic reflection and refraction methods (e.g., Thurber et al., 1997) suffered from not having high enough station and source densities to resolve deep fault-zone structures on the scale of hundreds of meters (Mizuno, 2003). More recent seismic imaging of the fault-zone structures relies on the use of fault-zone trapped waves (e.g., Li et al., 2000, 2006; Mizuno, 2003) and high-frequency body waves (Li and Zhu, 2006). These studies have delineated a 100–250 m wide gouge zone along active faults in California (Li et al., 2000; Li and Zhu, 2006) and in Japan (e.g., Mizuno, 2003), in which the seismic velocities are reduced by 30–50% from the wall-rock velocities. Direct drilling of the San Andreas Fault Zone to a depth of ~3 km near Parkfield, CA, also revealed a process zone 250 m in width, in which the seismic velocities are 20–30% below the wall-rock velocities (Hickman et al., 2005).

Using high-resolution electromagnetic imaging, Unsworth et al., (2000) showed that the San Andreas Fault Zone contains a wedge of low-resistivity material extending to several kilometers in depth; they further suggested a range of saturated porosity to account for the observed electrical resistivity. Using experimentally measured seismic velocity and electrical conductivity of fault gouge at elevated pressures to interpret the then-available seismic velocity and electrical resistivity of the San Andreas Fault Zone in central California, Wang (1984) suggested that the fault zone may consist of saturated fault gouge. Inverting the gravity anomaly across the San Andreas Fault Zone in central California and constraining the inversion by using existing seismic reflection profiles, Wang et al., (1986) further showed that the fault zone may be characterized by relatively low density with a corresponding porosity greater than 10% extending to seismogenic depths.

That fault zones may be porous and saturated at seismogenic depths has important implications on a host of issues related to the dynamics of faulting (e.g., Sleep and Blanpied, 1992; Sibson, 1973; Lachenbruch, 1980; Mase and Smith, 1987; Brodsky and Kanamori, 2001; Andrew, 2003; Wibberley and Shimamoto, 2005) and the frictional strength (or weakness) of faults (e.g., Lachenbruch and Sass, 1977; Mount and Suppe, 1987; Zoback et al., 1987; Rice, 1992). These topics, while beyond the objective of the present chapter, highlight the importance of understanding better the interaction between hydrology and earthquakes.

4.10.2.2 Effect of Dynamic Strain

4.10.2.2.1 Poroelastic deformation and fluid flow

Seismic waves cause spatial variations in strain and hence spatial variations in pore pressure. The resulting pore pressure gradients cause fluid flow. Seismic wave speeds in saturated rocks will thus differ from those in unsaturated rocks and will be frequency
dependent. As the fluid moves, energy is also dissipated by the fluid flow, which in turn is governed by the permeability of the porous material, the geometry of the pores, and the viscosity of the fluid. This contributes to seismic attenuation. Wave speed and attenuation can be calculated theoretically as a function of frequency for porous materials with different pore structures by solving the poroelastic equations coupled with Darcy’s equation for fluid flow at the macroscopic scale. As frequency increases, pore scale (or ‘squirt’) flows become more important (e.g., Mavko et al., 1998). These ideas were first quantified in a series of papers by Biot (e.g., Biot, 1941, 1956a, 1956b, 1962) and extended by many authors since, for example, by accounting for squirt flows (e.g., Dvorkin et al., 1994). Additional important extensions to actual geological settings include accounting for heterogeneity with dual porosity models (e.g., Berryman and Wang, 2000) or fractal geometries (e.g., Masson and Pride, 2006) and partial or multiphase saturation (e.g., Pride et al., 2004).

Changes in pore pressure and stress also change fracture and pore geometry, which in turn alters wave speeds and anisotropy. The frequency dependence of attenuation and wave speeds also depends on hydrogeologic properties such permeability and the nature of permeability heterogeneity. The relationship between seismic properties and hydrogeologic properties and fluid pressure involves so many parameters that inferring properties of the subsurface from seismic measurements is challenging. However, measurements of seismic attenuation, seismic anisotropy, and wave speeds can be used as a noninvasive probe to monitor changes in the subsurface (e.g., Liu et al., 2004).

4.10.2.2.2 Permanent deformation

The dynamic deformation of sediments and soils, in contrast to the static deformation, is affected by inertial forces that depend on loading rates and number of loading cycles. An often-used measure of the total amount of seismic energy imparted to an engineered structure is the Arias intensity, which is proportional to the square of acceleration (Arias, 1970). Therefore, even if the magnitude of stresses is small, inertial forces may significantly affect deformation at high frequencies. For this reason, it is necessary in earthquake engineering to examine the dynamic deformation of sediments and soils for dynamic strains as small as 10^{-4}. Permanent volumetric deformation, however, does not occur until the magnitude of shear strain reaches some threshold. Dobry (1989) summarized undrained experimental results in which excess pore pressure developed during the application of 10 cycles of sinusoidal loads. He showed that, for different sands with a wide range of dry densities subjected to a wide range of effective confining pressures, pore pressure did not increase until the cyclic shear strain amplitude was increased to 10^{-4}. The increase in pore pressure indicates a decrease in pore volume, and hence consolidation. It is interesting to note that the strain threshold is comparable in magnitude to that for permanent deformation to occur in static deformation (Section 4.10.2.1).

The number of loading cycles during dynamic loading is another important factor in determining the mechanical responses of sediments and soils. Results of laboratory experiments show that during cyclic loading at constant strain amplitude, pore pressure in sediments and soils increases with the number of loading cycles. At decreasing strain amplitudes, a greater number of loading cycles is required to build up excess pore pressure to a given magnitude (Ishihara, 1996). During large earthquakes, about 10–20 cycles of major ground shaking occur, though the amplitude of each cycle will vary.

4.10.2.2.3 Liquefaction

When pore pressures approach the overburden pressure, soils lose their rigidity and become fluid-like—a phenomenon widely known as liquefaction (Seed and Lee, 1966; Terzaghi et al., 1996), which is a major source of seismic hazard for engineered structures. Liquefied sediments and soils in the subsurface are associated with substantial pore pressure, as indicated by the height of the smear on the wall in Figure 1, left by ejected sands during the 1999 M 7.5 Chi-Chi earthquake in Taiwan. Most liquefaction occurs near the ruptured fault, but liquefaction can also occur at large distances from the earthquake epicenter; for example, ejection of fluidized sediments was observed during the 1964 M 9.2 Alaska earthquake at distances more than 400 km from the epicenter (Waller, 1966).

Field and laboratory studies show that the occurrence of liquefaction depends on many factors, such as earthquake magnitude, shaking duration, peak ground motion, depth to the groundwater table, basin structures, site effects, and liquefaction susceptibility of sediments (e.g., Youd, 2003). Thus, the occurrence of liquefaction is difficult to predict on a theoretical basis, and empirical approaches are, as a rule, adopted in assessing the liquefaction potential of an area. Various ground penetration tests (e.g,
Bardet, 2003) are routinely applied at sites of engineering importance and in some metropolitan areas (e.g., Los Angeles and Memphis in the United States). On large scales, empirical relations between the magnitude of ground shaking and liquefaction (e.g., Wang et al., 2003) may be combined with numerical simulations of ground shaking during an earthquake (e.g., Stidham et al., 1999) to evaluate the regional liquefaction potential. Such applications, however, require extensive information about sediment properties and subsurface structures of the area of interest. In areas where such data are not available, a simpler approach may be applied to set some limits to the expected extent of liquefaction during potential earthquakes. Field observations show that, for earthquakes of a given magnitude M, the occurrence of liquefaction is confined within a particular distance from the earthquake epicenter, that is, the liquefaction limit R_{max} beyond which liquefaction may not be expected. Figure 2 shows a compilation of data for the occurrence of liquefaction (Kuribayashi and Tatsuoka, 1975; Ambraseys, 1988; Papadopoulos and Lefkopulos, 1993; Galli, 2000; Wang et al., 2005a) and an empirical bound on the relationship between R_{max} and M. The liquefied sites at the liquefaction limit are likely to be those with the optimal conditions for liquefaction, that is, saturated soils with high liquefaction susceptibility. Liquefaction at closer distances may include less optimal conditions but are exposed to greater seismic input.

Because liquefaction damages engineered structures, there has been a concerted research effort, both in the laboratory and in the field, to understand the processes of liquefaction and to predict its occurrences (for an overview of these efforts, see National Research Council (1985), Bardet (2003), and Youd (2003)). In laboratory studies, sediment and soil samples are often obtained from the field and subjected to cyclic loading. At constant amplitude of deviatoric stress (stress minus the mean normal stress), deformation may be stable up to some number of cycles of shearing, but sudden onset of large shear deformation (onset of liquefaction) may occur if the cycles of shearing exceed some threshold number (e.g., National Research Council, 1985). This onset of liquefaction marks the moment when the stress path between the deviatoric stress and the effective stress (defined later in eqn [15], which decreases with increasing pore pressure) eventually intersects the failure envelope of sediments and soils.

These laboratory studies have helped to advance our understanding of the processes of liquefaction and to identify the major physical factors that affect liquefaction. However, it is difficult to duplicate natural conditions in the laboratory or to obtain undisturbed samples from the field. Thus laboratory studies may have limited practical application. In the field, various penetration tests, such as the ‘standard’ penetration test, are employed to assess the liquefaction potential of specific sites. Despite their wide

Figure 2 Relationship between earthquake moment magnitude and maximum distance between the epicenter and occurrences of liquefaction. The solid line is an empirical upper bound for the maximum distance over which shallow liquefaction has been observed (Wang et al., 2005a): $M = -5.0 + 2.26 \log R_{\text{max}}$, where R_{max} is in meters. Data shown based on the compilation in Wang et al. (2005a).
application, these tests are empirical. Thus, much progress can still be made toward a better physical understanding of the liquefaction process.

4.10.3 Observations and Their Explanations

Here we review hydrologic phenomena that accompany earthquakes. We will see that the magnitude of hydrological changes caused by earthquakes are likely to be of little human consequence, though depletion of groundwater induced by seismic activity has been invoked to explain the abandonment of regions of Crete, Greece, during the Late Minoan period (Gorokhovich, 2005).

We categorize observations by the type of observation (wells, streamflow, mud volcanoes, and geysers). It will also be helpful when discussing responses to distinguish hydrologic responses by the spatial relationship between the observation and the earthquake. We will use the terms near-field, intermediate-field, and far-field, for distances within one fault length, up to several fault lengths, and many fault lengths, respectively. In the near-field, changes in the properties of the fault zone itself may be responsible for hydrologic responses. Examples include the formation of new springs along ruptured faults (e.g., Lawson, 1908) or changes in groundwater flow paths because of changes in the permeability of or near the fault zone (e.g., Gudmundsson, 2000). In both the near- and intermediate-fields, dynamic and static strains are large enough that they might cause a measurable hydrologic response. In the far-field, however, only dynamic strains are sufficiently large to cause responses. In this chapter, we focus on hydrologic responses outside the fault zone.

Hydrologic changes following earthquakes modify pore pressures, which in turn can influence local seismicity. The topic of triggered seismicity is covered in the chapter by Hill and Prejean, and we simply note here that the mechanisms responsible for the observed hydrological phenomena discussed next may be connected to those responsible for distant, triggered seismicity.

4.10.3.1 Wells

The water level in wells measures the fluid pressure at depths the well is open to the surrounding formations. Several types of coseismic and postseismic responses are observed: water-level oscillations, coseismic changes in water level, and delayed changes in water level. Figure 3 shows a particularly dramatic example of a response in a well in which water erupted to a height of 60 m above the surface following the 2004 M 9.2 Sumatra earthquake 3200 km away.

4.10.3.1.1 Water-level oscillations

Water wells can act like seismometers by amplifying ground motions, in particular long-period Rayleigh waves. Water-level fluctuations as large as 6 m (peak-to-peak amplitude) were recorded in Florida, thousands of kilometers away from the epicenter, during the 1964 Alaska earthquake (Cooper et al., 1965). Hydroseismograms have been recorded since the early days of seismometer use (Blanchard and Byerly, 1935).

Figure 4 (from Brodsky et al., 2003) shows water level in a well in Grants Pass, OR, following the 2002 M 7.9 Denali earthquake 3100 km away. Also shown is the vertical component of ground velocity measured on a broadband seismometer located adjacent to the well. Large water-level fluctuations, such as those shown in Figure 4, are unusual and occur only for the right combination of geometric (water depth in the well, well radius, aquifer thickness) and hydrologic properties (transmissivity). The frequency-dependent response of the water level in a well to dynamic strain in an aquifer can be determined theoretically by solving the coupled equations for pressure change in the aquifer, flow toward/away from the well, and flow within the well (e.g.,
In general, high transmissivity favors large amplitudes. Kono and Yanagidini (2006) found that in closed (as opposed to open) borehole wells, pore pressure variations are consistent with an undrained poroelastic response (see Section 4.10.2.1) at seismic frequencies. In addition, they found no pore pressure response to shear deformation.

4.10.3.1.2 Persistent and delayed postseismic changes in water level in the near and intermediate field

Persistent changes in water level in wells are probably the best-documented hydrologic responses to earthquakes. Significant advances in quantitative analysis of water-level changes during earthquakes have been made during the last decade (e.g., Roeloffs, 1998; King et al., 1999; Roeloffs et al., 2003; Brodsky et al., 2003; Matsumoto and Roeloffs, 2003; Montgomery and Manga, 2003; Wang et al., 2003; Sato et al., 2004; Kitagawa et al., 2006; Sil and Freymueller, 2006).

Sustained changes in water level in the near- and, possibly, intermediate-field can in some cases be explained by the coseismic static strain created by the earthquake. In this case, the water level will rise in zones of contraction, and fall in regions of dilation. Figure 5 (from Jonsson et al., 2003) shows a pattern of water-level change that mimics the pattern of coseismic volumetric strain after a strike-slip event in Iceland. An analogous correlation of volumetric strain and water-level changes was found after the 2003 M 8.0 Tokachi-oki thrust event in Japan (Akita and Matsumoto, 2004). Similar conclusions are reported by others (e.g., Wakita, 1975; Quilty and Roeloffs, 1997). This pattern of water-level change is not, however, universal. Following the 1999 M 7.5 Chi-Chi earthquake in Taiwan, the water level rose in most near-field wells where the coseismic strain should have caused aquifer dilation (Koizumi et al., 2004). Following the 2004 M 9 Sumatra earthquake, more than 5000 km away in Japan, Kitagawa et al., (2006) found that only about half the monitoring wells equipped with strain instruments recorded water-level changes consistent with the measured coseismic strain, implying that dynamic strains can also change water levels in the intermediate field.

Both the pattern and magnitude provide insight into the origin of water-level changes. The magnitude of expected water-level changes caused by coseismic strain can be determined from models of coseismic strain and calibrated models for well sensitivity that are calibrated on the basis of their response to barometric and tidal strains (e.g., Roeloffs, 1996). In some instances, recorded changes are similar to those predicted (e.g., Igarashi and Wakita, 1991), but changes can also be much larger than predicted, even in the near-field (e.g., Igarashi and Wakita, 1995).

The time evolution of water-level changes provides additional constraints on the location and magnitude of pore pressure changes. Figure 6 (from Cooper et al., 1965; Liu et al., 1989). In general, high transmissivity favors large amplitudes.

Kono and Yanagidini (2006) found that in closed (as opposed to open) borehole wells, pore pressure variations are consistent with an undrained poroelastic response (see Section 4.10.2.1) at seismic frequencies. In addition, they found no pore pressure response to shear deformation.

Figure 4 (a) Hydroseismograph recorded at 1 s intervals and (b) vertical component of ground velocity measured on a broadband seismometer at a well in Grants Pass, OR, following the 2002 M 7.9 Denali earthquake located 3100 km away. Δh shows the 12 cm permanent change in water level that followed the passage of the seismic waves. Figure based on figure 7 in Brodsky EE, Roeloffs E, Woodcock D, Gall I, and Manga M. (2003) A mechanism for sustained ground water pressure changes induced by distant earthquakes. *Journal of Geophysical Research* 108: doi:10.1029/2002JB002321.

Figure 5 (from Jonsson et al., 2003) shows a pattern of water-level change that mimics the pattern of coseismic volumetric strain after a strike-slip event in Iceland. An analogous correlation of volumetric strain and water-level changes was found after the 2003 M 8.0 Tokachi-oki thrust event in Japan (Akita and Matsumoto, 2004). Similar conclusions are reported by others (e.g., Wakita, 1975; Quilty and Roeloffs, 1997). This pattern of water-level change is not, however, universal. Following the 1999 M 7.5 Chi-Chi earthquake in Taiwan, the water level rose in most near-field wells where the coseismic strain should have caused aquifer dilation (Koizumi et al., 2004). Following the 2004 M 9 Sumatra earthquake, more than 5000 km away in Japan, Kitagawa et al., (2006) found that only about half the monitoring wells equipped with strain instruments recorded water-level changes consistent with the measured coseismic strain, implying that dynamic strains can also change water levels in the intermediate field.

Both the pattern and magnitude provide insight into the origin of water-level changes. The magnitude of expected water-level changes caused by coseismic strain can be determined from models of coseismic strain and calibrated models for well sensitivity that are calibrated on the basis of their response to barometric and tidal strains (e.g., Roeloffs, 1996). In some instances, recorded changes are similar to those predicted (e.g., Igarashi and Wakita, 1991), but changes can also be much larger than predicted, even in the near-field (e.g., Igarashi and Wakita, 1995).

The time evolution of water-level changes provides additional constraints on the location and magnitude of pore pressure changes. Figure 6 (from
Roeloffs, 1998) shows water level for a period of 10 days following the 1992 M 7.3 Landers earthquake 433 km from the well. The observed water-level changes, shown with data points, can be modeled by a coseismic, localized pore pressure change at some distance from the well, as shown by the solid curve. The origin, however, of the hypothesized pressure changes cannot be determined from measurements at the well (Roeloffs, 1998). Other processes that can cause delayed or gradual changes in water level are localized changes in porosity and/or permeability (e.g., Gavrilenko et al., 2000).

4.10.3.1.3 Near-field response of unconsolidated materials

At shallower depths and in unconsolidated materials, changes in water level in wells often exhibit larger amplitudes and different signs than predicted by the coseismic elastic strain. The 1999 Chi-Chi earthquake in Taiwan provided an excellent opportunity to examine models for postseismic water-level changes because of the very high density of monitored wells. We discuss these observations in much more detail than other types of well responses because the near-field hydrologic response at shallow depths and in unconsolidated materials is much less well studied.

As a fortuitous coincidence, a network of 70 evenly distributed hydrological stations (Figure 7), with a total of 188 wells, were installed in 1992 on a large alluvial fan (the Choshui River fan) near the Chi-Chi epicenter. The network was installed for the purpose of monitoring the groundwater resources over the Choshui River fan. At each station, one to five wells were drilled to depths ranging from 24 to 306 m to monitor groundwater level in individual aquifers. Each well was instrumented with a digital piezometer that automatically records the groundwater level hourly, with a precision of 1 mm (Hsu...
et al., 1999). The dense network of hydrological stations and its close proximity to a large earthquake made the groundwater records during the Chi-Chi earthquake the most comprehensive and systematic obtained so far. In addition, a dense network of broadband strong-motion seismographic stations captured the ground motion in the area, and detailed studies of liquefaction occurrences were made. Finally, the isotopic composition of the groundwater was measured before and after the earthquake (Wang et al., 2005c).

The coseismic changes of groundwater level during this earthquake have been reported in several papers (Hsu et al., 1999; Chia et al., 2001; Wang et al., 2001; Lee et al., 2002). Near the ruptured fault, where consolidated sedimentary rocks occur near the surface, the groundwater level showed a coseismic, stepwise decrease (Figures 8(a) and 8(b)). Away from the ruptured fault, in the fan of unconsolidated sediments, confined aquifers showed a distinctly different pattern of coseismic changes than in the uppermost aquifer. In the confined aquifers, groundwater levels showed a coseismic stepwise rise (Figures 8(c) and 8(d)). The magnitude of this rise increases with distance from the ruptured fault, reaching more than 5 m at distances of 20–30 km away from the fault before decreasing at greater distances (Figure 7(a); Wang et al., 2001). In the uppermost aquifer, the coseismic changes in the groundwater level were much smaller in magnitude with an irregular pattern (Figure 7(b)). Liquefaction sites on the Choshui River fan are clearly correlated with significant coseismic rise of the groundwater level in the uppermost aquifer, but no such correlation exists for the confined aquifers (Figure 7). This observation strongly indicates that liquefaction occurred in the uppermost aquifer but not in the confined aquifers. In the basins nearest the ruptured fault (east of the Choshui River fan), a comparison between liquefaction sites and the coseismic change in the groundwater level cannot be made, because no wells were installed and thus no groundwater-level data were available in these basins.

Lee et al. (2002) claimed that the spatial distribution of the groundwater-level change during the Chi-Chi earthquake may be accounted for by a poroelastic model. The widespread occurrence of liquefaction, however, provides clear evidence that at least part of the sediment deformation was not elastic. Furthermore, for confined aquifers that have a typical thickness of 1–10 m, the required changes in
Porosity would have to be from 10^{-1} to 10^{-2} to account for the range of coseismic groundwater-level changes (Wang et al., 2001), beyond the magnitude of strains calculated from an elastic model (Lee et al., 2002). Finally, the sign of the changes in water level are in general the opposite of those expected from a poroelastic model (Koizumi et al., 2004).

As noted in Section 4.10.2.2, when loose sediments and soils are sheared at stresses between some upper and lower thresholds, grains tend to move together, leading to a decrease in porosity. If the deformation is undrained, as expected during seismic shaking, pore pressure would increase when the strain exceeds about 10^{-4}. This may explain the stepwise rise in the groundwater level in the fan (Figures 8(c) and 8(d)). On the other hand, when consolidated sediments or sedimentary rocks are cyclically sheared beyond some critical threshold, microfracture and fracture may occur, leading to increased porosity and decreased pore pressure. This may explain the coseismic decline in the groundwater level in sedimentary rocks close to the ruptured fault (Figures 8(a) and 8(b)).

It is possible to make an order-of-magnitude estimate of the change in porosity required to account for the coseismic water-level change. Because the coseismic water-level change does not involve fluid flow, the mass of pore water must be conserved, that is,

$$\frac{d(\phi p)}{dr} = 0 \tag{9}$$

where ϕ again denotes the porosity. Equation (9) can be rewritten as

$$\frac{S}{b} \frac{d\phi}{dr} + \frac{d\phi}{dr} = 0 \tag{10}$$

where S, as before, is the aquifer storativity, b the hydraulic head, and b the aquifer thickness. The second term in eqn [10] is the rate of change of sediment porosity at a given location resulting from ground shaking, which we assume is proportional to the intensity of ground shaking. Given that the intensity of ground shaking during the Chi-Chi earthquake decayed approximately exponentially with time (Ma et al., 1999), the rate of change in sediment porosity at a given location under earthquake shaking may be expressed as

$$\frac{d\phi}{dr} = Ae^{-\beta t} \tag{11}$$

Figure 8 Four types of groundwater level responses during the Chi-Chi earthquake: (a) Groundwater level dropped during the earthquake and gradually rose afterward; (b) groundwater level dropped during the earthquake and continued to drop gradually afterward; (c) groundwater level rose during the earthquake and gradually declined afterwards; (d) groundwater level rose during the earthquake and remained at the new level for some time before slowly declining. The different groundwater-level responses may be due to differences in the proximity to the ruptured fault and different hydrogeological conditions as discussed in Wang et al. (2001). Figure created by Chung-Ho Wang.
where β is of the order of 10^{-2}–10^{-1} s$^{-1}$, and A is a constant to be determined. Substituting eqn [11] into eqn [10] and integrating with respect to time, we get the coseismic change in the hydraulic head:

$$\Delta h(t) = \frac{kA}{S\beta} \left(e^{-\beta t} - 1 \right)$$ \hspace{1cm} (12)

Pumping tests in the Choshui River fan yield $S \sim 10^{-3}$ (Lee and Wu, 1996). Given that ground shaking on the Choshui River fan during the Chi-Chi earthquake lasted between 20 and 100 s (Lee et al., 2002a), for a 10 m groundwater-level change in a 1 m thick confined aquifer, $A = -10^{-4}$ to -10^{-3} s$^{-1}$, and for the same level of change in a 10 m aquifer, $A = -10^{-5}$ to -10^{-4} s$^{-1}$. Integrating eqn [10], we also obtain a coseismic change in porosity between 10^{-3} and 10^{-2}.

The uppermost aquifer on the Choshui River fan is either unconfined or poorly confined, resulting in less regular changes in pore pressure and groundwater level. Thus, qualitatively, the processes of consolidation and dilatation of sediments and sedimentary rocks, respectively, appear to provide a self-consistent interpretation of the spatial pattern of the coseismic groundwater-level changes on the Choshui River fan during the Chi-Chi earthquake (Wang et al., 2001).

The availability of both well records and strong-motion records at the time of the Chi-Chi earthquake allows quantitative examination of the relationship between ground motion, groundwater-level change, and the distribution of liquefaction sites. Interpolating the strong-motion parameters at the well sites, Wang et al. (2003) showed that there is only a weak correlation between the horizontal component of the peak ground acceleration (PGA) and the occurrence of water-level changes and liquefaction (Figure 9(a)). Wong (2005) confirmed this finding by using a more extensive data set. This result is unexpected, because PGA is frequently used to predict the occurrence of liquefaction. Instead, Wong (2005) showed that there is a better correlation between the horizontal peak ground velocity (PGV) and the sites of liquefaction. Because PGV depends more on low-frequency components of ground motion than does PGA, this indicates that low-frequency ground motions are better correlated with elevated pore pressure and groundwater level than are high-frequency motions. This conclusion supports the finding that spectral accelerations and velocities at frequencies of about 1 Hz and lower were strongly correlated with the distribution of liquefaction sites (Figure 9(b)), whereas those above about 1 Hz were not (Wang et al., 2003; Wong, 2005). A similar conclusion was reached by comparing the hydrologic changes with various measures of earthquake intensity computed from

![Figure 9](a) Contours of the horizontal PGA during the Chi-Chi earthquake together with liquefaction sites in open diamonds. Note the weak correlation between PGA and liquefaction sites. (b) Contours of the spectral acceleration at 1 Hz. Note the fairly strong correlation between this and liquefaction sites.
seismograms passed through low-pass and high-pass filters (Wong, 2005). Although there is extensive evidence that low-frequency ground motions are better correlated with elevated pore pressure and groundwater level than high-frequency motions, it is unclear at this time whether the low-frequency ground motion was the cause for the coseismic groundwater-level change and liquefaction, or whether the hydrological changes, including liquefaction, caused the different spectral composition of the observed seismograms.

4.10.3.1.4 Far-field response
In the far-field (many fault lengths), the static stress due to the earthquake is nearly zero. Thus, sustained changes in water level at such distances (e.g., Figure 4) must be caused by the interactions between the aquifer and seismic waves. Such changes are not common, but confined to a small number of unusually sensitive sites usually located near active faults (King et al., 2006). The mechanism for these interactions, however, is a matter of debate (Roeloffs, 1998; Matsumoto and Roeloffs, 2003; Brodsky et al., 2003).

A permanent change in some aspect of pore structure is required, but the process by which small periodic strains change permeability or storage properties is unclear. Hydrogeochemical (e.g., Wang et al., 2004d) and temperature (e.g., Mogi et al., 1989) changes that accompany water-level changes confirm that pore-space connectivities change. One mechanism that has been proposed (to explain the particular postseismic change in water level shown in Figure 4) is that oscillatory flow back and forth in fractures caused by cyclic strain removes ‘barriers’ of fracture-blocking deposits, which then increases permeability and affects the final distribution of pore pressure (Brodsky et al., 2003). Elkhoury et al. (2006) confirmed that distant earthquakes can indeed change permeability. Other proposed, but also unverified, mechanisms include pore pressure increases caused by a mechanism ‘akin to liquefaction’ (Roeloffs, 1998), shaking-induced dilatancy (Bower and Heaton, 1978), or increasing pore pressure through seismically induced growth of bubbles (e.g., Linde et al., 1994). A feature of at least some far-field responses is that the magnitude of water-level changes scales with the amplitude of seismic waves (Sil and Freymueller, 2006).

One common feature of wells that exhibit far-field postseismic responses is that the sign of the water-level changes always appears to be the same (Matsumoto, 1992; Roeloffs, 1998; Sil and Freymueller, 2006). Any proposed mechanism should explain this latter feature, and the barrier explanation can only do so if the location of barriers is always located either upgradient or downgradient of the well. Far-field shaking-induced dilatancy (e.g., Bower and Heaton, 1978) or a process analogous to liquefaction (Roeloffs, 1998) would always cause the response to have the same sign, but none of them can be universal mechanisms because the sign of water-level changes varies from well to well.

Observations from wells that have responded to multiple earthquakes indicate that wells may have an enhanced sensitivity over a specific range of frequencies (Roeloffs, 1998). Interestingly, the threshold for triggered earthquakes also appears to have a frequency dependence (Brodsky and Prejean, 2005), though the frequency sensitivities for the two studies just cited are different. Observations of, and models that account for, the frequency-dependence response may be useful for distinguishing between processes.

4.10.3.1.5 Summary
To generalize, on the basis of the reported changes in water level in the near- and intermediate-field, it appears that deep wells in sound rock display a poroelastic response that mimicks coseismic strain (both in sign and magnitude), whereas shallow wells and wells in poorly consolidated materials tend to show larger changes and increases in water level.

4.10.3.2 Streamflow
One of the most spectacular surface hydrologic responses to earthquakes is large changes in streamflow. Figure 10 shows two typical examples. The increased discharge is persistent, at least until rainfall obscures the changes caused by the earthquake. The peak discharge can occur from within a day to as much as several weeks after the earthquake. Increased streamflow occurs in the near- and intermediate-field (Manga, 2001). The total excess discharge (i.e., the total volume of water released in excess of that expected in the absence of the earthquake) can be large: 0.7 km3 for the M 7.5 Chi-Chi earthquake (Wang et al., 2004b), and 0.5 km3 after the M 7.5 Hebgen Lake earthquake (Muir-Wood and King, 1993). Because streamflow responds to precipitation in the drainage basin, earthquake-induced changes are best recorded and studied during the dry season or during dry periods when there is little or no precipitation.

Explanations for changes in streamflow can be divided into five categories: expulsion of deep crustal
fluids resulting from coseismic elastic strain (e.g., Muir-Wood and King, 1993), changes in near-surface permeability (Briggs, 1991; Rojstaczer and Wolf, 1992; Rojstaczer et al., 1995; Tokunaga, 1999; Sato et al., 2000), consolidation or even liquefaction of near-surface deposits (Manga, 2001; Manga et al., 2003; Montgomery et al., 2003), rupturing of subsurface reservoirs (Wang et al., 2004c), and the release of water trapped in fault zones. The differences between these different explanations are nontrivial because of their implications for the magnitude of crustal permeability, its evolution, and the nature of groundwater flow paths. We thus summarize the basis and some problems with each explanation and then consider the streamflow response to the 1999 Chi-Chi earthquake as an illustrative example:

1. **Coseismic elastic strain.** Muir-Wood and King (1993) applied the coseismic elastic strain model, proposed by Wakita (1975) to explain coseismic groundwater-level changes, to explain the increased stream discharge after some large earthquakes, including the 1959 M 7.5 Hebgen Lake earthquake and the 1983 M 7.3 Borah Peak earthquake. Muir-Wood and King (1993) suggested that saturated microcracks in rocks opened and closed in response to the stress change during an earthquake, causing pore volume either to increase or decrease, resulting in a decrease or increase in the groundwater discharge into streams.

Following the 1989 Loma Prieta earthquake, however, chemical analysis of the stream water showed that the extra water that appeared in the streams following the earthquake had a shallow, rather than deep, origin (Rojstaczer and Wolf, 1992; Rojstaczer et al., 1995). Furthermore, Rojstaczer and colleagues showed that to account for the extra water in the increased streamflow by coseismic elastic strain, a very large volume of the crust must be involved in the expulsion of groundwater, which in turn would require an unreasonably high permeability for the crust. In addition, one important constraint on models is that streamflow generally increases, and the few streams with decreased discharge show very small changes.

Manga et al. (2003) reported that streamflow increased at Sespe Creek, California, after several earthquakes, irrespective of whether the coseismic strain in the basin was contraction or dilatation. For this reason, the dynamic strain caused by the earthquake must be responsible for the observed changes in discharge.

2. **Enhanced permeability.** Briggs (1991) and Rojstaczer and Wolf (1992; also Rojstaczer et al., 1995) proposed a model of enhanced permeability of the shallow crust resulting from seismically induced fractures and microfractures to explain the increased stream discharge in the nearby basins and the changes in the ionic concentration of stream water following the 1989 Loma Prieta earthquake in California. A shallow origin of the excess water is supported by a decrease in water temperature after discharge increased. Similar models were applied to the 1995 Kobe earthquake in Japan to explain the observed hydrological changes (Tokunaga, 1999; Sato et al., 2000). Permeability enhancement was also invoked to explain the increased electrical conductivity of water discharged after an earthquake (Chamoille et al., 2005). Elkhoury et al., (2006) found that earthquakes in southern California caused phase shifts in the water-level response to tidal strain, and interpreted these to be due to increased permeability by seismic waves. The increase in permeability may be temporary because biogeochemical processes may act to reseal or block any newly created fresh fractures.

Manga (2001) found, however, that the rate of baseflow recession (i.e., the slow decrease in discharge during periods without precipitation) was unchanged by earthquakes that caused increases in streamflow. Assuming that the groundwater discharge Q to the
stream is governed by Darcy’s equation [5], baseflow recession (a long time after recharge) is given by

\[
\frac{dQ}{dt} \propto \exp[-aDt]
\]

where \(a\) is a constant that characterizes the geometry of the drainage basin, \(D\) is the hydraulic diffusivity, and \(t\) is time. Although this is a great simplification of the complex subsurface flow paths of water to streams, such models in general provide an excellent empirical fit to discharge records. The slope of the hydrograph in Figure 11(a) is proportional to \(aD\), and Figure 11(b) shows that the recession constant does not change following the earthquake. Given that the basin geometry and flow pathways are unlikely to have been reorganized by the earthquake, an unchanged baseflow recession implies that aquifer permeability did not change after the earthquake, even over the time period of increased discharge. This conclusion was substantiated by later studies in other areas (Montgomery et al., 2003) and during other earthquakes (Manga et al., 2003).

3. Coseismic consolidation and liquefaction. Consolidation of loose materials is one way to increase pore pressures. Indeed, liquefaction occurred in many of the areas where streamflow increased (Montgomery and Manga, 2003). Consequently, Manga (2001; also Manga et al., 2003) suggested that coseismic liquefaction of loose sediments on floodplains may provide the water for the increases in stream discharge following earthquakes.

Figure 12 shows the relationship between earthquake magnitude and distance between the epicenter and the center of the gauged basin for streams that responded to earthquakes. Also shown for reference is the maximum distance over which liquefaction has been reported (from Figure 2). That the limit for both responses is similar does not imply that liquefaction causes streamflow to increase. Instead, the correlation simply means that dynamic strains sufficient to induce liquefaction under optimal conditions are also sufficient for streamflow to change.

Wang et al., (2004b), however, used the extensive network of stream gauges in Taiwan to identify the source of excess discharge in streams. Excess discharge did not originate on the unconsolidated

Figure 11 (a) Hydrograph of the San Lorenzo River, CA, showing postseismic response to the 1989 \(M\) 7.3 Loma Prieta earthquake. The vertical line labeled EQ indicates the time of the earthquake. The postseismic period of baseflow recession is shown by the bold sloping line. (b) The baseflow recession constant for periods of baseflow before and after the earthquake shows that even though discharge increased by an order of magnitude there was no significant change in baseflow recession. Figure made with US Geological Survey stream gauge data. Modified from Manga M (2001) Origin of postseismic streamflow changes inferred from baseflow recession and magnitude-distance relations. *Geophysical Research Letters* 28: 2133–2136.
alluvial fan where there was, in fact, widespread liquefaction. Rather, the excess discharge originated in the mountains where there is little alluvial material and groundwater originates in bedrock. In addition, after the 2001 M 6.8 Nisqually, WA, earthquake, Montgomery et al., (2003) did not find a significant field association between liquefaction occurrence and streamflow changes.

4. Ruptured subsurface reservoirs. Following the M 6.5 San Simeon, CA, earthquake on 22 December 2003, a different type of streamflow increase was revealed in the central Coast Ranges, occurring within 15 min of the earthquake and lasting about an hour. At the same time, several new hot springs appeared across a dry riverbed, a short distance upstream of the stream gauge that registered the abrupt increase in streamflow. These observations suggest that the occurrence of streamflow increase and the appearance of hot springs were causally related and may be the result of earthquake-induced rupture of the seal of a hydrothermal reservoir. Recession analysis of the stream gauge data show \(D/L^2 \approx 1000 \text{ s}^{-1} \), where \(L \) is the depth of the reservoir, implying a small \(L \) or large \(D \) or both. Assuming a one-dimensional model for flow between the ruptured seal and the stream, Wang et al., (2004c) estimated that the extra discharge after this earthquake was \(\sim 10^3 \text{ m}^3 \). Abrupt changes in hot-spring discharge are known to occur in the Long Valley, California hydrothermal area (Sorey and Clark, 1981), suggesting that this type of hydrologic response may be characteristic of hydrothermal areas.

Rupturing permeability barriers may occur at depths of many kilometers. Husen and Kissling (2001) suggest that postseismic changes in the ratio of P-wave and S-wave velocities above the subducting Nazca Plate reflect fluid migration into the overlying plate following the rupture of permeability barriers.

5. Fault valves. In convergent tectonic regions, large volumes of pore water may be locked in subducted sediments (Townend, 1997). Sealing may be enacted partly by the presence of low-permeability mud and partly by the prevailing compressional stresses in such tectonic settings (Sibson and Rowland, 2003). Earthquakes may rupture the seals and allow pressurized pore water to erupt to the surface and recharge streams. This process may explain time variations in submarine fluid discharge at convergent margins (Carson and Scream, 1998). Episodes of high discharge are correlated with seismic activity having features similar to tremor but are not correlated with large regional earthquakes (Brown et al., 2005).

To illustrate some approaches that are used to test these explanations, we again consider the records from the 1999 M 7.5 Chi-Chi earthquake in central Taiwan. In central Taiwan, 17 stream gauges are located on three streams systems (Figure 13(a)) that showed different responses to the 1999 Chi-Chi earthquake (Wang et al., 2004b). In addition, the local rainy season was over well before the earthquake. These records have made it possible to test the different hypotheses listed above. Among the three streams, two (Choshui Stream and the Wushi Stream) have extensive tributaries in the mountains (Figure 13(a)), but the third (Peikang Stream) originates on the sloping side of the Choshui fan, with no tributaries in the mountains. All the streams in the mountains showed large postseismic streamflow increases. On the alluvial fan, both the Choshui Stream and the Wushi Stream, which have tributaries in the mountains, showed large increases in streamflow. The amount of increase in streamflow in the proximal area of the Choshui alluvial fan was about the same as that in the distal area of the fan, indicating that most of the excess water originated in the mountains and that the contribution from the

Figure 12 Relationship between earthquake magnitude and distance from the epicenter of streams that exhibited clear and persistent increases in discharge. The solid line is an empirical upper bound for the maximum distance over which shallow liquefaction has been observed (Wang et al., 2005a): \(M = -5.0 + 2.26 \log R_{\text{max}} \), where \(R_{\text{max}} \) is in meters. Data shown based on the compilation in Montgomery and Manga (2003) with additional data from Wang et al. (2005a).
sediments in the fan was insignificant. By contrast, the Peikang Stream system, which does not have tributaries in the mountainous area, did not show any noticeable postseismic increase in streamflow. Thus it may be concluded that the excess water in the streams after the Chi-Chi earthquake requires an earthquake-induced discharge from the mountains. Any coseismic consolidation and liquefaction of sediments on the floodplain (alluvial fan) were not substantial enough to cause noticeable postseismic increase in streamflow.

Figure 13(b) shows the discharge of a stream in the mountains before and after the Chi-Chi earthquake, together with the precipitation record from a nearby station. In addition to a coseismic increase in streamflow and a slow postseismic return to normal, the figure shows that the baseflow recession rates both before and after the earthquake are identical. This observation is of interest because it suggests that the Chi-Chi earthquake did not cause significant changes in the permeability of the aquifer that fed the stream, as Manga (2001) first noticed in his study of the coseismic responses of streams in the United States. However, the excess water in streams in central Taiwan after the Chi-Chi earthquake requires extra discharge from the mountains that can appear only through enhanced permeability during the earthquake. This apparent contradiction may be resolved by recognizing that the earthquake-induced change in permeability may be anisotropic. The foothills of the Taiwan mountains consist of alternating beds of sandstone and shale. Thus, before the earthquake, the vertical permeability would be controlled by the impervious shales and groundwater flow would be mostly subhorizontal. During the earthquake, subvertical fractures breached the impervious shales and enhanced vertical permeability, allowing rapid downward draining of water to recharge underlying aquifers. The horizontal conductivity of the aquifers, however, was essentially unaffected. Field surveys after the Chi-Chi earthquake revealed numerous subvertical tensile cracks in the hanging wall of the thrust fault (Angelier et al., 2000; Lee et al., 2000, 2002b). Many wells in the foothills above the thrust fault showed a significant drop in water level (Lin, 2000; Yan, 2001; Chia et al., 2001; Wang et al., 2001), and a sudden downpour occurred in a tunnel beneath the foothills right after the earthquake. These reports are consistent with the model of enhanced vertical permeability during the Chi-Chi earthquake.

![Figure 13](image-url)

Figure 13 (a) Map showing the three river systems in central Taiwan and the locations of the stream gauges (in triangles). Note that both the Wushi River and the Choshui River have extensive tributaries in the mountains, but the Peikang River does not. Hydrological monitoring wells are marked by bull’s-eyes. (b) Logarithm of discharge of a stream as recorded by a gauge in central Taiwan as a function of time before and after the Chi-Chi earthquake, together with precipitation record at a nearby station. Note that the recession curve before and after the earthquake (indicated by arrow) has the same slope. (c) Conceptual model showing increased recharge of aquifer by groundwater from mountains due to enhanced vertical permeability during and after the earthquake. (d) Comparison of excess discharge as a function of time with model result (thin curve). Excess discharge at the time of earthquake ($t = 0$) is taken to be zero and therefore does not appear on the diagram.
A one dimensional leaky aquifer model (Figure 13(c)) may be used to quantify this conceptual model. Flow is governed by eqn [7], and the recharge to the aquifer resulting from enhanced vertical permeability is treated as a source. Even though this model is highly simplified, several studies (e.g., Roeloffs, 1998; Manga, 2001; Manga et al., 2003; Brodsky et al., 2003) have demonstrated that it is useful for characterizing the first-order response of hydrological systems to earthquakes.

We treat the recharge of the leaky aquifer as coseismic with constant recharge for \(0 < x \leq L \) (length of aquifer beneath the mountain with enhanced permeability) and no recharge for \(L < x \). The amount of excess water released from the mountains after the Chi-Chi earthquake. (Figure 13(a)); thus, \(VQ_0 \) is the total excess water recharging the aquifer. For large times, eqn [14] results in an exponential decrease in discharge, the so-called baseflow recession given by eqn [13]. Figure 13(d) compares the data for stream gauge 032 (adjusted to \(Q_{ex} = 0 \) just before earthquake) with the modeled excess discharge \(Q_{ex} \) determined by eqn [14]. An excellent fit is obtained with \(D/L^2 = 2.4 \times 10^{-7} \) s\(^{-1}\) (from recession analysis) and \(L'/L \approx 0.8 \). The latter value is consistent with the fact that gauge 032 is located in the mountains, where the floodplain is small in comparison with the total aquifer length. The amount of excess water \(VQ_0 \) may be determined from the value of \(DVQ_0/L^2 \) from model fitting. By summing the excess discharges in the Choshui Stream and in the Wushi Stream, we obtain a total amount of 0.7–0.8 km\(^3\) for the excess water released from the mountains after the Chi-Chi earthquake.

For the example shown in Figure 13, the peak postseismic discharge occurs within a day of the earthquake. Figure 14 shows an example in which the peak discharge is reached 9–10 days later, though discharge begins to increase coseismically. This example is for Sespe Creek, CA, responding to the 1952 \(M \) 7.5 Kern County earthquake located 63 km away from the center of the drainage basin. Again, the model for excess discharge given by eqn [14], shown in the solid curve in Figure 14, fits the observed postseismic discharge very well (baseflow described by eqn [13] has been added back to the calculated excess discharge).

The different hypotheses listed in this section imply different crustal processes and different water–rock interactions during an earthquake cycle. In most instances, the hydrological models are under-constrained. A reasonable approach is to test the different hypotheses against cases (such as Chi-Chi) in which abundant and accurate data are available. We note that a single explanation need not apply for all cases of increased streamflow, so that identifying when and where different mechanisms dominate is important.

4.10.3.3 Mud Volcanoes

Mud volcanoes also appear to erupt in response to earthquakes (e.g., Panahi, 2005) and thus provide another probe of earthquake–hydrology interactions. Unfortunately though, the number and quality of reports prevent a rigorous statistical analysis of the correlation (Manga and Brodsky, 2006). Mud volcanoes range from small, centimeter-sized structures to large edifices up to few hundred meters high and several kilometers across. Mud volcanoes erupt predominantly water and fine sediment. They occur in regions where high sedimentation rates and fine-grained materials allow high pore pressures to develop (Kopf, 2002). Large mud volcanoes erupt from depths of more than several hundred meters.

A necessary condition to create mud volcanoes is the liquefaction or fluidization of erupted materials,
so that the erupted materials lose strength and can behave in a liquid-like manner (Pralle et al., 2003). Unconsolidated sediment can be liquefied and fluidized through mineral dehydration, gas expansion, tectonic stresses, inflow of externally derived fluids, and even ocean waves (Maltman and Bolton, 2003).

Figure 15 shows that the occurrence of triggered mud volcanism falls within the liquefaction limit for shallow (upper few to tens of meters) liquefaction. Reports of mud volcanoes erupting within a day of large, distant earthquakes are compiled in Manga and Brodsky (2006) and are listed in the caption of Figure 15.

Liquefaction is usually thought to be a shallow phenomenon confined to the upper few to tens of meters. This is because the increase in fluid pressure needed to reach lithostatic pressure usually increases with depth. However, sedimentary basins with high sedimentation rates, fine sediments (with low permeability), and lateral compression often have high fluid pressures. Indeed, it is these settings in which mud volcanoes seem to occur (Milkov, 2000). Seismically triggered liquefaction may not necessarily be only a shallow phenomenon.

4.10.3.4 Geysers

Geysers change eruption frequency following distant earthquakes that generate coseismic static strains smaller than 10^{-7} or dynamic strains less than 10^{-6} (e.g., Hutchinson, 1985; Silver and Vallette-Silver, 1992). Geysers, despite requiring very special thermal conditions and hydrogeological properties to occur (Steinberg et al., 1982a), thus provide another opportunity to understand how earthquakes can influence hydrogeological processes and properties.

Figure 16 shows the response of Daisy geyser in Yellowstone National Park to the 2002 $M_{7.9}$ Denali earthquake located more than 3000 km away (Husen et al., 2004). The eruption interval decreases by about a factor of 2 and then slowly increases to the pre-earthquake frequency over a period of a few months. Among the many geysers at Yellowstone, the eruption frequency of some increased, whereas for others it decreased.

Although geysers often respond to earthquakes, their response to barometric pressure changes (e.g., White, 1967), solid Earth tides (e.g., Rinehart, 1972), and hypothetical preseismic strains (Silver and Vallette-Silver, 1992) is weaker. The apparent

Figure 15 Relationship between earthquake magnitude and distance from the epicenter of large mud volcanoes that originate from depths greater than hundreds of meters and erupt within 2 days of the earthquake; shown are Andaman Islands (responding to $M_{9.2}$ Sumatra earthquake) and Niikappu Mud Volcano, Hokkaido, Japan (responding to events with $M_{7.1}$, 7.9, 8.2, and 8.2, in 1982, 1968, 2003, 1952, and 1994, respectively). The solid line is an empirical upper bound for the maximum distance over which shallow liquefaction has been observed (Wang et al., 2005): $M = -5.0 + 2.26 \log R_{\text{max}}$, where R_{max} is in meters Niikappu data provided by Nakamukae Makoto.

Figure 16 Eruption interval (time between two successive eruptions) in h : min : s format as a function of time Daisy geyser, Yellowstone National Park. Thin grey line shows raw data, that is, the actual measured eruption intervals. The black line is smoothed data obtained by averaging over several measurements. Median eruption intervals are also shown in h : min : s format. Median eruption intervals are computed over a several-week period; intervals in parentheses are based on a few days. Time of the 2002 $M_{7.9}$ Denali earthquake is shown by the vertical line. Figure provided by Stephan Husen and based on data presented in Husen S, Taylor R, Smith RB, and Healser (2004) Changes in geyser eruption behavior and remotely triggered seismicity in Yellowstone. National park, produced by the 2002 M 7.9 Denali fault earthquake, Alaska. Geology 32: 537–540.
correlation of eruption interval and nonseismic strains is, in fact, controversial. Rojstaczer et al. (2003) reanalyzed the eruption records at Yellowstone and found that geysers were insensitive to earth tides and diurnal barometric pressure changes, and thus concluded that geysers were not sensitive to strains less than about $10^{-8} - 10^{-7}$. One of these records was from the Daisy geyser (Figure 16). Given that Daisy geyser responded to earthquakes that caused equally small static strain, we can reasonably conclude that it is the dynamic strain, rather than static strain, that causes the observed responses (e.g., Husen et al., 2004).

The mechanism by which the eruption interval changes is not known. Steinberg et al. (1982b) note that one mechanism for initiating a geyser eruption is superheating the water. Using a lab model of a geyser, Steinberg et al. (1982c) show that vibrations can reduce the degree of superheating and can thus increase the eruption frequency. It is worth noting that while earthquakes can decrease the interval between eruptions, sometimes the frequency of eruptions decreases. Ingebritsen and Rojstaczer (1993) propose instead that much of the observed temporal variability in eruption frequency can be explained by changes in matrix permeability, which in turn governs the recharge of the conduit. Geyser frequency is also sensitive to the (often complex) conduit geometry (Hutchinson et al., 1997) and hence permeability of the geyser conduit. However, because the conduit is already much more permeable, small strains within the conduit itself are unlikely to have a significant effect on geyser eruptions (Ingebritsen et al., 2006). As a consequence, the observed temporal variability in eruption frequency is probably caused by changes in the permeability of the matrix surrounding the main geyser conduit—it is through this matrix that the conduit is recharged between eruptions.

The high sensitivity and long-lasting response of geysers to small seismic strains requires reopening, unblocking, or creating fractures to induce large enough permeability changes to influence eruption frequency. Geyser eruptions thus provide evidence that dynamic strains are able to create permanent changes in permeability from small dynamic strains and at great distances from the earthquake.

In summary, the response of geysers to distant earthquakes is most easily explained by changes in permeability, and the sensitivity of geysers to earthquakes compared with earth tides and changes in barometric pressure indicates that dynamic strains cause the response.

4.10.4 Feedback between Earthquakes and Hydrology

The presence of water in the subsurface, and changes in the amount of water on the surface or within the subsurface, can influence the occurrence of earthquakes, as summarized in Figure 17. There are three basic ways water can influence seismicity.

First, changes in loading of the surface can increase deviatoric stresses. The most clear examples follow the impoundment of water by reservoirs (e.g., Simpson et al., 1988; Gupta, 1992). Natural examples are more difficult to identify, probably in part because the magnitude of the surface load is much smaller; proposed examples include snow loading (Heki, 2003) and loading from ocean tides (Cochran et al., 2004), or other seasonal processes (Wolf et al., 1997).

Second, changes in fluid pressure p reduce the effective stress

$$\sigma_{ij}^{\text{eff}} = \sigma_{ij} - \alpha p \delta_{ij}$$

(Figure 17) Schematic illustration of the relationship between earthquakes and hydrologic responses; + and– signs indicate the sign of the response. Figure based on an illustration from David Mays.
where α is again the Biot–Willis coefficient. The classic example of seismicity induced by changes in pore pressure is caused by fluid injection (e.g., Raleigh et al., 1976). Some cases of reservoir-induced seismicity, in particular those in which the seismicity lags changes in water level, can be attributed to changes in pore pressure p (e.g., Talwani and Acree, 1985; do Nascimento et al., 2005). Changes in pore pressure also diffuse, governed by eqn [6], so the telltale signature of earthquakes triggered by changes in pore pressure would be a migration of the locus of seismicity at a rate consistent with the (usually unknown) hydraulic diffusivity. Spatial migration of reservoir-induced seismicity, seismicity induced by fluid injection (Tadokoro et al., 2000; Parotidis and Shapiro, 2004), and some aftershock sequences (e.g., Nur and Booker, 1972; Bosl and Nur, 2002; Hainzl, 2004; Miller et al., 2004) have been attributed to pore pressure diffusion. Pore pressure changes caused by natural loading at the surface (e.g., groundwater recharge) have also been invoked to trigger seismicity (e.g., Costain et al., 1987; Saar and Manga, 2003; Christiansen et al., 2005).

Third, fluid extraction, rather than fluid injection, can change stresses through poroelastic deformation (Segall, 1989). Earthquakes appear to have been induced by fluid extraction in gas fields (Segall et al., 1994) and oil fields (Gomberg and Wolf, 1999; Zoback and Zinke, 2002). A decrease in pore pressure might be expected to stabilize faults by increasing the effective stress. Poroelastic deformation, however, caused changes in fluid pressure, increases the magnitude of deviatoric stresses away from the region of fluid extraction.

One general conclusion from all these studies of hydrologically triggered seismicity, regardless of the mechanism, is that very small stress changes, typically 0.01–1 Mpa, appear to trigger the earthquakes. Such small stress changes, however, are also similar to the stress changes thought to trigger earthquakes through nonhydrological means (e.g., Harris, 1998; Stein, 1999).

If earthquakes cause changes in hydrogeological properties and changes in fluid pressure promote seismicity, then hydrogeological and seismological processes are coupled. Triggered seismicity (see Chapter 4.09) is one possible example of this coupling. Interaction is promoted if the state of stress is close to failure so that the small changes in stress associated with either natural hydrologic processes or hydrological responses to earthquakes can in turn influence seismicity. At least in tectonically active areas, many faults do appear to be critically stressed (Zoback et al., 1987), consistent with earthquakes being triggered by small stress changes.

Rojstaczer and Ingebritsen (2005, personal communication) suggest that one manifestation of this interaction is the value of the mean large-scale permeability of the crust — it should be of a size to accommodate internal (fluid generation by metamorphic and magmatic processes) and external (groundwater recharge and discharge) forcing. Diagenesis, in general, tends to seal fractures and fill pores, thus decreasing permeability. If groundwater recharge does not change with time, water levels and pore pressures will increase, promoting seismicity, which in turn generates new fractures and increases permeability. A mean crustal permeability of 10^{-14}m^2 (Manning and Ingebritsen, 1999) is consistent with the present mean rate of groundwater recharge and hydraulic head gradients driving basin-wide groundwater flow. Rojstaczer and Ingebritsen propose that this balance is reached by a feedback between hydrological processes and seismicity. A similar balance must occur in the lower crust, though the source of water is from metamorphic reactions rather than of meteorological origin. The mean permeability obtained from such a balance, however, is a temporal and spatial average. Instead, evidence of short-lived and locally high permeabilities are preserved in the spatial distribution of mineral deposits in ancient fault systems (e.g., Micklethwaite and Cox, 2004) and transient, localized high temperatures in the lower crust (Camacho et al., 2005).

4.10.5 Hydrologic Precursors

As noted in Section 4.10.2.1, failure of brittle rocks under deviatoric stress is usually preceded by pervasive microcrack formation. In the subsurface, this process (i.e., microfracturing) would greatly increase the surface area of the affected rock in contact with groundwater and thus allow the release of gases and dissolved ions from the rock into the groundwater, changing its chemical composition. Coalescing of microcracks into larger fractures may connect hydraulically isolated aquifers, causing both changes in the hydraulic heads and mixing of groundwaters with initially distinct hydrogeochemistry. These processes may further cause changes in the electrical conductivity of the rocks, and thus of the crust. Scenarios of this kind have led to the not
unreasonable expectation that hydrological, hydrogeochemical, and related geophysical precursors may appear before the occurrence of large earthquakes.

During the 1960s and 1970s, several groups reported precursory changes in the crustal seismic velocity ratio \(\left(V_p/V_s \right) \) before some earthquakes in the then Soviet Union (Savarensky, 1968; Semenov, 1969), in New York (Aggarwal et al., 1973), and in California (Whitcomb et al., 1973). Coupling the failure processes of brittle rocks, as noted previously, to a groundwater flow model, Nur (1974) proposed a ‘dilatancy model’ to explain the sequence of precursory changes in \(V_p/V_s \). Scholz et al. (1973) further develop the dilatancy model as a common physical basis for precursory phenomena. Later seismic experiments designed to detect changes in both \(V_p \) and \(V_s \), however, failed to reveal any precursory changes before many major and moderate earthquakes (e.g., McEvilly and Johnson, 1974). In 1988, in response to Bakun and Lindh’s (1985) prediction that a large earthquake would occur near Parkfield before 1993, Park installed a network of electrodes across the fault zone near Parkfield to detect any precursory changes in the electrical resistivity of the crust (Park, 1997) – one of the major predictions of the dilatancy model (Scholz et al., 1973). The predicted Parkfield earthquake did not occur, but an \(M \) 6.0 earthquake occurred on 28 September 2004 near Parkfield, providing an excellent opportunity to test the telluric method for detecting any precursory changes in crustal resistivity before a large earthquake. Careful data processing was applied to the time series of the dipole fields before the earthquake, but no precursory changes were found (Park, 2005). These failures, among others, have cast questions about the general validity of the dilatancy model, and about earthquake precursors in general.

An intense search for hydrological and hydrogeochemical precursors before earthquakes has also been pursued. For example, a few days prior to the 1946 \(M \) 8.3 Nankaido earthquake in Japan, water levels in some wells reportedly fell by more than 1 m and some wells went dry (Sato, 1978; Linde and Sacks, 2002). Three days before the \(M \) 6.1 Kettleman Hill, CA, earthquake, Roeoffs and Quilty (1997) found a gradual, anomalous rise in water level of 3 cm. This observation was included in the IASPEI Preliminary List of Significant Precursors (Wyss and Booth, 1997). Following the 1995 \(M \) 7.2 Kobe earthquake, several papers reported precursory changes in the concentrations of radon, chlorine, and sulfate ions in groundwater (e.g., Tsunogai and Wakita, 1995; Igarashi et al., 1995) and in groundwater level (King et al., 1995). Changes in radon concentration are the most commonly reported and discussed hydrogeochemical precursor (e.g., Wakita et al., 1988; Trique et al., 1999) because the release of radon is especially sensitive to crustal strains.

Definitive and consistent evidence for hydrological and hydrogeochemical precursors, however, has remained elusive (Bakun et al., 2005). Difficulties include that most reported changes were not corrected for the fluctuations in temperature, barometric pressure, earth tides, and other environmental factors, so that some changes taken to be earthquake related may in fact be ‘noise’ (e.g., Hartman and Levy, 2005), that changes were recorded at some sites but often were not recorded at other nearby sites (e.g., Biagi et al., 2001), and that instrument failures and personnel/program changes often do not allow persistent and consistent monitoring over long periods of time (King et al., 2000) – a necessary condition for obtaining reliable precursory data. Distinguishing a precursor from a response to a previous earthquake, for example, the 1946 Nankaido earthquake was preceded by the 1944 \(M \) 8.2 Tonankai event, creates additional ambiguity. Notwithstanding these difficulties, progress has been made in the past decade. For example, intensive and continued observations of various kinds of precursory hydrological and hydrogeochemical changes have been made in Japan during the past half century (Wakita, 1996), and records are corrected to remove the noise introduced by fluctuations in temperature, barometric pressure, earth tides, and other factors (Igarashi and Wakita, 1995); both high- and low-pass filtering has been applied to the time series of raw hydrochemical data in Kamchatka, Russia, to remove long- and short-period changes unrelated to earthquake processes (Kingsley et al., 2001); statistical, rather than deterministic, procedures have been introduced (Maeda and Yoshida, 1990) to assess the conditional probability of future seismic events; multicomponent, hydrochemistry analysis was applied to groundwater samples in Iceland before and after a major earthquake to enhance the possibility of detecting possible precursors (Claesson et al., 2004); and, finally, relationships among various types of hydrological and hydrogeochemical precursory signals were sought to improve future earthquake prediction strategies (Hartman and Levy, 2005). Thus, although we may still be far from achieving a genuine understanding of the underlying mechanisms of the various earthquake-related anomalies, significant efforts are underway.
Static strains of 10^{-8} can reasonably be expected to produce changes in water level of about 1 cm for optimal hydrogeologic properties. Even greater sensitivity to strain (though perhaps only dynamic strains) is implied by some of the very distant hydrologic responses seen at geysers and some very distant changes in water in wells (e.g., Brodsky et al., 2003). The strong sensitivity of hydrologic processes and properties to small strains is the primary basis for hope that hydrological and hydrogeochemical monitoring may detect any hypothetical pre-earthquake strains. Recognizing precursors, and distinguishing between responses from previous earthquakes and precursors to new earthquakes, is a different matter and may continue to be problematic (Hartman and Levy, 2005). Although it is unclear whether any future documented hydrological precursors could actually be used for earthquake prediction, they may at least provide new insight into the physics of earthquakes.

4.10.6 Concluding Remarks

Hydrologic responses to earthquakes provide constraints on hydrogeologic processes in regions that might otherwise be inaccessible, for example, fault zones or the deep subsurface. Measured responses may also provide information at spatial and temporal scales that are difficult to study with more conventional hydrogeological measurements such as well tests. However, these novel features of hydrologic responses also mean that it can be difficult, and perhaps even impossible in some cases, to obtain the information needed to distinguish between competing models for hydrologic responses.

Explaining the hydrologic responses to earthquakes should in principle be simple because they reflect the strain caused by earthquakes. The great variety of hydrologic responses, however, highlights the complexity of deformation and structure of geological materials and the interaction between processes. Over the last decade there has thus been a trend toward developing quantitative physically based models to explain hydrogeological responses to earthquakes with an emphasis on explaining phenomena that cannot be explained by linear poroelastic models alone.

We conclude by noting that advances in physically based models may not be sufficient for understanding the interactions between earthquakes and water. Although expensive and time consuming, continued monitoring of wells, springs, and streams, ideally at high sampling rates and with complementary data sets (e.g., chemistry, temperature, pressure), provides the data needed to test models and may also lead to the discovery of new hydrological phenomena.

Acknowledgments

We thank Alex Wong for sharing the results of his study of the Chi-Chi earthquake, Fu-Qiong Huang for the information in Figure 3 and three reviewers for comments. This study is supported by the Sloan Foundation.

References

Ma KF, Lee CT, and Tsai YB (1999) The Chi-Chi, Taiwan earthquake: Large surface displacement on an inland thrust fault. EOS Transaction, American Geophysical Union 80: 605–611.

