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Abstract. Field observations have shown strong coupling between earthquake-induced
stress-strain fields and subsurface hydrodynamics, reflected by water level change in wells
and stream flow fluctuations. Various models have been used in an attempt to interpret the
coseismic fluctuations in groundwater level, predict water table rise in the event of an
earthquake, and explain stream flow variations. However, a general model integrating
earthquake-induced stress-strain fields, coseismic pore pressure generation, and postseismic
pore pressure diffusion is still lacking. This paper presents such a general framework with
which one can approach the general problem of postseismic pore pressure diffusion in three
dimensions. We first use an earthquake strain model to generate the stress-strain field. We
then discuss the linkage coupling stress and strain with pore pressure and present an
analytical solution of time-dependent pore pressure diffusion. Finally, we use two examples,
a strike-slip and a dip-slip fault, to demonstrate the application of the analytical model and
the effects of earthquakes on fluid flow. The application to the two fault systems shows that
the diffusion time is shorter than conventional estimates, which are based on a diffusivity and
a length scale. We find that the diffusion time is predominately a function of the diffusivity
of the system, while the length scale influences the magnitude of the initial pore pressure. A

diffusion time based on the diffusivity and a length may be misleading because significant
localized flow occurs in complex three-dimensional systems. Furthermore, the induced
patterns of a pore pressure change resemble the strain field when shear stress effects are
neglected but are significantly modified when shear stresses are included in the coupling
relation. The theoretical basis of this work is developed assuming a single episode
dislocation. However, the methodology and the results can be readily applied to studying
pore pressure conditions after multifaulting events by simple superposition.

1. Introduction

Field observations have shown strong coupling between
earthquake-induced stress-strain  fields and subsurface
hydrodynamics, as reflected in water levels in wells [e.g.,
Roeloffs, 1996] and stream flow fluctuations [Rojstaczer and
Wolf, 1992, Muir-Wood and King, 1993]. Water level
fluctuations as large as 90 cm in Nevada [O'Brien, 1992] and
up to 5 m [Roeloffs et al., 1995] were recorded in wells after
the Landers earthquake in California in 1992. The release of
the elastic strain energy in rocks during an earthquake causes
rock compression or expansion, thereby redistributing the
stress and strain in rocks. Consequently, pore pressure in the
suddenly stressed regime is disturbed, either increasing or
decreasing in response to compressional or extensional
stresses. It is the disturbed pore pressure field that causes
coseismic hydrologic responses and drives postseismic
pressure diffusion. Two types of hydrologic responses caused
by the quasi-static coseismic strain and the dynamic strain due
to seismic waves manifest in reaction to earthquakes. The
coseismic strain produces water level rise or fall, which is
observed in the vicinity of an earthquake focus where the
significant strain change occurs in the porous media. The
dynamic strains due to seismic waves damp out rapidly
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compared to the time scale of pore pressure diffusion, and no
permanent strains are expected after the waves pass. This
paper focuses on hydrodynamic response caused by the quasi-
static coseismic strain.

The basic physics describing earthquake-induced
hydrologic =~ response comprises three  components:
seismically-induced mechanical deformation, pore pressure
diffusion, and coupling of the two. Classic elasticity [Jaeger
and Cook, 1976] is generally the basis used by researchers
studying deformation, while the well-known diffusion theory
[Carslaw and Jaeger, 1959] serves as the basis for studying
pore pressure dynamics. To fully understand the coupled
phenomena from a theoretical standpoint, one needs to
consider the impact of mechanical deformation on pore
pressure diffusion and the influence of pore pressure on
mechanical deformation. Terzaghi's [1923] theory on soil
consolidation may be regarded as one of the earliest
contributions to the hydromechanical coupling problem. The
benchmark papers by Biot [1941, 1955] presented a set of
fully coupled deformation and pressure diffusion equations.
Further, Biot provided analytical solutions of displacement
and pore pressure as functions of time under a sudden loading
in a one-dimensional domain.

Efforts toward understanding the coupling between
deformation and induced pore pressure have been enhanced
by many researchers in the past half century. For example,
Rice and Cleary [1976] developed solutions for deformation
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in saturated and compressible porous media. Furthermore,
measurement of drained and undrained poroelastic parameters
[e.g., Green and Wang, 1986] has greatly enhanced the study
of coupled phenomena. A comprehensive evaluation of this
subject is beyond the intention of this paper, and interested
readers are encouraged to pursue excellent reviews by
Roeloffs [1996] and Wang [2000]. However, it is important to
make two relevant observations concerming deformation
coupled with pore pressure. First, fully coupling deformation
and pore pressure in three dimensions is often mathematically
formidable, although numerical modeling approaches have
been undertaken for basin-scale applications [e.g., Ge and
Garven, 1992, 1994]. Second, two different timescales are
mvolved, as recognized by Palciauskas and Domenico
[1989]. Under earthquake conditions they are the short
coseismic timescale, which is of the order of seconds, and the
long pressure diffusion timescale, which is of the order of
days to years.

In light of the abovementioned observations, a practical
approach to coupled hydromechanical problems has been to
decouple the deformation from pore pressure generation and
diffusion and to use a pore pressure and strain or stress
relationship to bridge the two. A well-known relationship was
pioneered by Skempton [1954], who used a coefficient that
directly relates the normal stresses to pore pressure. A more
recent advance on the coupling mechanism incorporates the
effect of shear strain in the generation of pore pressure
[Wang, 1997].

Efforts have been made to interpret coseismic fluctuations
in groundwater level [e.g., Rudnicki et al., 1993, Quilty and
Roeloffs, 1997], predict water table rise in the event of an
earthquake [e.g., Carrigan et al., 1991], and explain observed
stream flow variations [e.g., Rojstaczer and Wolf, 1992; Muir-
Wood and King, 1993]. Various models have been used in
these endeavors, and yet a generic model integrating
earthquake-induced stress-strain fields, coseismic pore
pressure generation, and postseismic pore pressure diffusion
under different faulting scenarios is still lacking. The purpose
of this paper is to present such a generic framework. First, we
use an earthquake strain model [Okada, 1992] to generate the
three-dimensional stress-strain field. We then discuss the
linkage coupling stress-strain to pore pressure and present an
analytical solution of pore pressure diffusion in three
dimensions. Finally, we use two examples, a strike-slip and a
dip-slip fault, to demonstrate the effects of earthquake strains
on fluid flow.

We recognize that this study is a simple first-order model
that demonstrates the physics of the system. However, we
hope that the results of this study will provide a means with
which to evaluate hydrologic conditions after an earthquake
on both spatial and temporal scales. It has been suggested that
postseismic pore pressure plays a role in aftershocks [Nur and
Booker, 1972] and in postseismic rebound [Peltzer et al.,
1996]. A better understanding of the hydrology may aid in
revealing additional information useful for aftershock
prediction.

2. Coseismic Strain Field

The spatial distribution of stress and strain around a fault
has been a subject pursued by researchers for decades [e.g.,
Anderson, 1951]. Approaches range from theoretical
treatment of displacement and stress distribution [e.g., Pollard
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and Segall, 1987] to numerical simulation using the boundary
element method [e.g., Bilham and King, 1989]. We do not
intend to provide a comprehensive literature review in this
paper, but several relevant aspects should be presented. First,
linear elasticity has been the dominant theoretical basis for
most of these studies. The crust to first order behaves
elastically on short timescales [e.g., King et al., 1988].
Inelastic behavior [Rundle, 1982] tends to occur over longer
timescales or in narrow fault zones. Second, the dislocation
method, specifying the fault slip as dislocation along certain
boundaries, has been widely employed to obtain stress-strain
distributions. Studies have progressed from an idealized
infinite fault plane to more realistic. faults with finite
dimensions [Okada, 1992]. Third, only after the analytical
solutions for handling a finite fault plane become available
can stress-strain distributions be studied in three dimensions.
In a comprehensive paper that represents the present state of
the art, Okada [1992] developed a set of closed-form
expressions for the internal displacement and strain due to
shear and tensile faults in a half-space. Okada’s solutions
evolved from early works on displacement and stress fields in
a half-space due to a pomnt source [Mindlin, 1936; Press,
1965] and strike-slip faulting [Chinnery, 1961, 1963]. The
theoretical basis of these solutions is to use Green’s function
to obtain the displacement field due to a dislocation in an
elastic half-space with a stress free ground surface. In this
study, strain distributions computed from Okada’s
displacement solutions are used as a starting point for
subsequent study of pore pressure generation and dissipation.

3. Pore Pressure Diffusion

Flud flow in saturated porous media is governed by a
diffusion process. On the basis of mass conservation in porous
media the diffusion equation in terms of pore pressure under
homogeneous and isotropic conditions is given by [e.g.,
Freeze and Cherry, 1979; Domenico and Schwartz, 1998]:

Fp _Fp FP 1P
+ + =

p-< (1b)
s

where P is the pore pressure; D is the hydraulic diffusivity
related to K, the hydraulic conductivity, and S;, the specific
storage; x, y, and z are the spatial coordinates; and ¢ is the
temporal coordinate. Under specified boundary and initial
conditions in terms of pore pressure or pressure gradient, (1a)
can be solved for a pressure field as a function of time and
space.

When the hydraulic condition of a region is disturbed by an
earthquake strain field, the volumetric strain exerts a sudden
stress on surrounding porous media. Pore pressures will
increase or decrease in accordance with the compression or
expansion nature of the earthquake strain field. If we consider
this pore pressure disturbance as an initial condition, then a
half-space solution to the pore pressure diffusion is analogous
to a heat conduction solution provided by Carslaw and Jaeger
[1959, p. 277]:
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R¥=(x-xY +(@-y) +(z+2) ; and f (x’ ¥’ 2z)) is the
initial or coseismic pressure distribution. The magnitude of
the initial pressure change will be discussed in section 4. The
physical meaning of solution (2) is that the pore pressure at
any pomt in time, P (x, y, z, ), will be a result of the initial
disturbance field, f (x’y’z’), and diffusion of these
disturbances with time ¢. It should be noted that solution (2) is
the theoretical response of the pore pressure to a sudden strain
change under idealized homogeneous and isotropic
conditions. Real geologic media may well be heterogeneous,
and earthquake events are episodic. However, since (la) is
linear, it is possible to apply solution (2) to episodic
earthquake events, using the superposition principle. For
example, in the case of a major earthquake followed by a
series of aftershocks, one can repeatedly use solution (2) to
obtain a resultant pore pressure field. Therefore, although the
pressure diffusion conceptualized in this study is developed
for a generic single episode scenario, it provides a useful
means for further study on the hydrologic response of porous
medium under more complex seismic-loading conditions.

4. Coupling Coseismic Strain and Pore
Pressure Change

While elastic deformation and pore pressure diffusion are
well-established theories, the coupling between the
mechanical stress-strain field and the induced pore pressure
has continued evolving since the conception of Terzaghi’s
[1923] soil consohdation theory. To fully couple the
mechanics and hydrology, one needs to modify elasticity
theory to represent poroelasticity [Mandl, 1988; Wang, 2000]
by including a pore pressure term in the force equilibrium
equation and using poroelastic constants instead of pure
elastic constants. Similarly, (la), describing pressure
diffusion, needs to be modified to include a stress or strain
term. Pioneering the fully coupled problem, Biot [1941, 1955]
provided a set of three-dimensional equations and solved the
one-dimensional consolidation problem in a soil column.
Rudnicki [1987] solved for two-dimensional coupled stress
and pore pressure with a dislocation along a semi-infinite
surface. Mathematically solving the fully coupled problem in
three dimensions would be an unrealistic mathematical
endeavor, but an alternate approach has proven to be
practical.  Such an approach decouples mechanical
deformation from the pressure diffusion equations, but uses a
linkage to relate the strain and pressure change, as discussed
below.

To examine the hydrodynamic processes closely, we first
identify two timescales, coseismic and postseismic. The
coseismic timescale is often short, of the order of seconds.
The postseismic scale, associated with the pressure diffusion
process, is several orders of magnitude longer, ranging from
hours to years, depending mainly on the hydraulic diffusivity
of the porous medium under consideration. The difference
between these two timescales effectively allows the
decoupled approach to be applicable. It is reasonable to
assume that the coseismic pressure change is instantaneous
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Figure 1. A right-lateral strike-slip fault geometry.
Geometric specifications are taken from Quilty and Roeloffs
[1997]. The thick black line indicates the fault trace. The

shaded circle is the Middle Mountain monitoring well.

and that the postseismic dissipation of pore pressure takes
place over a much longer period as described by (2).

The relationships between the change in the stress-strain
field and the induced pressure change have been derived from
various avenues. Bior’s [1941, 1955] early work gave the
following expression for pore pressure change, AP [e.g.,
Green and Wang, 1986]:

€))

where B is the expenimentally determined Skempton [1954]
coefficient and Agj; are the changes in principal stresses. The
sign convention is such that positive stress represents tension,
while negative stress represents compression. As such,

B
AP = —?AO'Z',' ”
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Figure 2. Volumetric strain distribution due to a right-lateral strike-slip dislocation of 11 cm. The solid lines
represent expansion, and the dashed lines represent compression.
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Figure 4. Water level change as a function of time at two
observation points for the strike-slip fault case. The dots
represent the point at x = 6750 m, y = 2250 m, and z = -250 m,
or 5000 m from the center of the fault plane and the crosses
represent the point at x = 14250 m, y = 1250 m, and z = -5750
m, or 9000 m from the fault center. Hydraulic diffusivity D is
0.0001 m?s. (a) The water level change versus time in actual
units. (b) Dimensionalized by the maximum water level
change at that same location and by a characteristic time L%/D,
where L is the distance from the observation point to the
geometric center of the fault plane.

positive pore pressure change relates to water level rise, and
negative pore pressure change relates to water level fall
Relation (3) assumes that shear stress does not produce
volumetric strain or influence pore pressure and thus only
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relates normal stresses to pore pressure. This notion has been
contested by subsequent experimental and theoretical
contributions which include the effect of shear stress on
induced pore pressure change [Skempton, 1954, Henkel, 1960,
Henkel and Wade; 1966, Wang, 1997],

3A—1ATO¢]’ @

V2

where both A and B are experimentally determined
coefficients and 7°” is the octahedral shear stress invariant
defined by [Jaeger and Cook, 1976, p. 24]:

AP = B[ Aoy +
3

1

% = %[(0'11 - 022)2 +(°'22 - 033)2(033 - 011)2]5 )

In addition to (3) and (4), various forms of equations have
been used to relate pore pressure change to stress or strain
[e.g., Bredehoeft, 1967, Rice and Cleary, 1976, van der Kamp
and Gale, 1983], all of which identify a simple linear
relationship between the change in pore pressure and
volumetric strain change:

AP =CA@, ®

where the proportionality C 1s a function of porous medium
properties such as bulk compressibility and A@ is the
volumetric strain change. Upon determining the stress or
strain field, we can use one of the coupling relations, (4) or
(6), to determine AP as the initial condition, f(x’, ¥’, z’), and
then compute the pore pressure, P(x, ¥, z, £), from solution (2).
When the stress state is known, (4) can be used to find the
pressure change due to changes in both normal stress and
shear stress. However, (6) is preferred when the strain field is
measured or is a known quantity. The two equations can be
unified by considering the constitutive relation between stress
and strain as outlined below. The constitutive relation for a
poroelastic medium is similar to that for an elastic medium
except that the parameters in the poroelastic case are
undrained parameters: 7
2G Ag; = Aoj; ———— Ao 0;; » 7
Uiy 777 7 ke Cij Q)
where G, is the undrained shear modulus, g; is the strain
tensor, 7, is the undrained Poisson’s ratio, and &, is the
Kronecker delta. Adding (7) gives the volumetric strain:

_E
_1_27/u

where F is the Young’s modulus. If we ignore the octahedral
shear stress in (4) for now and compare (4), (6), and (8), we
can establish the equivalency between (4) and (6) by the
following:

AO = Agi =——% Aoy or Aoy = AG, (8

¢ - g, 2074, ©)
“1-27,)

When B = 1, C becomes the undrained bulk modulus. Our
current understanding on the relationship between shear stress
and induced pore pressure is only at the experimentally
observed level. Future theoretical development could lead to a
modified constitutive relation that may add a shear stress term
m (7).

5. Application

5.1. Strike-Slip Fault

Given the theoretical framework discussed above, we
present two cases of earthquake-induced hydrodynamic
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response. The first case illustrates hydrodynamic response to
strike-slip faulting. A magnitude 4.7 earthquake near
Parkfield, California, on December 20, 1994, is used. As
shown in Figure 1, the earthquake was a result of a right-
lateral strike-slip fault which ruptured at a depth of 8.3 km
over a 5.0 km x 3.5 km fault plane with an 11 cm dislocation
[Quilty and Roeloffs, 1997].

Using the solution obtained by Okada [1992], we
computed the three-dimensional coseismic strain field due to
the 11 cm dislocation on the vertical fault plane. The center of
the fault plane is at x = 10000 m, y = 0, and z = - 8300 m. For
an undraimned Poisson’s ratio of 0.3, the three-dimensional
volumetric strain field is shown in three cross sections in
Figure 2. Figure 2a presents the volumetric strain in plane
view at a depth of 250 m below the surface, and Figures 2b
and 2c are two cross-sectional views of the volumetric strain
field at x = 9750 m and y = -2750 m, respectively. The solid
lines represent regions of expansion, and the dashed lines
represent compression. The four-quadrant pattern (Figure 2a)
is what we expect from a strike-slip dislocation source.
However, it is interesting to note that the sign of the
volumetric strain in Figure 2a is somewhat counterintuitive,
while the signs at depth (Figures 2b and 2c¢) are as expected.
For example, the upper right quadrant in Figure 2a is under
tension rather than compression. This is due to the fact that
the dislocating fault plane has a finite vertical dimension and
it is buried below the surface. The expected compression near
the tip of the fault leads to expansion farther away in order to
satisfy the free stress boundary condition at the surface and
force equilibrium. As shown in Figures 2b and 2¢, the signs of
the strain reverse as they approach the surface.
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For a given shear modulus G, and undrained Poisson’s
ratio %, the stresses can be computed from the strain field
using equation (7). We used G, = 5 x 10" Pa and y, = 0.3
[Roeloffs, 1996]. A recent study by Wang [1997] found that
including the shear stress was necessary to explain the pore
pressure increase near the strike-slip fault. We used (4) to
compute the pore pressure change and converted the pressure
change to a head change by Ah = AP/pg, where p is the
density of water and g is the gravitational acceleration. This
conversion is of interest since the head change at perforated
depths in wells could be a direct estimate of water level
change in the well. The two experimental coefficients, 4 and
B, in equation (4) are given the values of 0.2 and 1,
respectively [Wang, 1997]. Shown in Figure 3 are the head or
water level changes in three cross sections corresponding to
the volumetric strain cross sections presented in Figure 2. The
solid lines represent water level increase and dashed lines
represent water level drop. Two observations can be made.
First, it is important to note that the variation in the vertical
direction implies that the response of water levels in wells
perforated at different depths may vary significantly. Second,
the coseismic water level change is constrained spatially by
the volumetric strain field. The asymmetry of the water level
change pattern shown in Figure 3a is due to the inclusion of
shear-stress effects [Wang, 1997], particularly in the vicinity
of the fault where shear is a significant deformation mode. If
we neglect the effect of shear stress, water level change
patterns will mimic the symmetric patterns of strain.
Including the shear stress effects, relation (4) has helped to
explain the coseismic rise and fall patterns of the water level
near the fault trace associated with the Parkfield, December
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Figure 5. Comparison of measured and computed water level recovery data in the Middle Mountain well after the

Parkfield, December 20, 1994, earthquake.
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Figure 6. A dip-slip fault system. The geometric
specifications are taken from Bredehoeft [1992]. The thick
black line indicates the fault trace.

20, 1994, earthquake, which otherwise could not be explained
by a normal stress model [Wang, 1997; Quilty and Roeloffs,
1997].

To illustrate the long-term postseismic pressure diffusion
process, given the conditions of the Parkfield earthquake, we
used solution (2) to calculate the pressure as a function of
time at two observation points. The first point is located at x =
6750 m, y = 2250 m, and z = -250 m, or 5000 m from the
center of the fault plane, and the second point is farther away,
atx = 14250 m, y = 1250 m, and z =-5750 m, or 9000 m from
the fault center. Figure 4 shows the postseismic diffusion of
the pressure in terms of water level at these two locations for
a diffusivity of 10 m%s. Several observations can be made.
First, the diffusion time shown in Figure 4a is of the order of
10° s (~300 hours), which is much shorter than the commonly
cited estimates in the existing hydrology literature. The
diffusion time is an indicator of how fast disturbed water
levels recover and is conventionally estimated by the
following relation [e.g., Carslaw and Jaeger, 1959; Nur and
Booker, 1972, Phillips, 1991, p. 82]:

L2

tr—, (10)

where L is a characteristic length, commonly taken as the
distance between the source and the observation point or the
dimension of the study domain, and D is the hydraulic
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diffusivity. For a single point source disturbance, (10) serves
well as an estimate. In the case of a complex strain field, the
dissipation of excess pore pressure at a given location is a
result of contributions from the distributed strain in three
dimensions. The shorter diffusion time found in this example
appears to be due to the fact that significant localized flow
occurs from over pressured to under pressured regions.

A second interpretation of the results in Figure 4 focuses
on coseismic pore pressure change. A smaller magnitude of
coseismic pressure change is observed at the point farther
away from the fault plane, as shown by the crosses in Figure
4a, while the near-source location experiences a larger
pressure change, as shown by the dots in Figure 4a. The
duration of influence, however, is about the same regardless
of the distance from the seismicity. Casting the same data set
into the dimensionless form, as shown in Figure 4b, we
observe similar diffusion behavior for all the points. The shift
in curve location is a direct reflection of the distance from
seismicity. This observation implies that for a given
diffusivity the time needed to propagate to far distances is
compensated by the fact that smaller pressure change at the
far distance requires less dissipation time.

We compared our computed coseismic and postseismic
water levels with the measured water level recovery data
[Quilty and Roeloffs, 1997] from the Middle Mountain (MM)
well in Parkfield (Figure 5). The well location is shown in
Figure 1. The MM well is perforated between 235 m to 247 m
below the surface [Roeloffs et al., 1989]. We selected the MM
well because it shows a clear recovery pattern. The water
level drop near day 6 suggests a creep event [Quilty and
Roeloffs, 1997]. Solution (2) is used twice to superimpose the
seismic and creep events. Satisfactory agreement is achieved

for the given parameters in this scenario. The comparison

between computed and measured water level recovery serves
several purposes. First, it shows that solution (2) can be used
to predict postseismic pore pressure diffusion or water level
recovery in wells. Second, matched water level magnitude
provides an estimation of the coupling or mechanical
parameters to which the magnitude is sensitive. Third, by
matching the water level decay pattern the hydraulic diffusion
parameter can be inferred since the pattern is primarily a
function of hydraulic diffusivity. We note that the real
geologic system will be more complex than what we discuss
here, but the result of this study provides a baseline estimation
of the quantities of interest. It is also important to recognize
that this study is a first-order model showing the basic
physical processes operating in the coupled strain and pore
pressure system. It is unlikely that this model could be applied
to match all the well data without extensive manipulation,
such as superposition in both time and space. To match a
large number of data would call for a numerical model that
incorporates more complexities.

5.2. Dip-Slip Fault

The second application example demonstrates earthquake-
induced hydrologic response to a normal fault system. As
shown in Figure 6, the fault extends from the surface to a
depth of 10 km with a dipping angle of 60° and a width of 30
km. The hypothetical geometry is taken from Bredehoeft
[1992], who evaluated the effect of a dip-slip fault earthquake
on the water table rise in Yucca Mountain, Nevada, using a
finite difference numerical model.
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Figure 7. Volumetric strain distribution due to a normal displacement of 1 m. The solid lines represent expansion,
and the dashed lines represent compression.
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The domain considered is a homogeneous and isotropic
block with a dimension of 30 km x 40 km x 15 km with the
center of the fault plane located at x = 15000 m, y =0,z = -
5000 m. The undrained Poisson’s ratio y, is assumed to be
0.3. Using the same Okada [1992] dislocation code as in the
strike-slip faulting case, we computed the three-dimensional
strain distribution in response to a 1 m dislocation of normal
fault motion. The three-dimensional volumetric strain field is
shown in Figure 7 with Figure 7a located at x = 14500 m,
Figure 7b located at y =-500 m, and Figure 7c located at z= -
7500 m. We used (6) to compute the coseismic pore pressure
change, which simply relates the pore pressure to the
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volumetric strain by the bulk compressibility without
considering the shear stress effect. Although (6) has the
advantage of being simple and straightforward when the
volumetric strain is known, the effect of shear stress on the
pore pressure field is sacrificed. For this example, we would
not expect the results to differ significantly 1f (4) were used.
For a bulk compr3551b111ty (1/C) of 5 x10™ /Pa the water
level changes are shown in three cross sections in Figure 8,
corresponding to the same cross sections presented in Figure
7. When we compare Figures 7 and 8, it becomes apparent
that the patterns of water level change closely resemble the
volumetric strain distribution. Moreover, Figures 8a and 8b
indicate that water levels vary with depth, thereby suggestmg
that fluctuation in the range of centimeters to tens of meters in
wells at various depths can be expected in response to dip-slip
faulting.

We also use solution (2) to calculate the pore pressure as a
function of time at two observation points, one at x = 14500
m, y = -5500 m, and z = -10500 m, or 860 m from the center
of the fault plane and the other at x = 14500 m, y =-12500 m,
and z = -150 m, or 11000 m from the fault center. Figure 9
shows that the postseismic diffusion at these two locations
exhibits similar patterns. The location farther from the fault
plane has a smaller coseismic water level change, while the
near-source location has a larger water level change.
However, the duration of influence is on the same timescale
regardless of the distance from the seismicity. The shift in
dimensionalized curves in Figure Sb only reflects the
differences in distance of the two points from the source.

6. Summary and Discussion

This study provides an integrated framework with which
one can approach the general problem of postseismic pore
pressure diffusion in three dimensions in response to
dislocation of a finite fault plane. We use Okada’s [1992]
solution to find the stress-strain field due to a dislocation on
the finite fault plane. Pore pressure generation is computed
using the stress-strain field and a relation that couples pore
pressure and strain or stress. The generated pore pressure is
then allowed to dissipate, governed by a diffusion process.
Although the theoretical components of hydromechanical
coupling have been well developed, this study integrates these
components and implements an analytical solution for pore
pressure diffusion that enables us to explore or predict
coseismic and postseismic hydrologic behaviors. Our
proposed generic model may also be useful for estimating
hydrologic parameters, such as hydraulic diffusivity. It should
be noted that this study is theoretical in nature and many of
the real complexities are not incorporated. For example, faults
are often found to be either impermeable barriers or
permeable conduits, and hydraulic diffusivity can vary over
orders of magnitude in heterogeneous media. We believe,
however, that this study captures the basic essence of coupled
deformation and fluid flow problems. Moreover, the basic
model presented here can be applied to more complex
systems through use of superpositions to study pore pressure
conditions after multifaulting events, as illustrated in the
strike-slip fault example.

We show the application of the model to a strike-slip and a
dip-slip fault system. Our findings indicate that the actual
diffusion time is shorter than conventional estimates based on
a diffusivity and a length scale. We find that the diffusion
time is predominately a function of diffusivity of the system.
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The location or the length scale has a large influence on the
magnitude of the initial head generation. A diffusion time
based on a diffusivity and a length may give misleading
results because significant localized flow occurs in complex
three-dimensional systems. It is also important to understand
that pressure at any point is a result of the initial pressure
generated at that point, the diffusion process, and the
influence of the initial pressure at other locations.
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