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Paleocene-Eocene Thermal
Maximum and the Opening of the
Northeast Atlantic
Michael Storey,1 Robert A. Duncan,2 Carl C. Swisher III3

The Paleocene-Eocene thermal maximum (PETM) has been attributed to a sudden release of carbon
dioxide and/or methane. 40Ar/39Ar age determinations show that the Danish Ash-17 deposit, which
overlies the PETM by about 450,000 years in the Atlantic, and the Skraenterne Formation Tuff,
representing the end of 1 ± 0.5 million years of massive volcanism in East Greenland, are coeval. The
relative age of Danish Ash-17 thus places the PETM onset after the beginning of massive flood basalt
volcanism at 56.1 ± 0.4 million years ago but within error of the estimated continental breakup time of
55.5 ± 0.3 million years ago, marked by the eruption of mid-ocean ridge basalt–like flows. These
correlations support the view that the PETM was triggered by greenhouse gas release during magma
interaction with basin-filling carbon-rich sedimentary rocks proximal to the embryonic plate boundary
between Greenland and Europe.

During the Paleocene-Eocene thermal
maximum (PETM) (1), the sea surface
temperature rose by 5°C in the tropics (2)

and more than 6°C in the Arctic (3), in con-
junction with ocean acidification (4) and the
extinction of 30 to 50% of deep-sea benthic
formaminiferal species (5). The initiation of the
PETM is marked by an abrupt decrease in the
d13C proportion of marine and terrestrial sedi-
mentary carbon (1, 6), which is consistent with
the rapid addition of >1500 gigatons of 13C-
depleted carbon, in the form of carbon dioxide
and/or methane, into the hydrosphere and
atmosphere (7). The PETM is thought to have
lasted only 210,000 to 220,000 years, with most
of the decrease in d13C occurring over a 20,000-
year period at the beginning of the event (8).

A possible trigger for the initiation of the
PETM is a period of intense flood basalt mag-
matism attending the opening of the North Atlan-
tic (9, 10), by generating metamorphic methane
from sill intrusion into basin-filling carbon-rich
sedimentary rocks (11). Herewe present 40Ar/39Ar
age determinations that allow the correlation of
Early Tertiary volcanic rocks of East Greenland
and the Faeroe Islands with the Danish Ash-17
deposit, which closely overlies PETM sequences
in the North Atlantic. In East Greenland, a >5-km-
thick sequence of plateau basalts formed in 1.0 ±
0.5 million years (My). A surge in magma pro-
duction, coupled with the eruption of mid-ocean
ridge basalt (MORB)–like flows in the lower part
of the flood basalt sequence, indicates the initiation
of seafloor spreading at 55.5 ± 0.3 million years
ago (Ma). The onset of the PETM correlates
closely with this breakup-related magmatism.

The North Atlantic Igneous Province (NAIP)
includes the basaltic and picritic lavas of Baffin
Island and West Greenland; the ~7-km-thick,
predominantly tholeiitic lava flow sequences of

the Blosseville Kyst of East Greenland; the
seaward-dipping reflectors of the Greenland and
northwest European volcanic rifted margins; the
Faeroe Islands and British Tertiary basaltic lavas;
and the aseismic ridges connecting Iceland to
either margin of the central Northeast Atlantic
(Fig. 1). The total area of the NAIP is 1.3 × 106

km2 (12) and its volume is estimated to be 5 × 106

km3 to 10 × 106 km3 (12–14). The East Greenland
(BlossevilleKyst) and Faeroe Islands flood basalts
lie at opposite ends of the Greenland-Iceland-
Faeroes Ridge (GIFR), the postulated Iceland hot-
spot track, and record volcanic activity leading up
to, during, and after continental breakup between
Greenland and Europe (Fig. 1).

40Ar/39Ar age determinations show that pre-
breakup volcanic activity in East Greenland and
the Faeroes began at ~61 Ma (15–17). Seven
lava flows cover the duration of magnetochron
C25n (~500,000 years) in the uppermost part of
the Faeroes lower series (FLS), indicating a very
low eruption rate by ~57 Ma (18) (Fig. 2). The
FLS extends into earliest C24r, as the lava flow
immediately below the capping ~10-m-thick coal-
bearing sediment horizon (19) is reversely mag-
netized (18). The volcanic hiatus as represented
on the Faeroes, after the end of the initial phase of
volcanism, has an estimated duration of 0.6 ±
0.4 My (Fig. 2). In East Greenland, volcaniclastic
sediments overlie the FLS equivalent, the Nansen
Fjord Formation (20), which includes lahars that
contain coal fragments and plant imprints (21).

After the period of little or no volcanism,
flood basalt eruptions commenced on a massive
scale in East Greenland and the Faeroes (Fig. 2).
Flood basalt activity in East Greenland is rep-
resented by four regionally extensive forma-
tions with a combined stratigraphic thickness of
>5 km. The Milne Land Formation (MLF), the
oldest of these four formations, includes MORB-
like low-Ti basalts halfway up the succession
(20) that provide correlation with the Faeroes
middle series (FMS) and upper series (FUS) (Fig.
2). Paleomagnetic data suggest a high eruption

1Quaternary Dating Laboratory, Department of Environment,
Society and Spatial Change, Roskilde University Centre, Post
Office Box 260, 4000 Roskilde, Denmark. 2College of Oceanic
and Atmospheric Sciences, Oregon State University, Corvallis,
OR 97331, USA. 3Department of Geological Sciences, Rutgers
University, Piscataway, NJ 08854-8066, USA.
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rate at the onset of the FMS (18). In the MLF,
East Greenland, lavas show a regular decrease in
the Dy/Yb ratio up through the section, indica-
tive of a progressive drop in the mean pressure of
partial melting (22) and consistent with rifting and
thinning of the lithosphere. A 40Ar/39Ar age
determination on plagioclase from a lava flow at
the base of the MLF yielded an age of 56.1 ± 0.5
Ma (16), in agreement with age determinations
for MLF-equivalent lavas inland (17). The
weighted mean age is 56.1 ± 0.4 Ma [2s internal
standard error (SE) used throughout; all ages are
reported relative to the currently accepted age of
28.02Ma for the 40Ar/39Ar standard Fish Canyon
Tuff Sanidine (23)]. A high-precision 40Ar/39Ar
age of 55.12 ± 0.06 Ma (table S1) on sanidine
from a tuff near the top of the Skraenterne For-
mation (SF), the uppermost of the four volcanic
formations, indicates that the entire sequence was
erupted in 1.0 ± 0.5 My (Fig. 2). The lowest
stratigraphic occurrence of MORB-like flows,
approximately 0.8 km above the base of the first
flood basalts, was dated to 55.1 ± 0.5 Ma (16) on
plagioclase from two samples of interlayered
Fe-Ti basalts (Fig. 2). Further and more precise
age constraints are provided by the Skaergaard
intrusion age. The parental magma of the
Skaergaard intrusion has been correlated with

Fig. 1. Map of the
North Atlantic region
showing the distribution
of igneous rocks related
to the NAIP and DSDP
site 550, where Danish
Ash-17 closely overlies
the PETM. A24, sea-floor
magnetic anomaly 24r;
BK, Blosseville Kyst; GC,
Gardiner Complex; MAR,
Mid-Atlantic Ridge.
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NF, Nansen Fjord Formation; RF, Rømer Fjord Formation. Faeroes: LS, lower series; MS, middle series; US, upper series. Marine
record: CIE, carbon isotope excursion. DT, change in time. 40Ar/39Ar age determinations for SF Tuff and Danish Ash-17 are
given in tables S1 and S2 and Fig. 3. The 40Ar/39Ar age for the MLF is from (16, 17). The 40Ar/39Ar ages for the RF and Faeroes US/MS are from (16). The
40Ar/39Ar-based Skaergaard intrusion age is from (26). The +1.11My between the top of C25n and the beginning of the CIE is from (29). The +1.55 My between
the top of C25n and Danish Ash-17 is based on the observation that Ash-17 occurs in the midpoint of C24r (32) and that C24r has a total duration of 3.11 My
(29). The right panel shows magnetochron ages (30) and the estimated variation inmagma productivity over time [from (16)]. There is a lowmelt production rate
by the beginning of C25n and a surge in magmatism (curve 1) during early C24r. Curves 2 and 3 represent upper (6000 km3/km per My) and lower uncertainties
on magma productivity during the rift-to-drift phase. Post-breakup melt production is based on seismic images of crustal thickness for the Greenland-Iceland
Ridge (GIR) (14).
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the Geike Plateau Formation (GPF) (24), which
overlies the level of theMORB-like flows in East
Greenland (Fig. 2). 40Ar/39Ar ages on biotite and
hornblende from transgressive granophyres with-
in the Skaergaard intrusion, in combination with
models of cooling history (25), give an intrusion
age of 55.75 ± 0.35 Ma (26). The weighted
average of the Skaergaard intrusion age and
the less precise age for the FUS/FMS is 55.5 ±
0.3 Ma. This age for the MORB-like flows al-
lows for the possibility that the majority of flood
basalts were emplaced in <300,000 years as con-
cluded from a fluid inclusion study on late-stage
granophyres from the Skaergaard intrusion (27).

The average melt production rate for the flood
basalts is 3000 (+3000/–1000) km3/km of rift per
My (Fig. 2), assuming that the hidden cumulates
have a comparable volume to the lavas (28). Al-
though there is a large degree of uncertainty, the
figure is in accord with crustal thickness–based
estimates of magmatic productivity of 1800 ± 300
km3/km of rift per My for the GIFR, proximal to
the volcanic rifted margin (14) (Fig. 2). The surge
inmelt production after renewed volcanism in East
Greenland and the Faeroes suggests a short-lived
rift-to-drift phase beginning at 56.1 ± 0.4 Ma, with
the eruption ofMORB-like low-Ti basalts at 55.5 ±
0.3 Ma marking the opening of the northeast At-
lantic at 68°N, above the ancestral Iceland hot spot.

Although the PETM has been identified glob-
ally in marine and also in some continental sed-
imentary sections, there has been uncertainty
about its timing relative to the on-land stratigra-
phy of the East Greenland–Faeroes flood basalts.
Orbital-based calibration for magnetochrons C24r
and C25n, using cores from multiple drill holes on
the Walvis Ridge in the South Atlantic, indicates

that the total duration of C24r is 3.12 ± 0.05 My
and that the base of the PETM is 1.11 ± 0.04 My
above the C24r/C25n boundary (29) (Fig. 2). This
indicates an age of approximately 55.5 to 55.6 Ma
for the onset of the PETM, relative to the geo-
magnetic polarity time scale value of 56.67 Ma for
the C24r/C25n boundary (30). Further age con-
straints are provided by Danish Ash-17, a wide-
spread stratigraphic marker horizon that is found
in Early Tertiary marine sediments from the North
Sea region and the North Atlantic. Danish Ash-17
overlies the PETM at Deep Sea Drilling Project
(DSDP) site 550 in the middle of C24r (C24r.5)
and has been used for the calibration of the PETM
(Fig. 1) (31, 32). DanishAsh-17 has been correlated
previously with an alkaline sanidine-bearing tuff in
the SF near the top of the East Greenland Tertiary
lava pile (Fig. 2), owing to similar mineralogy and a
40Ar/39Ar age of 55.0 ± 0.3 Ma (33). The pyroclas-
tic deposit is believed to originate from the Early
Tertiary Gardiner melanephelinite-carbonatite vol-
canic complex on the East Greenland margin
(Fig. 1). To test the correlation, with the aim of lo-
cating the stratigraphic position of the PETM in
relation to the East Greenland and Faeroes flood
basalts, we have redated both Danish Ash-17 and
the SF Tuff, carrying out more than 50 individ-
ual age measurements (34). Figure 3 shows that
40Ar/39Ar laser-fusion age determinations on sani-
dines from the SF Tuff and Ash-17 are analytically
indistinguishable. Of the 15 sanidine analyses from
the SFTuff, 1 is anomalously youngwith an age of
54.2Ma, possibly reflecting 40Ar loss by alteration.
The remaining 14 analyses give ages ranging be-
tween 55.0 and 55.3 Ma and conform to a simple
Gaussian distribution with a mean age of 55.12 ±
0.06 Ma (Fig. 3). Sanidine from Ash-17 is finer-
grained, and overall the multiple- as well as single-
grain analyses are less precise. However, the
sanidine fusion ages for Ash-17 are mostly evenly
distributed around 55.12 ± 0.12 Ma. There is a
smaller fraction of older ages, which cluster around
56 Ma (fig. S1) and are considered to include an
inherited (xenocrystic) component.

The similar newhigh-precision ages for Danish
Ash-17 and the SF Tuff indicate that they are
coeval and, due to the rarity of sanidine-bearing
tuffs in this time interval in theNorthAtlantic, most
likely represent the same eruptive unit (33). Ash-17
occurs in the midpoint of C24r (30), which would
place it approximately 450,000 years above the
base of the PETM (29). Relative to the 40Ar/39Ar
dates for the SF Tuff and Danish Ash-17, the start
of the PETM would thus correspond to an age of
55.6 Ma. The onset of the PETM was most likely
after the beginning of massive flood basalt vol-
canism at 56.1 ± 0.4 Ma, but is within error of the
estimated age of continental breakup at 55.5 ±
0.3 Ma, marked by the eruption of MORB-like
flows (Fig. 2). We suggest that rift propagation
and magmatism (above the ancestral Iceland hot
spot) during the final stages of breakup between
Greenland and Europe triggered the PETM event,
probably via the release of 12C-enriched methane
though massive sill intrusion and contact metamor-

phism of carbon-rich sediments contained in
basins proximal to the embryonic plate boundary
between Greenland and Europe (11).
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Fig. 3. Probability plot for sanidine 40Ar/39Ar ages
for the SF Tuff (top) and Danish Ash-17 (bottom).
With the exception of an anomalously young age, the
SF Tuff ages conform to a simple Gaussian distri-
bution. Ages are arithmetic mean ± 2 SE. Analyses
are reported in tables S2 and S3.
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