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Abstract

Studies extending over three decades have concluded that the current orientation of the martian rotation pole is unstable. Specifically, the
gravitational figure of the planet, after correction for a hydrostatic form, has been interpreted to indicate that the rotation pole should move easily
between the present position and a site on the current equator, 90◦ from the location of the massive Tharsis volcanic province. We demonstrate,
using general physical arguments supported by a fluid Love number analysis, that the so-called non-hydrostatic theory is an inaccurate framework
for analyzing the rotational stability of planets, such as Mars, that are characterized by long-term elastic strength within the lithosphere. In this
case, the appropriate correction to the gravitational figure is the equilibrium rotating form achieved when the elastic lithospheric shell (of some
thickness LT) is accounted for. Moreover, the current rotation vector of Mars is shown to be stable when the correct non-equilibrium theory is
adopted using values consistent with recent, independent estimates of LT. Finally, we compare observational constraints on the figure of Mars
with non-equilibrium predictions based on a large suite of possible Tharsis-driven true polar wander (TPW) scenarios. We conclude, in contrast
to recent comparisons of this type based on a non-hydrostatic theory, that the reorientation of the pole associated with the development of Tharsis
was likely less than 15◦ and that the thickness of the elastic lithosphere at the time of Tharsis formation was at least ∼50 km. Larger Tharsis-driven
TPW is possible if the present-day gravitational form of the planet at degree 2 has significant contributions from non-Tharsis loads; in this case,
the most plausible source would be internal heterogeneities linked to convection.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

A diverse set of studies have argued that the rotation pole
of Mars has been subject to large excursions relative to the
surface geography, or true polar wander (TPW), including 90◦
reorientations known as inertial interchange events. The obser-
vations supporting these studies include equatorial deposits that
resemble sediments at the present poles of Mars (Schultz and
Lutz, 1988), hydrogen rich equatorial deposits which are in-
ferred to be remnants of ancient polar caps (Wieczorek et al.,
2005) and analyses of crustal magnetic anomalies that sug-
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gest an early magnetic field existed that is not aligned with
the current rotation axis (Arkani-Hamed and Boutin, 2004;
Hood et al., 2005). Other geological evidence for significant
TPW on Mars is found in the spatial distribution of valley net-
works that appear to be formed by liquid surface runoff (Mutch
et al., 1976) and craters formed by oblique impacts, which may
record the demise of ancient equatorial satellites (Schultz and
Lutz-Garihan, 1982).

The most prominent feature in the geology of the martian
surface is the Tharsis rise. The figure of Mars, as defined
by the gravitational potential field of the planet, is dominated
by the signature of this massive volcanic structure (Smith et
al., 1999) and a rotationally-induced equatorial bulge. Previ-
ous analyses of this figure have commonly focused on two
questions related to the stability and evolution of the mar-
y and figure of Mars, Icarus (2007), doi:10.1016/j.icarus.2007.10.017
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Fig. 1. Schematic illustration highlighting the physics of TPW. (A) The scenario described by Gold (1955) in which an initially hydrostatic planet (A0, A1) is subject
to a surface mass load (green beetle, A2) which is assumed to remain partially uncompensated. The load will push the pole away (green arrow), while the hydrostatic
rotational bulge will, initially, resist this tendency (blue arrow). However, this resistance will disappear as the hydrostatic rotational bulge relaxes completely to the
new rotational state (A3), leading to further load-induced TPW. The process will continue until the load eventually reaches the equator (A4). (B) The rotational
stability of an initially spherical and non-rotating planet (B0) with an elastic lithosphere (blue shell) subject to a surface mass loading. Once the model planet is set
rotating, it will ultimately achieve the equilibrium form shown in B1. As in (A), the application of a surface mass load will move the pole away, though this motion
is initially resisted by the equilibrium rotational bulge (B2). The equilibrium rotational bulge will eventually reorient perfectly to the new rotation vector (i.e., the
equilibrium rotational bulge in B3 is identical to that of B1) and TPW will proceed without memory of the previous rotational state. Eventually, as in (A), TPW will
cease when the load reaches the equator (B4). (C) The scenario described by both Willemann (1984) and Matsuyama et al. (2006), in which an initially hydrostatic
planet (C0) develops an elastic shell through cooling of the interior (C1). The shell develops without any internal elastic stresses and thus the form of the planet will
be identical to the hydrostatic case in A1 rather than to the (less oblate) equilibrium form in B1. The appearance of a surface mass load will act to push the pole
away, and this will be resisted by the rotational bulge. However, in contrast to the first two cases, in this scenario the bulge cannot perfectly adjust to the new rotation
axis (note that the oblate form in C3 is not symmetric relative to the rotation axis) since the shell had an initially hydrostatic form (C1), while TPW introduces
elastic stresses within the shell. This incomplete adjustment, which introduces a memory of the original rotational state, is referred to as the remnant rotational bulge
(Willemann, 1984), and it acts to stabilize the pole. Ultimately, the load will not reach the equator (C4), but rather a position governed by the balance between the
load-induced push and the pull associated with the remnant rotational bulge. Note that if one removed the load in A4 and B4, the pole would not move; however,
this removal would cause the pole in C4 to return to its original orientation (C1). For each scenario, the figures are drawn so that the z-axis is fixed to the initial
rotation pole in order to be consistent with the mathematical analysis appearing in the appendix. The figure could also have been drawn so that the rotation axis at
any time coincided with the z-axis; the evolving geometry in this case would be essentially consistent with the view of an inertial observer.
tian rotation vector. First, to what extent did the develop-
ment of Tharsis, which is now located near the equator of the
planet (Zuber and Smith, 1997), cause TPW (Melosh, 1980;
Sprenke et al., 2005)? Second, how stable is the current rota-
tion axis to changes in the surface and internal mass distribution
(Bills and James, 1999)?

In an important conceptual study, Gold (1955) discussed
the rotational stability of a simple, ‘hydrostatic’ planet sub-
ject to a surface mass loading (see Fig. 1A). A surface load
will act to push the pole away. In the short term, the rota-
tional bulge will resist this tendency and stabilize the rotation
axis (Fig. 1A2). However, in the long term the bulge will re-
lax completely (i.e., hydrostatically) to any reorientation of
the pole position (Fig. 1A3), thus erasing all memory of past
positions, and permitting further load-induced TPW. Eventu-
ally, the load, even one as small as Gold’s famous beetle, will
reach the equator (Fig. 1A4), the minimum energy state of
the system. That is, TPW will continue until the pole aligns
with the maximum axis of inertia associated with any sur-
face load (i.e., non-hydrostatic) forcing. [Note that the Gold
Please cite this article in press as: A. Daradich et al., Equilibrium rotational stabilit
(1955) scenario includes a physical inconsistency since it as-
sumes that the rotational bulge will relax perfectly to a change
in centrifugal potential but that the surface load is never com-
pletely compensated isostatically.] It remains a common view,
following Gold’s influential analysis, that the stability of the
martian rotation pole—both at present day and in response to
Tharsis loading—is governed by the observed figure of the
planet after correction for a hydrostatic form (Melosh, 1980;
Bills and James, 1999; Sprenke et al., 2005).

In this context, a series of studies since 1980 have reached
the conclusion that the present non-hydrostatic form of Mars
(i.e., the form which results from removing the figure pre-
dicted on the basis of the present-day rotation vector in the
case where there are no viscous or elastic stresses) is charac-
terized by a maximum axis of inertia that lies along the current
equator, 90◦ from Tharsis, while the intermediate axis of inertia
is aligned with the present-day pole (Melosh, 1980; Bills and
James, 1999). The more recent of these analyses demonstrate
that the maximum and intermediate non-hydrostatic moments
of inertia are nearly equal (e.g., Bills and James, 1999), and thus
y and figure of Mars, Icarus (2007), doi:10.1016/j.icarus.2007.10.017



ARTICLE IN PRESS YICAR:8496
JID:YICAR AID:8496 /FLA [m5+; v 1.85; Prn:22/12/2007; 13:48] P.3 (1-13)

Equilibrium rotational stability and figure of Mars 3
conclude that the current rotation vector of Mars is inherently
unstable. That is, relatively small surface mass loads can cause
large (order 90◦) excursions of the pole along the great circle
joining the present-day pole and the maximum non-hydrostatic
inertia axis. Furthermore, analysis of the non-hydrostatic form,
after correction for the signal from Tharsis loading, has led to a
conclusion that the development of this volcanic province must
have induced a large (15◦–90◦) excursion of the rotation pole
(Sprenke et al., 2005).

The incomplete isostatic compensation of the ancient Thar-
sis load implies that Mars is characterized by non-zero long-
term strength within the lithosphere (Zuber and Smith, 1997),
and estimates of the elastic thickness of this region range up to
several hundred kilometers (McGovern et al., 2004; Zhong and
Roberts, 2003; Turcotte et al., 2002; Sohl and Spohn, 1997).
The question then arises: Is the non-hydrostatic stability the-
ory cited above valid for a planet with an elastic lithosphere?
[This question was also posed, without resolution, by Bills and
James (1999, p. 9094).]

Willemann (1984) recognized that the presence of an elas-
tic shell has a potentially significant stabilizing effect on TPW.
However, his analysis, recently refined and corrected by Matsu-
yama et al. (2006), has been neglected in subsequent studies of
Mars’ rotational stability (Bills and James, 1999; Sprenke et
al., 2005). There may be two reasons for this neglect. First,
Willemann (1984), and also Matsuyama et al. (2006), con-
sidered the general problem of load-induced TPW, with some
emphasis on Mars and Tharsis, but they did not quantitatively
address the implications of their results for the present-day
figure of the planet. Second, Willemann (1984) and Matsu-
yama et al. (2006) analyzed a specific scenario in which a
lithosphere develops through cooling of an initially hydrosta-
tic planet which is then subject to loading (see below). In
any event, the Willemann (1984) study indicates that a non-
hydrostatic theory for rotational stability is not appropriate for
a planet that has a sufficiently thick elastic lithosphere (e.g.,
Mars; see also the discussion on p. 28,682 of Zuber and Smith,
1997).

Accordingly, the main goal of this paper is to derive, using
physical arguments supported by standard mathematical analy-
sis, a new, generalized statement of rotational stability that is
valid for any planet—whether it has an elastic lithosphere or
not. With this generalization in hand, we first reassess the level
of present-day rotational stability implied by Mars’ gravita-
tional figure. Next, we extend the analysis of Matsuyama et al.
(2006) to quantify the total contribution of load-induced TPW
to the planetary figure. Finally, we compare these new expres-
sions to observational constraints on the figure of Mars in order
to set bounds on the range of Tharsis-induced TPW.

2. The physics of rotating planets

In this section we will discuss the physics of load-induced
TPW on planetary models that are characterized by the pres-
ence or absence of a uniform elastic lithosphere (Fig. 1). In the
former case, the thickness of the lithosphere is denoted by LT.
Our discussion will be supported by the mathematical analysis
Please cite this article in press as: A. Daradich et al., Equilibrium rotational stabilit
appearing in Appendix A, which is based on standard fluid Love
number theory. That is, we consider time scales long enough
such that all viscous stresses associated with the response to
surface mass loading and changes in the rotational (i.e., cen-
trifugal) potential have relaxed completely.

As we discussed in reference to Fig. 1A, Gold (1955) was
concerned with the rotational stability of a planet in purely hy-
drostatic equilibrium. Such a planet has no elastic strength (LT
= 0), and in this case the rotational flattening (or oblateness) of
the background hydrostatic form (Fig. 1A0 or 1A1) is a func-
tion of the rotation rate, Ω , and the internal density structure
of the planet [Eq. (A.11); the sensitivity to internal structure
is embedded within the fluid tidal k Love number computed
for the model with no lithosphere, k

T,∗
f ]. In this scenario, any

non-hydrostatic contributions to the inertia tensor will be as-
sociated with the applied surface mass load [Eq. (A.9)]. Thus,
diagonalization of the non-hydrostatic inertia tensor will yield
a maximum principal axis (or rotation pole) that is oriented 90◦
from the load, as in Fig. 1A4. The minimum principal axis will
pass through the center of the load, and both the intermediate
and minimum axes will pass through the equator.

Next, we turn to scenarios in which the planet has an elas-
tic lithosphere, beginning with Fig. 1B. In this somewhat un-
realistic, but nevertheless physically instructive case, an ini-
tially non-rotating planet with a pre-existing elastic lithosphere
(Fig. 1B0) is spun-up to its current rotation rate, and the sys-
tem is allowed to reach a state in which all sub-lithosphere
viscous stresses relax completely (Fig. 1B1). This relaxed
form will not be in hydrostatic equilibrium, since the elastic
lithosphere has permanent strength, and thus the oblateness of
the form will be less than the hydrostatic flattening in Fig. 1A
(Mound et al., 2003). To distinguish the former from the lat-
ter we will henceforth use the term ‘equilibrium form,’ and
note that this form approaches the hydrostatic figure as the elas-
tic lithospheric thickness approaches zero. Mathematically, the
oblateness of the equilibrium form is a function of the rotation
rate, Ω , and the fluid tidal k Love number, kT

f [Eq. (A.16)],
and the latter is a function of both the internal density struc-
ture of the planet and the thickness of the elastic lithosphere
(kT

f → k
T,∗
f from below as LT → 0) (Mitrovica et al., 2005;

Matsuyama et al., 2006).
As in Fig. 1A, a load applied to this model planet will ulti-

mately reach the equator (Fig. 1B4) since the equilibrium rota-
tional bulge which defines the initial rotating state (Fig. 1B1)
will eventually reorient perfectly to a change in the position
of the rotation pole [i.e., it provides no memory of a previous
rotational state; see figure caption and the discussion between
Eqs. (A.12) and (A.14)]. However, it would be incorrect to ana-
lyze the rotational stability of this system using non-hydrostatic
stability theory. Specifically, if one were to correct the figure in
Fig. 1B1 for a hydrostatic form, one would be left with a resid-
ual, non-hydrostatic form that was characterized by a deficit in
oblateness, or mass excess at the poles, i.e., a prolate spheroid.
(Mathematically, this difference arises because kT

f < k
T,∗
f when

LT �= 0.) One would thus erroneously introduce a spurious ten-
dency for the entire figure to drive a TPW event that would
y and figure of Mars, Icarus (2007), doi:10.1016/j.icarus.2007.10.017
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move the pole towards a point on the current equator, 90◦ from
Tharsis.

We conclude that the long-term stability of a rotating
planet is governed by the terms in the inertia tensor which
do not perfectly reorient to the contemporaneous rotation axis
[Eq. (A.13)]. That is, the hydrostatic form in the scenario of
Fig. 1A [Fig. 1A1; Eq. (A.8)] and the equilibrium form in
the scenario of Fig. 1B [Fig. 1B1; Eq. (A.13)] are irrelevant
to the long-term rotational stability. Thus, the stability of the
system in Fig. 1B is governed by the non-equilibrium (rather
than non-hydrostatic) inertia tensor. This statement provides a
fundamental extension of the Gold (1955) stability theory to
the case of planets, like Mars, with non-zero (very long-term)
elastic strength in the lithosphere.

Fig. 1C shows a more complicated and realistic scenario
for such planets that has been considered by both Willemann
(1984) and Matsuyama et al. (2006). An initially hydrosta-
tic, rotating planet (Fig. 1C0) cools and develops a uniform
and unbroken elastic lithosphere (Fig. 1C1). Lithospheric for-
mation will not disturb the hydrostatic form since the elastic
lithosphere will grow in a fully relaxed state. In contrast to
Fig. 1B (or Fig. 1A), the rotational bulge cannot reorient per-
fectly to a change in the pole position since there would be
no way for the elastic lithosphere to re-establish a hydrostatic
form around the new pole position: TPW will introduce stresses
in the previously stress-free lithosphere. The system thus has a
memory of the initial rotational state (Fig. 1C1) and any depar-
tures from this state would be resisted. The final load position
(Fig. 1C4), which is not at the equator, represents a balance be-
tween this resistance and the tendency of the load to drive TPW.
Unless the load is of the same order of magnitude as the mass
associated with the rotational bulge, little TPW can occur.

Is our generalized statement that rotational stability is gov-
erned by non-equilibrium components of the inertia tensor ap-
propriate to the scenario depicted in Fig. 1C? To answer this
requires that we separate the change in shape between the initial
(Fig. 1C1) and final (Fig. 1C4) rotational states into a contri-
bution that perfectly reorients as the pole moves around and a
residual term. Physically, the latter can be inferred by simply
switching off rotation in the case of Fig. 1C1 and determin-
ing the departure from sphericity that would result. This de-
parture would be the difference between the hydrostatic form
(Fig. 1C1) and the equilibrium form associated with a planet
having the same rotation rate and elastic lithospheric thickness
(as in Fig. 1B1). This difference, which is termed the remnant
rotational bulge (Willemann, 1984; Matsuyama et al., 2006), is
frozen into place relative to the initial pole position. Thus the
oblateness in Fig. 1C1 can be decomposed into a component
from the remnant rotational bulge, which stays fixed relative
to the initial rotation axis, and an equilibrium rotational form
that will adjust perfectly (in the long-time limit) as the pole
moves from the initial to final (Fig. 1C4) state. Therefore, as
in Fig. 1B, the rotational stability of the planet is governed by
non-equilibrium components of the inertia tensor. As in previ-
ous scenarios, these components include the surface mass load,
but, in the case of Fig. 1C they also include a remnant bulge.
Please cite this article in press as: A. Daradich et al., Equilibrium rotational stabilit
The same separation of the figure of the planet into: (1) an
equilibrium form that adjusts perfectly to the change in the ori-
entation of rotation and thus has no bearing on the rotational
stability; and (2) a non-equilibrium, remnant rotational form
oriented with the initial pole position, is derived mathematically
in Appendix A.1.3 [see Eqs. (A.19) to (A.21)].

As a final point, Matsuyama et al. (2007) have analyzed
the rotational stability of the scenario in Fig. 1C by writing
expressions for the total energy in the system and finding the
TPW that minimizes this energy. Their expressions provide an
independent confirmation that it is the diagonalization of the
non-equilibrium inertia tensor that governs the rotational sta-
bility.

3. Results

The non-equilibrium theory described above provides a gen-
eralized framework for assessing the rotational stability of a
planet on the basis of its gravitational figure or, equivalently, its
inertia tensor. In this section we reassess two issues that were
previously investigated by applying a non-hydrostatic rotation
theory to the figure of Mars. First, how stable is the present-day
rotation vector of the planet? Second, what level of TPW was
driven by the development of the Tharsis volcanic province?

3.1. The present-day rotational stability of Mars

We can write the total inertia tensor of Mars as

(1)

⎡
⎣ a

b

c

⎤
⎦ =

⎡
⎣ δhyda

δhydb

δhydc

⎤
⎦ +

⎡
⎣ δnhyda

δnhydb

δnhydc

⎤
⎦ ,

where a, b, and c are the non-dimensional moments (non-
dimensionalized by the mass and mean radius of Mars) in the
principal axis system (a < b < c) and the superscripts hyd and
nhyd denote hydrostatic and non-hydrostatic contributions. On
Mars, these three moments refer to axes on the equator at the
same longitude as Tharsis, on the equator 90◦ from Tharsis, and
the current rotation axis, respectively. Embedded within the hy-
drostatic component of the total inertia tensor is a spherical term
which results in a trace, for this contribution, that is non-zero.

The non-hydrostatic moment increments are commonly ex-
pressed in terms of the observed harmonic (Stokes) coefficients
of the gravitational potential at degree two, J2 and J22, in the
same principal axis system (Bills and James, 1999):

(2)

⎡
⎣ δnhyda

δnhydb

δnhydc

⎤
⎦ =

⎡
⎣ −1/3

−1/3
2/3

⎤
⎦(

J2 − J
hyd
2

) +
⎡
⎣ −2

2
0

⎤
⎦J22,

where the parameter J
hyd
2 is a correction to the observed J2

harmonic associated with the hydrostatic form of the planet.
Satellite-based measurements (Smith et al., 1999) have yielded
the estimates: J2 = (1.960 ± 0.02) × 10−3 and J22 = (6.317 ±
0.003) × 10−5.

This decomposition makes no assumption regarding a con-
nection between the rotational stability and the inertia tensor.
However, let us proceed by assuming that the non-hydrostatic
y and figure of Mars, Icarus (2007), doi:10.1016/j.icarus.2007.10.017
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inertia tensor governs the rotational stability. In this case, once
the observed harmonics J2 and J22 are specified, assessing the
rotational stability reduces to estimating J

hyd
2 in Eq. (2). Bills

and James (1999) combined a satellite-based estimate of J2

with a constraint on the spin-axis precession rate (or precession
constant) based on radio tracking from the Pathfinder mission
(Folkner et al., 1997), to estimate the non-dimensional polar
moment of inertia as c = 0.3662 ± 0.0017. They then used the
Darwin–Radau relationship to convert this value to an estimate
for J

hyd
2 = 1.840±0.021×10−3 [see their Eq. (88)]. Using this

value in Eq. (2) yields:

(3)

⎡
⎣ δnhyda

δnhydb

δnhydc

⎤
⎦ =

⎡
⎣ −166.06 ± 7.20

86.63 ± 7.20
79.43 ± 14.27

⎤
⎦ × 10−6.

Bills and James (1999) concluded, since δnhydb > δnhydc, that
the current rotation pole of Mars is 90◦ from where it should
be on the basis of the non-hydrostatic stability theory of Gold
(1955). Moreover, since δnhydb ∼ δnhydc, they also concluded
that the pole is unstable; small mass loads would be capable of
moving the pole along a great circle joining the maximum and
intermediate axes of inertia (i.e., along the great circle 90◦ from
Tharsis).

Yoder et al. (2003) have derived a more recent estimate of
c = 0.3650 ± 0.0012. We have repeated the Bills and James
(1999) analysis for this range of values and the result is shown
in Fig. 2. [One difference in our analysis is that we correct the
polar moment c for a small non-hydrostatic contribution before
we apply the Darwin–Radau relation. Under the assumption
that these non-hydrostatic contributions to the inertia tensor are
axisymmetric about a point on the equator at the same longitude
as Tharsis, the correction is simply 4J22/3 (Bills and James,
1999).] Over this entire range of c values δnhydb ∼ δnhydc, and
therefore one would again conclude on the basis of a non-
hydrostatic theory that the martian rotation pole is unstable.
Note that the c value adopted by Bills and James (1999) falls
at the high end of the range considered in Fig. 2, and that
δnhydc > δnhydb when c < 0.3657.

As we noted in the last section, this non-hydrostatic theory
is not appropriate for the analysis of Mars’ rotational stability
if the martian lithosphere is characterized by non-zero elastic
strength. Accordingly, we need to analyze the non-equilibrium,
rather than non-hydrostatic form to properly assess the stabil-
ity. Simply put, the hydrostatic correction removes too much
flattening from the observed form and will thus imply a sig-
nificantly less stable planet than the correct, non-equilibrium
approach.

Let us begin by re-writing Eq. (1) in the form:

(4)

⎡
⎣ a

b

c

⎤
⎦ =

⎡
⎣ δeqa

δeqb

δeqc

⎤
⎦ +

⎡
⎣ δnea

δneb

δnec

⎤
⎦ ,

where the superscripts eq and ne denote the equilibrium and
non-equilibrium contributions to the total inertia tensor. The
second of these contributions can be written in terms of J2
Please cite this article in press as: A. Daradich et al., Equilibrium rotational stabilit
Fig. 2. Non-hydrostatic moments of inertia, computed using Eq. (2), as a func-
tion of the total polar moment of inertia, where the latter is varied within the
uncertainty (0.3650±0.0012) cited by Yoder et al. (2003). The moments δnhydc

and δnhyda refer to axes in the direction of the current rotation pole and the
equatorial location of Tharsis. The axis associated with the moment δnhydb is
aligned with a point on the equator 90◦ from Tharsis. All moments are normal-
ized by Ma2, where M and a are the mass and mean radius of Mars. We adopt
the observed values of J2 = 1.960 × 10−3 and J22 = 6.317 × 10−5 cited in the
main text.

and J22 using a modified form of Eq. (2):
⎡
⎣ δnea

δneb

δnec

⎤
⎦ =

⎡
⎣ −1/3

−1/3
2/3

⎤
⎦(

J2 − J
hyd
2

)

(5)+
⎡
⎣ −1/3

−1/3
2/3

⎤
⎦(

J
hyd
2 − J

eq
2

) +
⎡
⎣ −2

2
0

⎤
⎦J22.

The second term on the right-hand side of this equation is the
difference between the hydrostatic and equilibrium contribu-
tions to the inertia tensor and it can be written in the form
[Eq. (A.17)]:

(6)J
hyd
2 − J

eq
2 = Ω2a3

3GM

[
k
T,∗
f − kT

f

]
,

where a and M are the radius and mass of the planet, re-
spectively, and G is the gravitational constant. The quantity
within square brackets represents the difference between fluid
Love numbers computed for no lithosphere (i.e., the hydrostatic
form) and a lithosphere of thickness LT (the equilibrium form).

In Fig. 3 we use Eqs. (5) and (6) to compute the non-
equilibrium moments δnea, δneb and δnec, as a function of the
elastic lithospheric thickness. The Love numbers were com-
puted using the Mars model of Sohl and Spohn (1997) (see
y and figure of Mars, Icarus (2007), doi:10.1016/j.icarus.2007.10.017
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Fig. 3. Non-equilibrium moments of inertia, computed using Eqs. (5) and (6), as
a function of the adopted thickness of the elastic lithosphere, LT (km). The mo-
ments δnea, δnec, and δneb refer to axes in the direction of Tharsis, the current
rotation pole and a point on the equator 90◦ from Tharsis, respectively. All fig-
ures for the moments are normalized by Ma2, where M and a are the mass and
mean radius of Mars. We adopt the observed values of J2 = 1.960 × 10−3 and
J22 = 6.317 × 10−5 cited in the main text. The fluid Love numbers required in
Eq. (6) are given in Table 1 for various values of LT .

Table 1
Effects of lithospheric thickness (LT) on the fluid k Love numbers of Mars.
We adopt the 5-layer model of martian structure described by Sohl and Spohn

(1997). The tidal fluid Love number for LT = 0 is k
T ,∗
f

= 1.18955

LT (km) kL
f

kT
f

30 −0.951 1.146
70 −0.910 1.091

100 −0.875 1.053
200 −0.764 0.899

Table 1). Furthermore, in evaluating the first term on the right-
hand side of Eq. (5), we adopt the hydrostatic correction of Bills
and James (1999). For LT = 0, the non-equilibrium theory col-
lapses to the old non-hydrostatic case [kT,∗

f = kT
f in Eq. (6) and

therefore the second term on the RHS of Eq. (5) vanishes] and
the results suggest an unstable rotation pole (i.e., δneb ∼ δnec,
as noted in Fig. 2). However, the estimate of δnec increases
rapidly relative to δneb as LT is increased above zero. Indeed,
a value of LT = 100 km yields a moment difference δnec− δneb

which is comparable to the difference δneb − δnea, and a highly
stable rotation pole. We therefore conclude that the current ori-
entation of the martian rotation pole is stable for values of LT
that are consistent with widely cited estimates (e.g., McGovern
et al., 2004; Zhong and Roberts, 2003; Turcotte et al., 2002;
Sohl and Spohn, 1997).
Please cite this article in press as: A. Daradich et al., Equilibrium rotational stabilit
3.2. TPW driven by Tharsis loading

An important, outstanding issue in the long-term evolution
of Mars concerns the extent to which the development of Thar-
sis changed the orientation of the rotation vector. For exam-
ple, there have been numerous inferences of Tharsis-driven
TPW based on tectonic patterns, geomorphologic features,
magnetic anomalies and grazing impacts (see introduction and
also Sprenke et al., 2005). In addition, there have been theoreti-
cal predictions of polar wander driven by a surface mass loading
consistent with the size and current location of Tharsis (Melosh,
1980; Willemann, 1984; Matsuyama et al., 2006, 2007). These
theoretical analyses admit both small and large polar wander
solutions [TPW angle, δ, of ∼10◦ or ∼80◦, respectively; see
discussion below Eq. (A.30)].

Sprenke et al. (2005) analyzed the observed figure of Mars
using a non-hydrostatic stability theory and concluded that
Tharsis induced a polar wander of 15◦–90◦. Specifically, they
began by adopting the non-hydrostatic form given by Eq. (3)
and then corrected this form for Tharsis using the load model of
Zuber and Smith (1997). They next performed a search through
all possible (pre-Tharsis) pole positions that satisfied the fol-
lowing stability equation (Bills and James, 1999):

(7)J
nhyd†

2 > 2J
nhyd†

22 ,

where the superscript † denotes the residual non-hydrostatic
field after correction for Tharsis. The collection of accept-
able pole positions defined a pre-Tharsis stability field, and
the range of TPW angles that moved the pole from within this
stability field to the present position yielded the inference of
δ = 15◦–90◦ (Sprenke et al., 2005).

To understand the origin of Eq. (7), we can consider a special
case where the correction for Tharsis does not alter the princi-
pal axis orientation determined from the figure of Mars. In this
case, we could revise Eq. (2) to remove the Tharsis load using:

(8)

⎡
⎢⎣

δnhyd†
a

δnhyd†
b

δnhyd†
c

⎤
⎥⎦ =

⎡
⎣ −1/3

−1/3
2/3

⎤
⎦(

J2 − J
hyd
2 − J

†
2

)

+
⎡
⎣ −2

2
0

⎤
⎦(

J22 − J
†
22

)
,

where J
†
2 and J

†
22 are the Tharsis contributions to these coef-

ficients. If we define J
nhyd†

2 = J2 − J
hyd
2 − J

†
2 and J

nhyd†

22 =
J22 − J

†
22, then the stability equation (7) is seen simply as a

condition that δnhyd†
c > δnhyd†

b.
There are various assumptions inherent to the procedure

adopted by Sprenke et al. (2005). First, that the non-hydrostatic
form governs the rotational stability (see their discussion on
p. 488). Second, related to the first, that the remnant bulge dy-
namics discussed by Willemann (1984) may be ignored. This
assumption is implied by the procedure of searching through
possible pre-Tharsis pole positions. In the physics of Fig. 1C,
each reorientation of the pole in this manner would introduce a
remnant bulge contribution to both the J2 and J22 that should
y and figure of Mars, Icarus (2007), doi:10.1016/j.icarus.2007.10.017
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be accounted for. A further assumption of Sprenke et al. (2005)
is that the figure of Mars at spherical harmonic degree two has
not changed, with the exception of a simple rotation, subsequent
to the end of the development of Tharsis [i.e., the values of J2
and J22 used in Eq. (7) are present-day values].

In this section, we revisit the inference of Tharsis-driven
TPW based upon the observed figure of Mars by using the
non-equilibrium rotation theory appropriate to the physics of
Fig. 1C. In Appendix A.2 we derive expressions for the to-
tal Stokes coefficients J2 and J22 (in the principal axis sys-
tem) arising from the loading of a planet within this scenario
[Eqs. (A.31) and (A.32)]. For the benefit of the reader, we re-
peat these equations here:

J2 = kT
f

Ω2a3

3GM
+ (

1 + kL
f

)
k
T,∗
f Q′ Ω2a3

3GM

[
1 − 3 cos2 θL

2

]

− (
k
T,∗
f − kT

f

)Ω2a3

3GM

[
1 − 3 cos2 δ

2

]
,

4J22 = (
1 + kL

f

)
k
T,∗
f Q′ Ω2a3

3GM
sin2 θL

− (
k
T,∗
f − kT

f

)Ω2a3

3GM
sin2 δ,

where the TPW angle δ is given by [Eq. (A.29)]:

δ = 1

2
arcsin

[
Q′α sin(2θL)

]
and α is a parameter which depends on the planetary model and
the adopted lithospheric thickness [Eq. (A.30)]:

α = 1 + kL
f

1 − kT
f /k

T ,∗
f

.

These expressions yield the Stokes coefficients for the final
state given by Fig. 1C4. In these equations, θL denotes the final
colatitude of the Tharsis load, which we take to be 83◦ (Zuber
and Smith, 1997). For a given model of Mars’ density structure,
which yields k

T,∗
f (Table 1), there are two free parameters on the

RHS of these equations. The first is the lithospheric thickness.
Specifying LT sets the values of the fluid tide and load Love
numbers, kT

f and kL
f , respectively (Table 1), as well as the para-

meter α. The second is the uncompensated size of the Tharsis
load, Q′ [Eq. (A.26)], defined as the ratio of the gravitational
potential perturbation at degree 2 due to the direct effect of the
load and the hydrostatic bulge [the latter, together with LT, sets
the angle δ in Eq. (A.29)].

Our procedure for determining the range of acceptable TPW
angles δ driven by the Tharsis load is as follows. First, we spec-
ify some tolerance within which the predictions should fit the
observed values of the Stokes coefficients J2 and J22. Next,
we choose a value of LT. For this lithospheric thickness, we
then search through a wide range of Q′ values and note all
predictions that fit the Stokes coefficients. We then repeat this
procedure for different choices of LT. For each Q′, this provides
a range of acceptable δ values (this range can be zero).

Equations (A.31) and (A.32) assume that the only contribu-
tors to the non-equilibrium planetary form are the Tharsis load
Please cite this article in press as: A. Daradich et al., Equilibrium rotational stabilit
Fig. 4. The full range of TPW angles, δ, as a function of the uncompensated size
of Tharsis, Q′ , that yield ‘acceptable’ fits to the observed Stokes coefficients J2
and J22 for the present-day gravitational figure of Mars. The calculations are
based on the non-equilibrium stability theory summarized in Fig. 1C and by
Eqs. (A.29)–(A.32). These predictions adopt a final Tharsis colatitude of 83◦
(Zuber and Smith, 1997), and a lithospheric thickness, LT , which varies from
30 to 200 km. The range of solutions includes all predictions which fit the
observed J2 and J22 coefficients to within 10 and 25%, respectively. The color
contours in (A) show the variation in the J2 misfit across the range of acceptable
solutions. (B) is the analogous result for the J22 misfit.

(represented by Q′) and the remnant bulge (whose contribution
depends on the level of TPW). Although Tharsis dominates the
observed gravitational form of Mars, not including other load-
ing contributions and their associated TPW will introduce some
error in our predictions of both J2 and J22, and the misfit tol-
erance we discuss above is an attempt to explore the sensitivity
of our inferences to this error.

In Fig. 4 we show all acceptable solutions for δ as a func-
tion of the uncompensated size of the load when we allow a
misfit of up to 10% of the observed value of J2 and up to 25%
of the value of J22. [These different values reflect the fact that
the background rotational bulge dominates the J2 observation;
as an example, the non-hydrostatic figure of Mars inferred by
Bills and James (1999) is ∼6% of the observed value.] Fig. 4A
maps out the variation in the misfit to the J2 coefficient (as indi-
y and figure of Mars, Icarus (2007), doi:10.1016/j.icarus.2007.10.017
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cated by the color bar) within the range of acceptable solutions,
while Fig. 4B is the analogous map for the J22 harmonic. Em-
bedded within these calculations are elastic lithospheric thick-
nesses ranging from 30 to 200 km.

No solutions exist below a Q′ value of 0.45. Moreover, in our
calculations we adopt an upper bound Q′ value of 3.0, which is
significantly larger than the bound cited by Willemann (1984).
As discussed in Appendix A.2, there are, in theory, two possible
true polar wander solutions for a given load size and final colat-
itude when Q′α > 1; in this case, if δ is a solution of Eq. (A.29),
then 90◦ − δ is also a solution. However, both solutions are not
necessarily able to reconcile the additional constraint we have
imposed in regard to the fit to the observed Stokes coefficients.
For example, high TPW solutions (i.e., greater than 45◦) do ex-
ist, but only for Q′ > 2 and a mismatch to the observed value
of J2 > 4% (for Q′ < 3). As we allow a progressively greater
mismatch to the J2 coefficient, high TPW solutions are found
for progressively lower values of Q′.

A comparison of Figs. 4A and 4B indicates that the J2 co-
efficient provides a more stringent constraint on the acceptable
range of TPW than J22. As an example, while high TPW so-
lutions only exist for a misfit tolerance greater than 4% of J2,
these solutions span a wide range of J22 misfits (i.e., from less
than a percent upwards). We conclude, under the assumptions
inherent to the present analysis, that the development of Thar-
sis could only have driven a large excursion of the pole if a
significant fraction of the present-day J2 observation is due to
signals from sources other than Tharsis and its associated rem-
nant bulge reorientation. The size of this required contribution,
which reaches ∼10% for Q′ = 1.7 (Willemann, 1984), is larger
than any surface load found on Mars (Smith et al., 1999). This
suggests that the only plausible source would be related to in-
ternal, convectively-driven dynamics. We can rephrase this by
concluding that the J2 signal associated with a large TPW event
(and remnant bulge reorientation) driven by Tharsis differs sig-
nificantly from the present-day observation of this harmonic.

The relationship between the lithospheric thickness and mis-
fit within the suite of acceptable TPW solutions shown in Fig. 4
is plotted in Fig. 5. That is, for a given Q′, Fig. 5 provides the
range in LT embedded within the solutions for δ on the asso-
ciated frame of Fig. 4. Note that for both the low and high
TPW solutions, the elastic thickness of the lithosphere which
produced a solution for the Stokes coefficients within the spec-
ified misfit tolerances tends to decrease as Q′ is increased.

This trend reveals some interesting physics. Consider, first,
the small TPW branch of solutions. The results in Fig. 4 indicate
that a small Tharsis load (Q′ ∼ 0.5) emplaced at a colatitude
very close to its final colatitude (i.e., δ of a few degrees) will
yield a good fit to both the J2 and J22 observations. Increasing
the uncompensated size of the load will increase the TPW an-
gle δ (Fig. 4). To maintain a similar fit to the gravitational field
as Q′ is increased, that is, to maintain a similar effective load
size and remnant bulge signal, requires, in this case, that the
lithospheric thickness be reduced. Next, within the high TPW
branch, decreasing Q′ leads to a higher, not smaller, level of
TPW (Fig. 4). Once again, one can maintain a similar con-
tribution to the Stokes coefficients from the surface load by
Please cite this article in press as: A. Daradich et al., Equilibrium rotational stabilit
Fig. 5. The range of lithospheric thickness, as a function of the uncompensated
size of Tharsis, that yield ‘acceptable’ fits to the observed Stokes coefficients J2
and J22 for the gravitational figure of Mars. The associated range in TPW an-
gles, δ, is given in Fig. 4. The details of the calculation are discussed in the
caption to Fig. 4 and in the text. (A) and (B) show the variation in the J2 and J22
misfit across this range of acceptable solutions.

increasing LT as Q′ is decreased since this will reduce the level
of isostatic compensation. However, in this case, the signal from
remnant bulge reorientation will not remain the same; rather it
will increase because both the TPW angle and the size of the
remnant bulge will increase. The result is an increasing level
of J2 misfit as Q′ is decreased in the high TPW branch.

Under the assumptions inherent to the analysis, Figs. 4
and 5 may be used to constrain the thickness of the martian
lithosphere at the time of the formation of Tharsis and the TPW
driven by this formation. As discussed above, if we accept an
upper bound on the (uncompensated) size of Tharsis cited by
Willemann (1984), Q′ = 1.7, then high TPW solutions are ruled
out unless the misfit to J2 is well over 10%. In this particular
case, the TPW angle is limited to less than 15◦ (Willemann,
1984; Matsuyama et al., 2006) and the minimum elastic thick-
ness of the martian lithosphere at Tharsis formation would be
45 km. For a Q′ value of 1, the TPW angle would be less
than 10◦, and LT > 90 km.
y and figure of Mars, Icarus (2007), doi:10.1016/j.icarus.2007.10.017
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4. Conclusions

Numerous analyses of the rotational stability of Mars, ei-
ther at present day or in response to loading by Tharsis, have
been based on the assumption that this stability is governed
by the non-hydrostatic gravitational figure of the planet. We
have demonstrated that such a treatment is incorrect. In par-
ticular, for any planet with long-term elastic strength within
the lithosphere, the stability of the rotation vector is governed
by the gravitational figure after correction for an ‘equilibrium,’
rather than hydrostatic form. The former is defined as the shape
achieved by an initially non-rotating planet with an elastic
outer shell after all viscous stresses below the shell have re-
laxed subsequent to the onset of rotation (e.g., Fig. 1B1). The
equilibrium form depends on the thickness of the elastic plate
as well as on the rotation rate and the internal density struc-
ture of the planet, and it is the component of the gravitational
figure which will perfectly reorient (in the fluid limit) to a
change in the rotation vector; thus, it provides no long-term
memory of any previous rotational state. The ‘non-equilibrium’
theory provides the necessary extension of the oft-cited non-
hydrostatic theory of Gold (1955) to the case of planets with
lithospheres that maintain elastic strength over very long time
scales.

The observed figure of Mars, after correction for the equi-
librium form, indicates that the present-day rotation axis of the
planet is stable for adopted elastic thicknesses of the martian
lithosphere well below current estimates (Fig. 3). This coun-
ters previous conclusions, based on a non-hydrostatic theory of
planetary rotation, that the present-day orientation of the pole
is unstable and will move easily on a great circle defined by the
arc joining the current pole and a point 90◦ from Tharsis on the
martian equator.

Finally, we have used a version of the non-equilibrium the-
ory valid for the scenario of planetary evolution considered by
Willemann (1984) and Matsuyama et al. (2006), in which a
lithosphere develops on an initially hydrostatic form, to esti-
mate the range of possible Tharsis-driven TPW. Our analysis,
based on a comparison of predictions of the Stokes coefficients
J2 and J22 with present-day observational constraints, suggests
that Tharsis drove less than 15◦ of polar motion. These calcu-
lations also indicate that LT at the time of Tharsis formation
was at least ∼50 km, though a more likely lower bound (if we
accept Q′ ∼ 1) is ∼100 km. This bound suggests that the for-
mation of Tharsis did not markedly reduce the strength of the
martian lithosphere.

This inference of Tharsis-driven TPW assumes that the fig-
ure of Mars has been altered by a relatively minor amount,
defined by an imposed misfit tolerance, since the end of Tharsis
formation. We can clearly not rule out that other loads, in par-
ticular internal heterogeneity related to convection, provide a
significant contribution to the present-day form. However, our
intent was to specifically reassess the conclusions of previous
work that had assumed that these contributions were small. In
this regard, our results demonstrate that arguments that Tharsis-
induced TPW was at least 15◦, based on a non-hydrostatic the-
ory of martian rotational stability, are not robust.
Please cite this article in press as: A. Daradich et al., Equilibrium rotational stabilit
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Appendix A. Mathematical treatment of Fig. 1

In this appendix we use standard (fluid) Love number theory
to derive expressions for the inertia tensor appropriate to each of
the scenarios in Fig. 1. In each case, we consider the connection
between these expressions and the J2 and J22 harmonics within
the principal axis system. The reader is asked to note that prior
to Eq. (A.29), the symbol δ refers to the Kronecker delta and
not the TPW angle.

In the time domain (t ), the viscoelastic load and tidal (or
tidal-effective) k Love numbers at spherical harmonic degree
two have the form (Peltier, 1974):

(A.1)kL(t,LT) = kL,Eδ(t) +
J∑

j=1

rj exp(−sj t)

and

(A.2)kT (t,LT) = kT,Eδ(t) +
J∑

j=1

r ′
j exp(−sj t).

These Love numbers yield the gravitational potential perturba-
tion, at degree two, arising from the deformation of a spheri-
cally symmetric, Maxwell viscoelastic planetary model subject
to an impulsive surface mass load and gravitational potential
(tidal) forcing, respectively. The first term on the right-hand
side (henceforth RHS) of each expression represents the imme-
diate elastic response to the loading (hence the superscript E),
while the second term is a non-elastic response comprised of
a series of J normal modes of viscoelastic decay. The modes
for the load and tidal Love numbers have a common set of de-
cay times (sj ), but distinct modal amplitudes (rj and r ′

j ). These
Love numbers are dependent on the viscoelastic structure of the
planetary model. For our purposes the dependence on the elas-
tic thickness of the lithosphere (LT) is most important, and thus
we make this dependence explicit. In the Laplace transform do-
main, these Love numbers have the form:

(A.3)kL(s,LT) = kL,E +
J∑

j=1

rj

s + sj

and

(A.4)kT (s,LT) = kT,E +
J∑

j=1

r ′
j

s + sj
.

The so-called fluid Love numbers represent the response
of the planetary model after all viscous stresses have relaxed.
These may be derived from the above expressions either by
taking the s = 0 limit of the Laplace-domain equations (A.3)
and (A.4), or by convolving the time-domain equations (A.1)
y and figure of Mars, Icarus (2007), doi:10.1016/j.icarus.2007.10.017
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and (A.2) with a Heaviside step loading and considering the in-
finite time response. In either case, we would then obtain:

(A.5)kL
f (LT) = kL,E +

J∑
j=1

rj

sj

and

(A.6)kT
f (LT) = kT,E +

J∑
j=1

r ′
j

sj
.

The fluid Love numbers are dependent on the density profile
of the planetary model, as well as the thickness of the elastic
lithosphere. The latter is, of course, subject to no viscous relax-
ation. For the sake of brevity, we will suppress the dependence
on LT in equations that require the fluid Love numbers (e.g.,
kL
f , kT

f ). However, in the case of a purely hydrostatic planet,
i.e., one which has no long-term elastic strength (LT = 0), we
will adopt the notation k

L,∗
f and k

T,∗
f .

A.1. The inertia tensor: Three case studies

We assume a co-ordinate system oriented so that the z-axis
is fixed to the rotation pole of the planet just prior to loading
(e.g., Figs. 1A1, 1B1, or 1C1). The initial angular velocity vec-
tor will be denoted by (0,0,Ω). At any subsequent time, the
rotation vector will be given by ωi(t), i = 1,2,3, with magni-
tude ω2(t). Finally, a and M are the radius and mass of the
planet, respectively, while G is the gravitational constant.

A.1.1. Case 1: Gold (1955)
We begin with the scenario in Fig. 1A, which is the physics

treated by Gold (1955). In this case, the total inertia tensor is
(Munk and MacDonald, 1960; Ricard et al., 1993):

Iij (t) = I0δij + a5k
T,∗
f

3G

[
ωi(t)ωj (t) − 1

3
ω2(t)δij

]
+ IL

ij (t),

(A.7)

where I0 is the spherical term and IL
ij (t) is the contribution to

the inertia tensor from the combined effect of the surface mass
load and the direct planetary deformation it induces. The second
term on the right-hand side is related to the rotationally-induced
flattening of the hydrostatic model adopted by Gold (1955).

The first two terms on the RHS constitute the inertia tensor
for a hydrostatic planet with angular velocity ωi(t). Thus, we
can write

(A.8)I
hyd
ij (t) = I0δij + a5k

T,∗
f

3G

[
ωi(t)ωj (t) − 1

3
ω2(t)δij

]
.

This represents the component of the inertia tensor in Eq. (A.7)
that perfectly adjusts (in the fluid limit) to any change in the ro-
tation axis (i.e., as in the fully relaxed cases shown in Figs. 1A1,
1A3, and 1A4). As discussed by Gold (1955), this component is
not relevant to the long-term rotational stability of the (hydro-
static) planet since it provides no memory of any previous ori-
entation of the rotation vector. Thus, for this planetary model,
the reorientation of the pole is governed by the non-hydrostatic
Please cite this article in press as: A. Daradich et al., Equilibrium rotational stabilit
inertia tensor:

(A.9)I
nhyd
ij (t) = IL

ij (t).

In particular, the rotation vector is aligned with the maximum
principal axis of I

nhyd
ij . Thus, the adjustment in Fig. 1A will

continue until the load has moved to the equator (Fig. 1A4).
It will be instructive to consider the inertia tensor in the

initial (t = t0), unloaded state of the system. Applying the ini-
tial rotation vector, (0,0,Ω), into the expression [ωi(t)ωj (t)−
1
3ω2(t)δij ] within Eq. (A.8) yields:

(A.10)I
hyd
ij (t0) = I0δij + Ω2a5k

T,∗
f

3G

(
δi3 − 1

3

)
δij .

The orientation in Fig. 1A1 is a principal axis orientation, and
thus we may use this expression to derive a formula for the
hydrostatic component of the J2 harmonic (Bills and James,
1999):

(A.11)J
hyd
2 = I

hyd
33 − I

hyd
11 +I

hyd
22

2

Ma2
= Ω2a3k

T,∗
f

3GM
.

As a final point we note an inherent inconsistency in the
Gold (1955) scenario. In a purely hydrostatic planet, the con-
tribution to the inertia tensor from the load and direct deforma-
tion, IL

ij , will be zero, since the load will be perfectly isosta-
tically compensated. In the terminology of fluid Love number
theory, the uncompensated fraction of an applied load is given
by 1 + kL

f , but as LT approaches zero kL
f → k

L,∗
f = −1. Thus,

the scenario in Fig. 1A only holds if one makes the ad-hoc as-
sumption that the rotational bulge will be perfectly relaxed in
the fluid limit, but that the load will not be perfectly compen-
sated.

A.1.2. Case 2: The equilibrium form
Next, we turn to the scenario in Fig. 1B. The relevant expres-

sion for the total inertia tensor is trivially derived from Eq. (A.7)
by replacing the hydrostatic (LT = 0) fluid tidal Love number
with the more general case kT

f . This yields

Iij (t) = I0δij + a5kT
f

3G

[
ωi(t)ωj (t) − 1

3
ω2(t)δij

]
+ IL

ij (t).

(A.12)

In this case, the component of the inertia tensor that perfectly
reorients to a change in the rotation vector (as in Figs. 1B1,
1B3, and 1B4) is given by the first two terms on the right-hand
side of Eq. (A.12). These terms represent the equilibrium (i.e.,
relaxed) form achieved by a rotating planet with an elastic shell
(Mound et al., 2003). We will denote this equilibrium form as

(A.13)I
eq
ij (t) = I0δij + a5kT

f

3G

[
ωi(t)ωj (t) − 1

3
ω2(t)δij

]
.

Once again, this component of the total inertia tensor does not
play a role in the long-term rotational stability of the planet
since it provides no memory of any previous rotational state.
Therefore, the reorientation of such a planet is governed by the
y and figure of Mars, Icarus (2007), doi:10.1016/j.icarus.2007.10.017
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non-equilibrium component of the inertia tensor:

(A.14)I
neq
ij (t) = IL

ij (t).

As in the first scenario (Fig. 1A), the pole will be aligned with
the maximum principal axis of IL

ij (t), and thus the load will
ultimately move to a position on the equator (Fig. 1B4). How-
ever, in contrast to the scenario in Fig. 1A, we need not make
an ad-hoc assumption that the load will never be perfectly com-
pensated. This incomplete compensation is assured by the pres-
ence of the elastic lithosphere, and in this sense the scenario in
Fig. 1B is a more self-consistent illustration of the physics that
Gold (1955) was highlighting.

In analogy to the first case, an expression for the equilibrium
inertia tensor in the initial configuration of Fig. 1B1 is

(A.15)I
eq
ij (t0) = I0δij + Ω2a5kT

f

3G

(
δi3 − 1

3

)
δij

and thus the equilibrium component of the J2 harmonic is given
by

(A.16)J
eq
2 = I

eq
33 − I

eq
11 +I

eq
22

2

Ma2
= Ω2a3kT

f

3GM
.

We can derive an expression for the difference between the
hydrostatic and equilibrium components of the J2 harmonic.
This is obtained by subtracting Eq. (A.16) from (A.11):

(A.17)J
hyd
2 − J

eq
2 = Ω2a3

3GM

[
k
T,∗
f − kT

f

]
.

This is identical to Eq. (6) within the main text.

A.1.3. Case 3: A remnant rotational bulge
The rotating form of a planet will be established early in

its history, prior to the development of an elastic lithosphere.
Accordingly, Willemann (1984) suggested that the rotational
stability of a planet with a lithosphere will be governed by the
physics summarized in Fig. 1C. The scenario assumes that the
initial rotating form will be hydrostatic (Fig. 1C0); the subse-
quent development of the lithosphere through cooling of the
planet will not alter this hydrostatic form (Fig. 1C1) since no
elastic stresses will be introduced within the plate. However,
any subsequent surface mass loading and perturbation to the
centrifugal potential (Fig. 1C2 onwards) will introduce such
stresses within the lithosphere. Thus, the planetary model that
governs the response to such loads (LT �= 0) will be different
from the model that governs the initial form (LT = 0).

In this case, the total inertia tensor of the planet subsequent
to the application of the surface load is

Iij (t) = I0δij + Ω2a5k
T,∗
f

3G

(
δi3 − 1

3

)
δij

+ a5kT
f

3G

{[
ωi(t)ωj (t) − 1

3
ω2(t)δij

]

(A.18)− Ω2
(

δi3 − 1

3

)
δij

}
+ IL

ij (t).

The first two terms on the RHS represent the original hy-
drostatic form of the planet [Fig. 1C1; compare this equation
Please cite this article in press as: A. Daradich et al., Equilibrium rotational stabilit
with Eq. (A.10) and note that this form is identical to that in
Fig. 1A1]. The third term is the contribution from the response
of the planet (with LT �= 0) to the perturbed centrifugal poten-
tial.

We can re-arrange Eq. (A.18) into the following form

Iij (t) = I0δij + a5kT
f

3G

[
ωi(t)ωj (t) − 1

3
ω2(t)δij

]

(A.19)+ Ω2a5

3G

(
δi3 − 1

3

)
δij

[
k
T,∗
f − kT

f

] + IL
ij (t).

As discussed above, any term in the inertia tensor that per-
fectly adjusts to a change in the rotation vector will provide
no memory of a previous rotational state and will thus have no
bearing on the long-term stability of the rotation pole. In this
regard, the form of Eq. (A.19) allows a natural separation be-
tween terms which adjust perfectly (first and second terms on
the RHS) and those that do not (third and fourth terms). The
former is simply

(A.20)I
eq
ij (t) = I0δij + a5kT

f

3G

[
ωi(t)ωj (t) − 1

3
ω2(t)δij

]

which is identical to the equilibrium form defined in Eq. (A.13).
That is, in the scenario of Fig. 1C, the component of the inertia
tensor that adjusts perfectly (in the fluid limit) to the change
in pole position is the same as it was in Fig. 1B—namely,
the equilibrium form for a rotating planet with an elastic shell
(Fig. 1B1). Thus the rotational stability is once again governed
by the non-equilibrium inertia tensor. From Eqs. (A.19) and
(A.20), this term is given by

(A.21)I
neq
ij (t) = Ω2a5

3G

(
δi3 − 1

3

)
δij

[
k
T,∗
f − kT

f

] + IL
ij (t).

The first term on the right-hand side of this equation is
aligned with the initial form of the planet (i.e., the orienta-
tion at the time of the development of the lithosphere) and it
is known as the remnant rotational bulge (Willemann, 1984;
Matsuyama et al., 2006). The long-term reorientation of the
pole is thus governed by a balance between this term, which
acts to resist (and thus stabilize) the motion of the pole, and
the loading term, which acts to push the pole away. The re-
sult is a final load position that lies less than 90◦ from the pole
(Fig. 1C4).

In the scenario of Fig. 1C, the determination of the long-term
TPW reduces to a diagonalization of the non-equilibrium inertia
tensor given by Eq. (A.21). This is the procedure followed by
both Willemann (1984) and Matsuyama et al. (2006), though
they did not explicitly identify their expressions as represent-
ing non-equilibrium forms. Indeed, Matsuyama et al. (2006)
referred to a diagonalization of the non-hydrostatic form, where
‘hydrostatic’ was intended to mean the form in which all vis-
cous relaxation in the region below the elastic lithospheric
region was complete. We prefer here to use the term non-
equilibrium for the LT �= 0 case in order to avoid confusion
with the hydrostatic (LT = 0) terminology inherent to Case 1
(Fig. 1A).
y and figure of Mars, Icarus (2007), doi:10.1016/j.icarus.2007.10.017
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We can use the equilibrium inertia tensor to derive an ex-
pression for the equilibrium J2 harmonic. As in Case 2, this
expression is

(A.22)J
eq
2 = I

eq
33 − I

eq
11 +I

eq
22

2

Ma2
= Ω2a3kT

f

3GM
.

A.2. Stokes coefficients for Case 3: Axisymmetric loading

Within the main text we use the remnant bulge scenario to
explore the range of pre-Tharsis orientations that yield a total
inertia tensor consistent with observational constraints on the
J2 and J22 harmonics. In this section, we derive expressions for
the total (principal axis system) J2 and J22 harmonics arising
from the Case 3 scenario. For this purpose, following Zuber
and Smith (1997), we model Tharsis as an axisymmetric load.

We begin by defining an arbitrary spherical harmonic de-
composition (degree �, order m) of a scalar field Λ as

(A.23)Λ(θ,φ) =
∞∑

�=0

�∑
m=−�

Λ�,mY�,m(θ,φ),

where θ and φ are the colatitude and east-longitude, respec-
tively, and the Y�,m are surface spherical harmonics normalized
such that

(A.24)
∫
S

Y
†
�′,m′(θ,φ)Y�,m(θ,φ)dS = 4πδ��′δmm′ .

The symbol † denotes the complex conjugate and S is the com-
plete solid angle.

Let us assume that the axisymmetric surface mass load, if
placed at the north pole, is characterized by a degree-two spher-
ical harmonic coefficient of L′

2,0. If this load is placed at an
arbitrary position (θL,φL), then one can show that the harmonic
coefficients at degree two for this load orientation are given by

(A.25)L2,m = L′
2,0√
5

Y
†
2,m(θL,φL).

It will be convenient, following Willemann (1984) and Matsu-
yama et al. (2006), to represent the size of the load by the ratio
of the degree two gravitational potential perturbation due to the
direct effect of the load and the hydrostatic rotational bulge. If
we use the symbol Q′ to denote this ratio, then (Matsuyama et
al., 2006)

(A.26)Q′ = −
4πa3g

5M
L′

2,0(t)

−1
3
√

5
a2Ω2k

T,∗
f

,

where g is the surface gravitational acceleration.
The degree two components of the load, as represented in

Eqs. (A.25) and (A.26), may be converted into inertia tensor
perturbations IL

ij (t) using the following mapping (Matsuyama
et al., 2007):

(A.27)IL
ij = Q′(1 + kL

f

)
k
T,∗
f

Ω2a5

3G

[
1

3
δij − eL

i eL
j

]
.
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Here, eL
i is a unit vector in the direction of the load and is

equal to

(A.28)eL
i = (sin θL cosφL, sin θL sinφL, cos θL).

This expression for the load inertia tensor is written in terms
of the final colatitude of the load (i.e., the colatitude in a refer-
ence frame in which the z-axis is aligned with the rotation pole).
This form of (A.27) can then be substituted into an analogously
modified version of our equation for the non-equilibrium iner-
tia tensor (A.21). Diagonalizing the result yields the following
expression for the TPW angle δ (Matsuyama et al., 2006)

(A.29)δ = 1

2
arcsin

[
Q′α sin(2θL)

]
.

Here, α is a parameter dependent on the planetary model (and,
in particular, LT):

(A.30)α = 1 + kL
f

1 − kT
f /k

T ,∗
f

.

As a consequence of the symmetry of the load, the reorienta-
tion of the pole occurs along the great circle that includes the
load longitude, φL. The sign convention is such that δ is the an-
gle directed away from the load when Q′ > 0 (as implied by
Fig. 1C).

The solution in Eq. (A.29) is an extension of the expression
derived by Willemann (1984), who applied approximations that
led him to conclude that the TPW angle was independent of the
lithospheric thickness (i.e., α = 1 in this earlier study). If we
define Qeff = Q′α, then when Qeff � 1 there is one admissi-
ble solution for a given value of the final load colatitude; in
contrast, there are two solutions, δ and 90 − δ, when Qeff > 1
(Matsuyama et al., 2006, Fig. 2). As an example, Willemann
(1984) estimated an upper bound value of Q′ = 1.74. Using
this value in Eq. (A.29), and the fluid Love numbers in Ta-
ble 1, yields solutions of δ ∼ 10◦ or ∼80◦ for a range of LT
values (Matsuyama et al., 2006).

Matsuyama et al. (2007) also derived Eq. (A.29) by mini-
mizing the total energy of the system in the case where elas-
tic energy stored within the deformed lithosphere is ignored.
Their derivation is an independent confirmation that the non-
equilibrium inertia tensor governs the long-term stability of the
rotation pole. [The extension to the case where elastic energy
within the lithosphere is included in the minimization is also
treated by Matsuyama et al. (2007).]

Finally, diagonalizing the total inertia tensor and combining
the principal moments appropriately, yields the following ex-
pressions for the Stokes coefficients:

J2 = kT
f

Ω2a3

3GM
+ (

1 + kL
f

)
k
T,∗
f Q′ Ω2a3

3GM

[
1 − 3 cos2 θL

2

]

(A.31)− (
k
T,∗
f − kT

f

)Ω2a3

3GM

[
1 − 3 cos2 δ

2

]
,

and

4J22 = (
1 + kL

f

)
k
T,∗
f Q′ Ω2a3

sin2 θL
y and figure of Mars, Icarus (2007), doi:10.1016/j.icarus.2007.10.017
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(A.32)− (
k
T,∗
f − kT

f

)Ω2a3

3GM
sin2 δ.

Note that when Q′ = 0, δ = 0 from Eq. (A.29); thus J2 =
Ω2a3k

T,∗
f /(3GM) and J22 = 0, as required for the initial hy-

drostatic form of Fig. 1C1.
The appropriate value of LT to be used in these expressions

is the elastic thickness at the time Tharsis developed. Following
the scenario shown in Fig. 1C, Eqs. (A.31) and (A.32) assume
that TPW was driven by the formation of Tharsis alone, and that
any change in LT during this formation/TPW was negligible. If
the latter was not the case, then the total remnant bulge would
have to be computed by taking into account the changing pole
position for each incremental change in LT. However, these ex-
pressions do not preclude that the elastic thickness continued to
increase once TPW-driven by Tharsis ceased.

References

Arkani-Hamed, J., Boutin, D., 2004. Paleomagnetic poles of Mars: Revisited.
J. Geophys. Res. 109, doi:10.1029/2003JE002229. E03011.

Bills, B.G., James, T.S., 1999. Moments of inertia and rotational stability
of Mars: Lithospheric support of subhydrostatic flattening. J. Geophys.
Res. 104, 9081–9096.

Folkner, W.M., Yoder, C.F., Yuan, D.N., Standish, E.M., 1997. Internal struc-
ture and seasonal mass redistribution of Mars from radio tracking of Mars
Pathfinder. Science 278, 1749–1752.

Gold, T., 1955. Instability of the Earth’s axis of rotation. Nature 175, 526–529.
Hood, L.L., Young, C.N., Richmond, N.C., Harrison, K.P., 2005. Modeling of

major martian magnetic anomalies: Further evidence for polar reorienta-
tions during the Noachian. Icarus 177, 144–173.

Matsuyama, I., Mitrovica, J.X., Manga, M., Perron, J.T., Richards, M.A., 2006.
Rotational stability of dynamic planets with elastic lithospheres. J. Geo-
phys. Res. 111, doi:10.1029/2005JE002447. E02003.

Matsuyama, I., Nimmo, F., Mitrovica, J.X., 2007. Reorientation of planets with
lithospheres: The effect of elastic energy. Icarus 191, 401–412.

McGovern, P.J., Solomon, S.C., Smith, D.E., Zuber, M.T., Simons, M., Wiec-
zorek, M.A., Phillips, R.J., Neumann, G.A., Aharonson, O., Head, J.W.,
Please cite this article in press as: A. Daradich et al., Equilibrium rotational stabilit
2004. Correction to “Localized gravity/topography admittance and corre-
lation spectra on Mars: Implications for regional and global evolution”. J.
Geophys. Res. 109, doi:10.1029/2004JE002286. E07007.

Melosh, H.J., 1980. Tectonic patterns on a reoriented planet: Mars. Icarus 44,
745–751.

Mitrovica, J.X., Wahr, J., Matsuyama, I., Paulson, A., 2005. The rotational sta-
bility of an ice-age Earth. Geophys. J. Int. 161, 491–506.

Mound, J.E., Mitrovica, J.X., Forte, A.M., 2003. The equilibrium form of a
rotating Earth with an elastic shell. Geophys. J. Int. 152, 237–241.

Munk, W., MacDonald, G.J.F., 1960. The Rotation of the Earth. Cambridge
Univ. Press, Cambridge, UK.

Mutch, T.A., Arvidson, R.E., Head, J.W., Jones, K.L., Saunders, R.S., 1976.
The Geology of Mars. Princeton Univ. Press, Princeton, NJ.

Peltier, W.R., 1974. The impulse response of a Maxwell Earth. Rev. Geo-
phys. 12, 649–669.

Ricard, Y., Spada, G., Sabadini, R., 1993. Polar wandering of a dynamic Earth.
Geophys. J. Int. 113, 284–298.

Schultz, P.H., Lutz, A.B., 1988. Polar wandering of Mars. Icarus 73, 91–141.
Schultz, P.H., Lutz-Garihan, A.B., 1982. Grazing impacts on Mars: A record of

lost satellites. J. Geophys. Res. (Suppl. Ser.) 87, A84–A96.
Smith, D.E., Sjogren, W.L., Tyler, G.L., Balmino, G., Lemoine, F.G., Konopliv,

A.S., 1999. The gravity field of Mars: Results of the Mars Global Surveyor.
Science 286, 94–97.

Sohl, F., Spohn, T., 1997. The interior structure of Mars: Implications from
SNC meteorites. J. Geophys. Res. 102, 1613–1636.

Sprenke, K.F., Baker, L.L., Williams, A.F., 2005. Polar wander on Mars: Evi-
dence in the geoid. Icarus 174, 486–489.

Turcotte, D.L., Shcherbakov, B.D., Malamud, B.D., Kucinskas, A.B., 2002. Is
the martian crust also the martian elastic lithosphere? J. Geophys. Res. 107
(E11), doi:10.1029/2001JE001594. 5091.

Wieczorek, M.A., Greff-Lefftz, M., Labrosse, S., van Thienen, P., Rouby, H.,
Besse, J., Feldman, W.C., 2005. The case for a martian inertial interchange
true polar wander event. Lunar Planet. Sci. XXXVI. Abstract 1679.

Willemann, R.J., 1984. Reorientation of planets with elastic lithospheres.
Icarus 60, 701–709.

Yoder, C.F., Konopliv, A.S., Yuan, D.N., Standish, E.M., 2003. Fluid core size
of Mars from detection of the solar tide. Science 300, 299–303.

Zhong, S., Roberts, J.H., 2003. On the support of the Tharsis rise on Mars.
Earth Planet. Sci. Lett. 214, 1–9.

Zuber, M.T., Smith, D.E., 1997. Mars without Tharsis. J. Geophys. Res. 102,
28673–28685.
y and figure of Mars, Icarus (2007), doi:10.1016/j.icarus.2007.10.017

http://dx.doi.org/10.1029/2003JE002229
http://dx.doi.org/10.1029/2005JE002447
http://dx.doi.org/10.1029/2004JE002286
http://dx.doi.org/10.1029/2001JE001594

	Equilibrium rotational stability and figure of Mars
	Introduction
	The physics of rotating planets
	Results
	The present-day rotational stability of Mars
	TPW driven by Tharsis loading

	Conclusions
	Acknowledgments
	Mathematical treatment of Fig. 1
	The inertia tensor: Three case studies
	Case 1: Gold (1955)
	Case 2: The equilibrium form
	Case 3: A remnant rotational bulge

	Stokes coefficients for Case 3: Axisymmetric loading

	References


