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Abstract. Bubbles are ubiquitous in magma during eruption and have a
profound impact on its rheology. Despite this, bubble-suspension rheology is
routinely ignored in conduit flow and eruption models, potentially impairing
accuracy and resulting in the loss of important phenomenological richness. The
omission is due, in part, to a historical confusion in the literature concerning
the effect of bubbles on the rheology of a liquid. This confusion has now
been largely resolved and recently-published studies have identified two viscous
regimes: in regime 1, the viscosity of the two-phase (magma–gas) suspension
increases as gas volume fraction φ increases; in regime 2, the viscosity of the
suspension decreases as φ increases. The viscous regime for a deforming bubble
suspension can be determined by calculating two dimensionless numbers, the
capillary number Ca and the dynamic capillary number Cd.

This paper provides a didactic explanation of how to include the effect of
bubble-suspension rheology in conduit flow models. Recent published work
on bubble-suspension rheology is reviewed and a practical rheological model
is presented and justified followed by an algorithmic, step-by-step guide to
including the rheological model in conduit flow models. Preliminary results
from conduit flow models which have implemented the model presented are
discussed and it is concluded that the effect of bubbles on magma rheology is
important in nature and results in a decrease of at least 800m in fragmentation
depth and an increase of at least 20% in eruption rate compared with the
assumption of Newtonian rheology.

1. Introduction

The region between bubble nucleation and magma fragmentation in the volcanic
conduit is characterized by the flow of a two-phase suspension of bubbles in magma
(suspended crystals may also be present but are not considered in this paper). It
is known from theory (e.g., Taylor, 1932; Mackenzie, 1950; Frankel and Acrivos,
1970), laboratory experiments (Bagdassarov and Dingwell, 1992, 1993; Stein and
Spera, 1992, 2002; Lejeune et al., 1999; Rust and Manga, 2002a; Llewellin et al.,
2002a), and numerical simulations (e.g., Manga et al., 1998; Manga and Loewen-
berg, 2001) that bubbles influence the rheology of the suspension. In particular, it
is likely that the influence of bubbles on the shear viscosity of the magma (ηs(φ)
where ηs is the viscosity of the bubble suspension and φ is the gas volume fraction)
is an important control on conduit flow and eruption dynamics. Despite this there
has, until recently, been very little effort to include bubble suspension rheology in
numerical conduit flow models (but see Mastin (2002) for a counter-example). This
is due, primarily, to two historical deficiencies in the literature: 1) published equa-
tions for ηs(φ) divide into two approximately equally-sized groups, one asserting
that ηs increases with increasing φ, the other that ηs decreases with increasing φ;
2) within each group there is little consensus on the functional form of ηs(φ). Since
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2002, several papers have been published which have addressed both of these defi-
ciencies. Critically, the apparent confusion over the sign of ηs(φ) has been resolved:
bubbles can either increase or decrease the shear viscosity of a suspension depend-
ing on the dynamic regime (Llewellin et al., 2002a,b; Rust and Manga, 2002a; Stein
and Spera, 2002). In addition, each of these studies added new experimental data
allowing the functional form of ηs(φ) to be more tightly constrained.

Given these advances, it is now possible and desirable to include bubble-suspension
rheology in conduit flow and eruption models. The main purpose of this paper is to
present an algorithmic approach to accounting for bubble-suspension rheology in
such models—this is intended as a ‘how to’ guide for modellers. Additionally, the
paper includes a brief review of bubble-suspension rheology with a particular em-
phasis on clarifying the recent advances mentioned above. Some models described
elsewhere in this volume have already implemented the algorithm presented in this
paper and we show some preliminary results from these models which give an indi-
cation of the effect that including bubble-suspension rheology has on conduit flow
and eruption models.

2. Bubble suspension rheology

The rheological, bubble suspension property of greatest importance in conduit
flow is its shear viscosity ηs. This is typically normalized to the viscosity of the
liquid phase µ0 and presented as the relative viscosity ηr:

(1) ηr =
ηs

µ0

.

ηr is a function of φ, the sign of which depends on the conditions of shear and
the bubble-relaxation time λ. λ is a measure of the timescale over which a bubble
can respond to changes in its shear environment. For a single bubble in an infinite
medium:

(2) λ =
µ0a

Γ

where a is the undeformed bubble radius and Γ is the bubble–liquid interfacial
tension. There is some evidence that λ is an increasing function of φ (Oldroyd,
1953; Oosterbroek and Mellema, 1981; Loewenberg and Hinch, 1996; Llewellin et

al., 2002a), however, Rust et al. (2003) show that the dependence of λ on φ is rather
weak so, for simplicity, it is proposed that equation 2 is used for all φ. Other aspects
of the suspension rheology are also strongly influenced by the presence of bubbles.
For example, viscoelastic effects, including recoverable strain are introduced, in
addition, normal stress differences are generated even if the suspending liquid is
Newtonian (e.g., Schowalter et al., 1968; Stein and Spera, 1992; Manga et al.,
1998). Such effects are not considered further in this paper.

The algorithm for including bubble-suspension rheology in conduit flow models
which is presented later in section 3 depends upon distinguishing the two dynamic
regimes for ηr(φ). We identify:
Regime 1: shear viscosity increases with increasing gas volume-fraction.
Regime 2: shear viscosity decreases with increasing gas volume-fraction.
The regime can be determined by calculating the capillary number Ca for a steady
flow (Llewellin et al., 2002b; Rust and Manga, 2002a; Stein and Spera, 2002) or
the dynamic capillary number Cd for an unsteady flow (Llewellin et al., 2002a,b)
as described in detail below.
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2.1. Steady flows. Strictly, a flow is described as steady if the conditions of shear
have remained constant (in the Lagrangian sense) for a time before present t �

λ (Llewellin et al., 2002a; Rust and Manga, 2002b). This definition is loosened
somewhat in section 2.2. Manga and Loewenberg (2001), Llewellin et al. (2002b),
Rust and Manga (2002a) and Stein and Spera (2002) show that, for a steady flow,
the viscous regime is controlled by the capillary number Ca, given by:

(3) Ca = λγ̇

where γ̇ is the shear strain rate. Ca describes the relative importance of viscous
stresses (of order µ0γ̇) , which tend to deform the bubbles, and interfacial stresses
(of order Γ/a), which tend to restore them to sphericity. Since the flow is steady,
Ca refers to the equilibrium between these forces, hence, the bubble shape is also
stable (bubbles are described as relaxed) and is referred to as the equilibrium defor-

mation. The magnitude of equilibrium bubble-deformation, therefore, depends on
Ca. If Ca � 1, interfacial tension forces dominate and bubbles are approximately
spherical (e.g., Taylor, 1934). If Ca � 1, viscous forces dominate and bubbles will
be elongate (e.g. Hinch and Acrivos, 1980). The effect of bubble shape on viscos-
ity can be explained as follows: Bubbles deform flow lines within the suspending
medium, which tends to increase viscosity; bubbles provide free-slip surfaces within
the suspending medium, which tends to decrease viscosity. For small Ca (bubbles
are almost spherical) flow-line distortion is great and free-slip surface area is small,
hence, ηr > 1; for large Ca (bubbles are elongate) flow-line distortion is small and
free-slip surface area is great, hence, ηr < 1.
In summary: Ca � 1 denotes regime 1; Ca � 1 denotes regime 2.

In principle, if the shape of bubbles can be determined as a function of Ca
and φ then the rheology of the suspension can predicted (e.g., Batchelor, 1970).
The problem, however, lies in determining bubble shape. For dilute suspensions,
analytical results are available for small deformations (e.g., Taylor, 1934) and highly
elongate bubbles (e.g., Acrivos and Hinch, 1980). Models are also derived for
intermediate deformation (e.g., Wu et al., 2002). In general theoretical results for
bubble shape agree well with experimental measurements (e.g., Rust and Manga,
2002b; Hu and Lips, 2003; Yu and Bousmina, 2003). When the suspension is
no longer dilute, however, the interactions between bubbles affect their shapes and
consequently the rheology. Unfortunately, the rheology can be predicted accurately
only if the bubble shape is accurately known (Cristini et al., 2002).

2.2. Unsteady flows. Given the definition of a steady flow at the beginning of
section 2.1, it is clear that if the shear strain-rate is changing, the flow must be
unsteady. In fact, Llewellin et al. (2002a,b) have shown that there are degrees of
steadiness of flow which can be described using the dynamic capillary number Cd,
given by:

(4) Cd = λ
γ̈

γ̇

where γ̈ is the rate of change of shear strain-rate. Cd compares the timescale over
which the bubbles can respond to changes in their shear environment (the bubble-
relaxation time λ) with the timescale over which the shear environment changes (of
order γ̇/γ̈). If Cd � 1, the bubbles are able to respond continuously to the changes
in shear environment. Consequently, the bubbles are always approximately in their
equilibrium deformation and the flow is approximately steady. Since the flow is
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approximately steady, the dynamic regime is controlled by the capillary number Ca
as described in section 2.1. If, however, Cd � 1, the shear environment is changing
too rapidly for the bubbles to respond, therefore the bubbles are unrelaxed. Since
the bubbles never reach their equilibrium deformation, Ca is undefined and the
flow is described as unsteady. In an unsteady flow, the bubbles do not have time
to respond elastically to changes in shear, hence, they behave as if they have no
bubble–liquid interfacial tension and deform passively with the suspending liquid.
This decreases the distortion of flow-lines around the bubbles leading to a decrease
in the viscosity of the suspension as φ increases (Llewellin et al., 2002a).
In summary: Cd � 1 flow is approximately steady so regime is determined by
considering Ca; Cd � 1 denotes regime 2.

Just as rheology can be calculated from knowledge of bubble shapes for steady
flows, so too can the rheology for unsteady flows if the evolution of bubble shape
is known (e.g., Tucker and Moldenaers, 2002). Several recent studies have made
progress in developing models for the time-dependent deformation of bubble shape
and rheology in a variety of flow geometries (e.g., Maffettone and Minale, 1998;
Jansseune et al., 2001; Jackson and Tucker, 2003; Yu and Bousmina, 2003).

2.3. Proposed rheological model. There are nine published datasets from lab-
oratory experiments on bubble suspensions (Rahaman, 1987; Ducamp and Raj,
1989; Bagdassarov and Dingwell, 1992, 1993; Stein and Spera, 1992, 2002; Lejeune
et al., 1999; Llewellin et al., 2002a; Rust and Manga, 2002a). Of these, unsteady
flows are considered explicitly in the studies of Bagdassarov and Dingwell (1993)
and Llewellin et al. (2002a). From the published experimental details it is possi-
ble to deduce that the data presented in Rahaman (1987, Ducamp and Raj (1989),
Bagdassarov and Dingwell (1992), Lejeune et al. (1999), and Stein and Spera (2002)
where collected from unsteady flows. Rust and Manga (2002a) explicitly considered
steady flow. In addition, there are two published datasets from numerical models of
bubble suspensions (Manga et al., 1998; Manga and Loewenberg, 2001). Many of
the papers mentioned above present models for ηr(φ) based on their experimental
data. These and other models are discussed in detail in Llewellin et al. (2002a).

From the published data it is evident that ηr(φ) is largely independent of Cx
(where Cx represent either Ca or Cd) when Cx � 1 and Cx � 1. ηr(φ) is strongly
dependent on Cx only in the narrow region where the dynamic regime changes
(Cx ≈ O(1)). Additionally, in this region, no easily-evaluated equation for ηr(φ, Cx)
has been published (e.g., Yu and Bousmina). For these reasons, we propose that
ηr(φ, Cx) should be treated as a step-function, with one equation for ηr(φ) used for
Cx ≤ 1 (regime 1) and another equation for ηr(φ) used for Cx > 1 (regime 2). This
approach significantly simplifies the task of including bubble-suspension rheology
in numerical models whilst retaining its most important features. An indication of
the size of the error in ηr which is introduced in the region where Cx ≈ O(1) by
this approximation is presented in figure 1, which compares the curve of ηr(Ca) (for
φ = 0.4 and steady flow) produced by the “model 4” of Pal (2003) (presented below
as equation 5) and the simplified model proposed in this paper. It is argued that
the residual is acceptable when it is considered that, in a volcanic eruption, values
of Cx will span many orders of magnitude and the transition through Cx ≈ O(1) is
likely to be very rapid in space and time.

Llewellin et al. (2002b) show that ηr(φ, Ca) and ηr(φ, Cd) are identical (that is,
the dependence of shear viscosity on gas volume-fraction is identical for both steady
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Figure 1. Comparison of ηr(Ca) calculated using “model 4” of
Pal (2003) (solid line) and using the simplified model proposed in
this paper (dashed line) for φ = 0.4. Inset shows residual as a
percentage of the value calculated using Pal’s equation.

and unsteady flows) except for a very small deviation when Cx ≈ 1. We propose,
therefore, that a single equation for the positive dependence of ηr on φ is used for
regime 1 and a single equation for the negative dependence of ηr on φ is used for
regime 2, regardless of whether regime 2 behaviour is due to Ca > 1 (for a steady
flow) or Cd > 1 (for an unsteady flow).

We must now choose an equation for ηr(φ) to be used for regime 1 and another for
regime 2. Pal (2003) presents four semi-empirical models for ηr(φ, Ca) for steady
flows, parameterized using previously-published data for the rheology of bubble
suspensions. He obtains the best fit to data using his “model 4”:

(5) ηr

(

1 −
12

5
η2
r Ca2

1 −
12

5
Ca2

)−

4

5

=

(

1 −
φ

φm

)

−φm

where φm is the maximum packing fraction of bubbles. This model is an exten-
sion, after the method of Brinkman (1952) and Roscoe (1952), of the Frankel and
Acrivos (1970) model for non-dilute suspensions The introduction of a maximum
packing fraction (by analogy with the Brinkman-Roscoe method for suspensions of
solid particles) is somewhat problematic: since bubbles are deformable, no clear
maximum packing fraction exists (except, perhaps, φm = 1), additionally, no real
solution to equation 5 exists for 1 > φ > φm. The most reasonable solution is
always to set φm = 1. In this case, for the limits of large and small Ca, equation 5
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reduces to:

(6) ηr =

{

(1 − φ)−1 : Ca � 1

(1 − φ)
5

3 : Ca � 1.

Pal’s model does not consider the steadiness of the flow, a property which has
been shown by Llewellin et al. (2002a,b) to be a fundamental control on the rheology
of a bubble suspension in the flows that arise in volcanic conduits. However, since
Llewellin et al. (2002b) also show that ηr(φ, Cx) is almost identical for steady and
unsteady flows it is reasonable to assume that equation 6 has equal validity for
unsteady flows (with Cd replacing Ca for each regime).

For experimental and numerical investigations of bubble suspensions in regime
1: equation 6 agrees reasonably well with Manga et al. (1998), Rust and Manga
(2002a) and with Llewellin et al. (2002a) for 0 < φ < 0.07. The model is incom-
patible with data from Llewellin et al. (2002a) for φ > 0.07 or Stein and Spera
(1992), both of which indicate a much stronger positive dependence of ηr on φ than
predicted by Pal’s model.

For experimental and numerical investigations of bubble suspensions in regime 2:
equation 6 agrees reasonably well with Lejeune et al. (1999), Manga and Loewen-
berg (2001), Stein and Spera (2002) and Llewellin et al. (2002a), most of whom
considered simple shearing flows. The model is incompatible with data from sin-
tering experiments and extensional flows (Rahaman, 1987; Ducamp and Raj, 1989;
Bagdassarov and Dingwell, 1992), all of which indicate a much stronger negative
dependence of ηr on φ than predicted by Pal’s model. Possibly a volume change in
these latter experiments may have influenced their results.

It is clear from the above that the “model 4” proposed by Pal does not encapsu-
late the behaviour identified in several experimental studies of bubble suspension
behaviour. However, it does capture the broad trends which exist in all of the data
in both regimes, for measurements on both steady and unsteady flows. In addition,
the model tends to underestimate the importance of bubbles in controlling the shear
viscosity of a suspension in both regimes. The model can, therefore, be usefully
employed as a “minimum” model of bubble rheology and the effect of bubbles on
conduit flow dynamics in the real world will be at least as great as any effect identi-
fied using a conduit flow model which incorporates the effect of bubbles on rheology
using this model. Bearing in mind the simplifying assumption, presented above,
that regime 1 extends to Cx ≤ 1 and regime 2 from Cx > 1, we, therefore, propose
the following minimum model of bubble-suspension rheology for use in conduit flow
models:

Regime 1 (min.) : ηr = (1 − φ)
−1

,(7)

Regime 2 (min.) : ηr = (1 − φ)
5

3 .(8)

Note that equations 7 and 8 reduce to the exact analytical results for dilute (φ � 1)
suspensions for both regime 1 (Taylor, 1932) and regime 2 (Mackenzie, 1950).

It is also of interest to investigate a “maximum” model of bubble rheology, based
on models for behaviour in regimes 1 and 2 proposed by those workers who find a
stronger dependence of ηr on φ than is predicted by equations 7 and 8. For regime
1, the strongest dependence is proposed by Llewellin et al. (2002a):

(9) Regime 1 (max.) : ηr = 1 + 9φ.
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This relationship is based on experiments on bubble suspensions in the range 0 6

φ 6 0.5. For regime 2, we propose that the model presented by Bagdassarov and
Dingwell (1992) is used:

(10) Regime 2 (max.) : ηr =
1

1 + 22.4φ
.

This equation is based on measurements of bubble suspensions in the range 0 6

φ 6 0.7. It is probable that the true effect of bubbles on conduit flow dynamics
will be somewhere between that predicted using the “minimum” and “maximum”
models presented above.

3. Implementation of bubble suspension rheology

We propose that conduit flow models incorporate the effect of bubbles on rhe-
ology by first calculating the dynamic regime of the flow in each conduit element,
then calculating the viscosity of the material in that conduit element using equation
7 for flows in regime 1 and equation 8 for flows in regime 2 when using the minimum
model and equations 9 and 10 when the “maximum” model is employed—see sec-
tion 2.3. The procedure is summarized in figure 2. It is envisaged that the viscosity
determination will occur at the end of each timestep for each conduit element. The
resulting viscosity value will then be used to determine the velocity profile in the
next timestep.

To calculate Ca (equation 3) and Cd (equation 4), the relaxation time λ, the shear
strain-rate γ̇ and the rate of change of shear strain-rate γ̈ must first be calculated.
The remainder of this section describes how these quantities may be calculated for
a one-dimensional conduit flow model.

3.1. Calculating the relaxation time λ.

Relaxation time is given by equation 2, represented below for convenience:

λ =
µ0a

Γ
.

Due to decompressive and diffusive growth of bubbles, λ changes over time as a
packet of magma ascends, hence it must be calculated for each element at each
timestep. µ0 is the viscosity of the liquid part of the two-phase material at that
point (usually calculated from composition and temperature of the silicate melt).
Γ is the liquid–bubble interfacial tension at that point; a value of Γ ≈ 0.25 N m−1

can be deduced from figure 31 of Murase and McBirney (1973).
a, the undeformed bubble radius (the radius of a spherical bubble of equal vol-

ume), may be calculated explicitly in some conduit flow models, but not in others.
If a is ordinarily calculated, the value appropriate for that element at that timestep
should be used. If a is not ordinarily calculated, it may be determined from the gas
volume-fraction by assuming a bubble number-density at nucleation (see table of
model parameters elsewhere in this volume) and assuming some function for bubble
number-density with time: e. g. bubble number-density (with respect to the volume
of the liquid part of the suspension) over time remains constant.
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Figure 2. Flowchart showing algorithm for determination of
shear viscosity for each conduit element. Comments in brackets
refer to sections and equations in the main body of these notes.
For explanation of “maximum” models, see section 2.3.
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Figure 3. Conduit flow.

3.2. Calculating the shear strain rate γ̇.

The shear strain-rate must be calculated for each element at each timestep. For
laminar, uniaxial flow along a conduit, the velocity u = [uz(r), 0, 0] as shown in
figure 3. For such a flow, the shear strain-rate is given by:

(11) γ̇ =
duz

dr

hence shear strain-rate is a function of radial position in the conduit. It is not
possible to calculate uz(r) using a one-dimensional conduit flow model so, in order
to calculate γ̇, a velocity profile must be assumed.

For slow, steady flows, the shear strain-rate will be low at all points across the
conduit, hence Ca < 1 everywhere. The viscosity of the bubble suspension will,
consequently, be the same everywhere so the velocity profile will be parabolic (the
bubble suspension will behave as a Newtonian liquid with a viscosity given by the
equation for regime 1 (equation 7, min. model, or 9, max. model). For a parabolic
velocity profile, the shear strain-rate varies from zero at the axis to a maximum at
the conduit wall. For a bubble suspension, this leads to an interesting phenomenon
as the flow rate increases: whilst the shear strain-rate at the axis remains low
(hence Ca < 1), the shear strain-rate near the conduit wall may increase to the
point where Ca > 1. In this configuration, at all points axial of the transition,
the viscosity of the bubble suspension will be given by the equation for regime 1
but, radially outwards from the transition, the viscosity will be lower, given by
the equation for regime 2 (equation 8, min. model, or 10, max. model). This
leads to a non-parabolic velocity profile as shown in Llewellin et al. (2002b). At
still higher flow rates, the shear strain-rate across most of the conduit is such that
Ca > 1 except for a narrow region near the axis and the velocity profile is, again,
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approximately parabolic. Unfortunately, this transitional behaviour can only be
captured by 2d and 3d flow models, however, Llewellin et al. show that significant
departure from parabolic flow occurs only for a narrow range of conditions, hence
it is reasonable, for the purposes of this exercise, to assume that the velocity profile
in the conduit is always parabolic.

Given a parabolic velocity profile, it is possible to calculate an average shear-
strain-rate in terms of the volume flow rate Q, the average velocity ûz or the axial
velocity u0 (depending on which is calculated by the conduit flow model). The
average shear-strain-rate can then be used to calculate the capillary number and
hence the viscosity of the bubble suspension under those conditions of shear.

Assuming a parabolic velocity profile across the conduit we obtain:

(12) uz = u0

(

1 −
r2

R2

)

.

Where r is the radial position in the conduit and R is the radius of the conduit
(assuming no slip at the conduit wall: uz = 0 at r = R). Integrating across the
conduit gives the volume flow rate:

(13) Q = 2πu0

∫ R

0

r

(

1 −
r2

R2

)

dr

hence

(14) u0 =
2Q

πR2
.

Volume flow-rate is the product of the average velocity and the cross-sectional
area of the conduit, hence:

(15) ûz =
Q

πR2
.

We can see from equations 14 and 15 that the axial velocity for parabolic flow along
a pipe is twice the average velocity:

(16) u0 = 2ûz.

Substituting equation 14 into equation 12:

(17) uz =
2Q

πR

(

1 −
r2

R2

)

.

Applying equation 11 to the above we obtain the shear strain-rate as a function
of radial position in the conduit:

(18) γ̇ =
4ûzr

R2
.

Integrating across the conduit and dividing by the cross sectional area, we obtain
the average shear strain-rate:

(19) ˆ̇γ =
8ûz

R4

∫ R

0

r2 dr

which, using equations 15 and 16, can be expressed in terms of the average veloc-
ity, the axial velocity or the volume flow-rate, hence, the shear strain-rate can be
calculated for each conduit element (the ˆ is dropped for convenience):

(20) γ̇ =
8uz

3R
=

4u0

3R
=

8Q

3πR3
.
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Figure 4. Conduit elements.

3.3. Calculating the rate of change of shear strain-rate γ̈.

The rate of change of shear strain-rate must be calculated for each element at
each timestep. Note that this is the rate of change of shear strain-rate experienced
by a packet of the magma as it rises up the conduit hence, even for a ‘steady’ model
in which the velocity profile up the conduit does not change with time, the shear
strain-rate experienced by a rising packet of magma does change over time.

γ̈ can be estimated by considering the strain rate in adjacent elements of the
conduit (figure 4). It is assumed that, for each element i of the flow, at depth zi,
the axial velocity u0i

(or the average velocity ûi or the volume flow-rate Qi—see
equation 20) is known, hence, the shear strain-rate γ̇i can be calculated according
to the method described in section 3.2. The rate of change of shear strain-rate for
a packet of material is approximately given by:

(21) γ̈ ≈
∆γ̇

∆t
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where ∆γ̇ is the change in shear strain-rate experienced by the packet over time
∆t. In figure 4 material at element i is arriving from element i − 1, hence it has
experienced a change in shear strain-rate given by:

(22) ∆γ̇i = γ̇i − γ̇i−1.

The time taken for the material to undergo this change is approximately the quo-
tient of the distance between the elements and the average flow velocity between
the elements:

(23) ∆t =
2(zi − zi−1)

ûi + ûi−1

hence:

(24) γ̈i ≈
(γ̇i − γ̇i−1)(ûi + ûi−1)

2(zi − zi−1)

where all quantities are evaluated in the current timestep and where the average
velocity can be derived from the axial velocity or the volume flow-rate using equa-
tions 15 and 16. The dynamic capillary number for element i is, therefore, given
by:

(25) Cdi = λ
γ̈i

γ̇i

.

At the base of the conduit, u00
= γ̇0 = γ̈0 = 0.

4. Volcanological implications of including bubble-suspension

rheology

Our proposed model implies that for a gas volume-fraction of φ < 0.5, ηr can
change by up to a factor of 5 for the minimum model and a factor of 70 for the
maximum model. The magnitude of this effect is thus small compared to viscos-
ity changes that ascending magmas can experience due to crystallization and the
loss of volatiles. Nevertheless, there is some preliminary evidence that the change
in viscosity due to the presence of bubbles has a significant effect on the predic-
tions of conduit flow models. In figure 5 we show, for example, the predictions of
the CONFLOW model (Mastin, 2002) for three cases: 1) the effect of bubbles is
not considered; 2) bubbles are considered and flow is assumed to be in regime 1
(minimum model) throughout the conduit; 3) flow is assumed to be in regime 2
(minimum model) throughout the conduit. All other parameters are the same for
all three calculations. Despite using the minimum rheological model, the inferred
fragmentation depth for these three cases varies by ≈ 800m, indicating that the
influence of bubbles on fragmentation depth in the real world is at least this strong
and probably much stronger.

Elsewhere in this volume, Starostin et al. present a conduit flow model which
calculates the effect of bubbles on rheology after the method proposed in this paper.
Again, in this case the minimum model is used and the eruption rate for an explosive
eruption is plotted as a function of time for three cases: 1) the effect of bubbles is
not considered; 2) the effect of bubbles is considered and an initial bubble number-
density of 1015m−3 is assumed (equivalent to specifying small bubbles); 3) the
effect of bubbles is considered and an initial bubble number-density of 109m−3 is
assumed (equivalent to specifying large bubbles). An increase in peak discharge
rate of almost 10% and an increase in flow-rate of almost 20% after 3 minutes is
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Figure 5. Porosity, pressure and vertical velocity against depth
in a volcanic conduit calculated using CONFLOW (Mastin, 2002).
The black line ignores the effect of bubbles on viscosity, the blue
line considers the effect of bubbles and assumes that flow is in
regime 1 (minimum model) throughout the conduit, the red line
considers the effect of bubbles and assumes that flow is in regime 2
(minimum model) throughout the conduit. In each case the frag-
mentation depth is indicated by the inflection point in the curve.
It can be seen that, even for the minimum rheological model, the
effect of bubbles on the magma’s rheology has a profound influence
on fragmentation depth.

observed. Again, considering that this model assumes the minimum rheological
model presented in this paper, it is likely that the influence of bubbles on discharge
rate in the real world is at least as strong as this and probably much stronger.

5. Concluding remarks

The conduit model predictions shown in figures 5 and 6 highlight the importance
of accounting for the effects of bubbles on rheology. We note, however, that both
our discussion and current conduit models address only one aspect of the effect of
bubbles on conduit flow dynamics: the effect on shear viscosity. Other effects, such
as non-zero normal stresses, introduction of a bulk (compressible) viscosity, bubble
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Figure 6. Eruption rate over time for an explosive eruption using
the model of Starostin et al. presented elsewhere in this volume.
The light grey line ignores the effect of bubbles, the dark grey
line considers the effect of bubbles and assumes an initial bubble
number-density of 1015m−3, the black line considers the effect of
bubbles and assumes an initial bubble number-density of 109m−3.
It is evident that, even for the minimum rheological model, the
effect of bubbles on the magma’s rheology has a profound influence
on eruption rate.

coalescence and breakup etc. may also have a significant effect on conduit flow dy-
namics. In addition, some of the subtlety of the effect of bubbles on shear viscosity
has been sacrificed for simplicity of implementation. It is believed, however, that
the method outlined here captures the salient features of bubble rheology. There is
still some disagreement between experimental studies on bubble suspension rheol-
ogy, highlighted at the end of section 2.3; one of the strengths of the implementation
presented in these notes is that equations 7 and 8 can be adapted easily as improved
experimental data become available.

The algorithmic approach to incorporating the effect of bubbles on the shear
viscosity of magma in a conduit flow model is intended as a guide only. It is
expected that some deviation from this procedure will be necessary for certain
classes of model.
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