
1.  Introduction
Cryovolcanism is actively occurring on Saturn's moon Enceladus (Porco et  al.,  2006), may be occurring on 
Europa over multidecadal timescales (Jia et al., 2018; Paganini et al., 2020; Roth, Retherford, et al., 2014), and 
may occur on other icy bodies (e.g., Geissler, 2015). The eruption of mixtures of ice, gas, and water requires 
the existence of a pathway through which material can ascend. Eruptions can be driven by a combination of 
buoyancy of the cryovolcanic mixture, overpressure in the subsurface ocean or reservoir (Fagents, 2003; Manga 
& Wang, 2007), by the exsolution and expansion of dissolved gases (e.g., Crawford & Stevenson, 1988), or by 
decompression boiling (Ingersoll & Nakajima, 2016; Nakajima & Ingersoll, 2016). When a planetary ice shell 
thickens or thins due to solidification or melting at the ocean-ice interface, two phenomena occur simultaneously 
that can drive cryovolcanism. First, the volume change as liquid water solidifies increases pressure within the 
subsurface ocean. In turn, this pushes the ice shell outwards, generating global tensile stresses. Second, as the ice 
shell thickness evolves, the changing temperature gradient generates thermal stresses within the ice shell. Both 
of these processes can generate 100 MPa stresses (Manga & Wang, 2007; Nimmo, 2004)—an order of magnitude 
larger than stresses associated with tidal deformations—and large enough to overcome the tensile strength of 
intact water ice.

Europa and Enceladus have orbits that interact with other satellites of Jupiter and Saturn, respectively, providing 
a mechanism to drive secular change in orbital parameters and, hence, tidal dissipation. Europa participates in a 
4:2:1 mean motion resonance (MMR) with Ganymede and Io. Europa's orbital eccentricity may vary on times-
cales of 10 2−10 3 Myr (Hussmann & Spohn, 2004). Enceladus is presently in a 2:1 MMR with Dione. For some 
combinations of Saturn's tidal quality factor Q and Enceladus' internal structure, Enceladus' orbital eccentricity 
and internal heating may vary on timescales of 10 2 Myr (Shoji et al., 2014).
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timescales lead to time-varying tidal dissipation, driving changes in ice shell thickness. One mechanism for 
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to explain the formation of cracks that reach the ocean on Enceladus. However, owing to larger gravitational 
acceleration, we do not expect cracks to reach the subsurface ocean on Europa.
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The volume increase associated with solidification at the ocean-ice interface will lead to uplift (radial displace-
ment) of a thickening planetary ice shell. This produces tensile stresses, which are countered by thermal contrac-
tion associated with a decreasing geothermal gradient (Nimmo, 2004). The volume change associated with solid-
ification also causes the overpressure in a subsurface ocean to increase. In the absence of thermal stresses, and 
assuming a tensile strength of 1–3 MPa (Dempsey et al., 1999; Ultee et al., 2020), the global tensile stresses 
associated with ocean pressurization can overcome the tensile strength of ice after 10 2–10 3 m of thickening on 
both Enceladus and Europa (Manga & Wang, 2007). Again ignoring the near-surface compression associated 
with thermal stresses, it is conceivable for cracks that initiate at the surface, where tensile stresses are largest, 
to propagate downward and reach a subsurface ocean. In order to do so, cracks must be able to penetrate the 
viscous sublayer of an ice shell, where the deviatoric elastic stresses associated with ice shell thickening relax. 
Based on calculations that did not include the thermal contraction effect, Rudolph and Manga (2009) showed 
that cracks could reach a subsurface ocean on Enceladus but that the stronger gravity on Europa could prevent 
downward-propagating cracks from reaching the subsurface ocean.

We revisit the problem of stresses generated within ice shells subjected to thickening and thinning due to time-var-
ying tidal dissipation. We develop a coupled model that describes ice shell thermal evolution, the stresses within 
the ice shell due to ocean overpressure and thermoelasticity, and the response of the ice shell to crack forma-
tion. We model the depth to which cracks penetrate and determine the conditions under which cracks reach the 
subsurface ocean. We apply this model to cyclic changes in ice shell thickness driven by periodically varying 
tidal dissipation.

2.  Methods
The planetary ice shell is idealized as a spherical shell with homogeneous and isotropic elastic properties and 
temperature-dependent viscosity. The use of geometrically and physically simplified models enables a charac-
terization of the first-order controls on the dynamics of a complex system and permits a complete exploration of 
parameter space (e.g., Turcotte & Schubert, 2002). Nevertheless, we acknowledge that in taking this approach, 
some processes and properties are not incorporated. For instance, lateral variations in ice shell thickness and 
physical properties can significantly affect the amount and distribution of tidal heating (Beuthe, 2013; Čadek 
et al., 2019; Pleiner Sládková et al., 2021; Souček et al., 2019).

Here, we present the equations governing the conduction of heat in the ice shell, the stresses 𝐴𝐴

(

𝜎𝜎

)

 , and the mechan-
ical coupling between ocean pressurization and thermal evolution. At each timestep, we apply the following 
procedure: (a) calculate the amount of solidification/melting at the ocean-ice interface, (b) solve for temperature, 
(c) solve for the principal stress acting in the radial direction (σr), (d) calculate the principal stress in the tangential 
direction (σt), strains, and displacements. We iterate (c, d) as needed to obtain stresses and displacements that are 
compatible with the overpressure in the ocean.

2.1.  Thermal Model

The temperature distribution in the ice shell is governed by the diffusion equation, expressed here in spherical 
coordinates

𝜌𝜌𝑖𝑖𝐶𝐶𝑝𝑝

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
=

1

𝑟𝑟2

𝜕𝜕

𝜕𝜕𝜕𝜕

(

𝑟𝑟
2
𝑘𝑘
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

)

+𝐻𝐻𝐻� (1)

where r denotes the radial coordinate, T is temperature, ρi is ice density, Cp is heat capacity, H is the volumetric 
rate of internal heating, and t is time. We apply an isothermal boundary condition T(ro) = 100 K at the surface (ro). 
The thermal conductivity k of ice is temperature-dependent, varying by a factor of approximately 3 from 100 K 
to the melting temperature (e.g., Carnahan et al., 2021). We use k(T) = 651/T for T in Kelvin and k in W m −1 K −1 
(Petrenko & Whitworth, 1999). Because the internal heating produced by tidal dissipation is concentrated in the 
warm ice near the base of a conductive ice shell (e.g., Nimmo & Manga, 2009), we approximate H with a basal 
heat flux qb that includes heat produced within the ice shell and heat transported from the deeper interior.
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We discretize Equation 1 using conservative finite differences in space and an implicit scheme in time. At the 
beginning of each timestep, we estimate the amount of ice that solidifies at the ocean-ice interface (Δz) by balanc-
ing the heat conducted upwards with the energy released by solidification

Δ𝑧𝑧 = −
𝑘𝑘Δ𝑡𝑡

𝜌𝜌𝑖𝑖𝐿𝐿

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

|

|
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|𝑟𝑟=𝑟𝑟𝑖𝑖(𝑡𝑡)
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where L is the latent heat of fusion, Δt is the time step, and ri denotes the inner radius of the ice shell. We move the 
bottom of the domain and use linear interpolation to transfer the temperature and stress fields from the previous 
timestep onto the new grid (Nimmo, 2004). We limit the timestep so that the ocean-ice interface never moves 
more than half of the grid spacing.

2.2.  Mechanical Model

We solve the equations governing the thermo-visco-elastic deformation in a spherical shell. A complete deriva-
tion of the governing equations, which closely follows Hillier and Squyres (1991) and Nimmo (2004), is given in 
Text S2 in Supporting Information S1. The mechanical structure of the ice shell is determined primarily by the 
strong temperature-dependence of viscosity. The viscosity is given by

𝜇𝜇(𝑇𝑇 ) = 𝜇𝜇𝑏𝑏exp

(
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where μb is the melting-point (Tb) viscosity, Q is an activation energy, and R is the universal gas constant 
(Nimmo, 2004). We use an activation energy Q = 40 kJ/mol, leading to viscosity variations of 13 orders of magni-
tude between Tb and 100 K. We neglect mushy layers that might develop during thickening (Buffo et al., 2021). 
Additional material properties are given in Table S1 in Supporting Information S1. We carried out tests with the 
nonlinear composite rheology of Goldsby and Kohlstedt (1997) and Goldsby and Kohlstedt (2001) and did not 
observe significant differences from models that used only a temperature-dependent viscosity (Text S5, Figures 
S2-S4 in Supporting Information S1).

We assume a tensile strength of 3 MPa, a value consistent with the largest values obtained from experiments on 
intact specimens of first year sea ice (Dempsey et al., 1999). The repeated failure of ice may reduce the strength of 
ice, particularly within the cold near-surface ice, where damage anneals slowly (Hammond et al., 2018). An addi-
tional set of models was computed with a lower tensile strength of 1 MPa, summarized in Figure S1 in Supporting 
Information S1. These 100 MPa estimates of tensile strength are an order of magnitude larger than the diurnal 
tidal stresses of 100 kPa on Europa (Greenberg et al., 1998; Hurford, Sarid, & Greenberg, 2007) or Enceladus 
(Hurford, Helfenstein, et al., 2007), suggesting that additional stress sources (such as ocean pressurization) are 
necessary to crack an intact ice shell.

2.3.  Ocean Pressurization

The excess pressure in the ocean is calculated using equation 5 from Manga and Wang (2007),
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where ur is the (outward) radial displacement at the base of the ice shell, β is the compressibility of the ocean, rc 
is the radius of the rocky core, z is the amount of ice shell thickening, and ρi and ρw are the densities of ice and 
water, respectively.

2.4.  Failure and Yielding

We consider the failure and yielding of the ice shell in the tensile and compressive regimes. When the tensile 
stress exceeds the tensile strength of ice, a crack forms. We assume that once a crack forms, it propagates on 
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timescales shorter than the viscous relaxation timescale and reaches a maximum depth at which depth-inte-
grated tensile loading is balanced by depth-integrated lithostatic compression. This force-balance condition was 
found to accurately describe the depth of penetration of isolated cracks (Hemingway et al., 2020; Rudolph & 
Manga, 2009). These crack propagation calculations used a boundary element method based on linear elastic 
fracture mechanics that accounts for the crack-tip stresses and the stress concentration effects associated with 
the free surface and the deformable boundary at the ocean-ice interface (Hemingway et al., 2020; Rudolph & 
Manga, 2009). The interaction of multiple adjacent cracks, not considered here, would reduce the maximum 
depth of penetration (Walker et al., 2021).

When failure occurs, we follow a multistep process to assign the maximum (zb) and minimum (zt) depths reached 
by the crack. Starting from the depth at which tensile stresses first exceed tensile strength z0, we calculate the net 
tensile loading (including the contribution from lithostatic stress) acting on the crack above the depth of initial 
failure as 𝐴𝐴 𝐴𝐴net (𝑧𝑧𝑡𝑡) = ∫

𝑧𝑧𝑡𝑡

𝑧𝑧0
𝜎𝜎𝑡𝑡(𝑧𝑧)𝑑𝑑𝑑𝑑 . We assume that the crack will propagate upward until Fnet(zt) = 0. If Fnet remains 

positive even for zt extending to the surface, we assume that the crack reaches the surface and find zb that satisfies 
𝐴𝐴 ∫

𝑧𝑧𝑡𝑡

𝑧𝑧𝑏𝑏
𝜎𝜎𝑡𝑡(𝑧𝑧)𝑑𝑑𝑑𝑑 = 0 . If the crack is arrested below the surface, we assume that the crack extends downwards to zb that 

satisfies 𝐴𝐴 ∫
𝑧𝑧0

𝑧𝑧𝑏𝑏
𝜎𝜎𝑡𝑡(𝑧𝑧)𝑑𝑑𝑑𝑑 = 0 . In our models, all cracks able to reach the subsurface ocean also reached the surface.

We assume that a crack relieves tensile stresses at depths between zt and zb. Stress relief is implemented by reduc-
ing the Maxwell time of the material in the cracked region to 1/10 of the timestep and taking 10 small (1 year) 
timesteps in order to relieve deviatoric elastic stresses. We performed resolution tests and observed no differences 
in the evolution of stresses and ocean overpressure or the timing of cracking events associated with taking 1 
versus 10 small timesteps or reducing the Maxwell time to 1/10 or 1/100 of the timestep.

2.5.  Eruptions

In the absence of additional sources of buoyancy (such as volatile expansion and exsolution), water will rise only 
to the level at which ocean pressure balances the weight of the water column. The critical excess pressure needed 
to extrude water onto the surface is Pex,crit = (ρw − ρi)(ro − ri)g (Manga & Wang, 2007). The level to which water 
rises due to overpressure would be reduced in the presence of porous ice or dissolved salts in the ocean (Lee 
et al., 2005; Nimmo et al., 2003). However, even if water does not reach the surface, decompression boiling can 
sustain eruptions of vapor and water (Ingersoll & Nakajima, 2016; Nakajima & Ingersoll, 2016).

3.  Results
We calculate the stresses in an ice shell subjected to time-varying basal heat flux qb of the form qb = q0 + Δq  sin(ωt) 
where q0 is average heat flux and ω is the angular frequency of perturbation. We consider equilibrium ice shell 
thickness values of 2–30 km. For both Europa and Enceladus, we consider oscillations with a period of 100 Myr 
based on the models of coupled thermal and orbital evolution of the Jovian and Saturnian systems in Hussmann 
and Spohn (2004) and Shoji et al. (2014). We vary the time-averaged ice shell thickness (related to the average 
heat flow q0) and the amplitude of heat flux perturbations, parameterized as Δq/q0. The tensile stresses, timing, 
and depth of cracking events, and existence of ocean-reaching cracks are shown for two specific scenarios in 
Figure 1.

During each 100 Myr eccentricity cycle, cracks initiate below the surface during the thickening phase. In succes-
sive cracking events, failure begins at increasing depth as the thickness of the elastic ice increases. Figure 2 
summarizes the number and depth extent of cracking events per 100 Myr cycle. The fractional penetration (depth 
of penetration divided by ice shell thickness) of cracks increases with decreasing equilibrium thickness and with 
increasing Δq/q0. The frequency of cracking events generally increases with decreasing equilibrium thickness 
and with increasing Δq/q0.

On Europa, we predict that cracks will penetrate at most approximately 48% of the ice shell. Because cracks do 
not reach the ocean, eruptions are not predicted.

Cracks reach the ocean on Enceladus for time-averaged ice shell thicknesses <15 km and heat flux perturbation 
amplitudes Δq/q0 ≥ 0.15. The ocean overpressure at the time of eruption is not sufficient to extrude water onto 
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the surface without additional sources of buoyancy. However, we expect that decompression boiling (Ingersoll & 
Nakajima, 2016; Nakajima & Ingersoll, 2016) and tidal dissipation within cracks can permit sustained eruptions 
(Kite & Rubin, 2016). On average, the first eruption follows a minimum in ice shell thickness by 25 Myr. The 
standard deviation of this lag among all of the ice shell thickness and Δq/q0 values shown Figures 2 and 3 is 3.3 
Myr.

The tensile strength of ice limits the maximum tensile stress that can occur in the ice shell. Thus, for lower values 
of the tensile strength, cracks do not penetrate as deeply. For a tensile strength of 1 MPa, cracks reach Enceladus' 
ocean only for time-averaged ice shell thicknesses less than 4.5 km (Figure S1 in Supporting Information S1).

Figure 1.  Evolution of ice shell thickness and tangential stress σt under Europa-like (a) and Enceladus-like (c) conditions. Red vertical lines indicate the occurrence 
and depth-exent of tensile cracks, and red points indicate the depth of initial failure. Panels (b) and (d) show the evolution of ocean overpressure. The black curve in (d) 
indicates the critical overpressure necessary to extrude water onto the surface. Red and green circles indicate the overpressure before and after cracks form. The blue-
dashed vertical lines (d) indicate the formation of cracks that spans the entire ice shell. On Enceladus, some, but not all, cracks reach the subsurface ocean. On Europa, 
no cracks reach the ocean.
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4.  Discussion
We calculated the thermal and mechanical response of a planetary ice shell subjected to periodic, sinusoidal vari-
ations in basal heat flux. We do not expect downward-propagating cracks to reach a subsurface ocean on Europa 
(Figure 2a). On Enceladus, the weaker gravitational acceleration enables downward-propagating cracks to reach 
the ocean (Figure 2b). In general, increasing the amplitude of heat flow variations leads to larger changes in ice 
shell thickness and therefore larger stresses and more failure events per 100 Myr eccentricity cycle.

The dissociation products of water vapor have been detected near Europa using Hubble Space Telescope emission 
line spectroscopy (Roth, Saur, et al., 2014) and by analyzing absorption features as Europa occults Jupiter (Sparks 
et al., 2016, 2017). Water vapor has been observed spectroscopically on 1 of 17 observations using the 10 m 
Keck Telescope (Paganini et al., 2020). There is geologic evidence for the eruption of liquid water, including the 
presence of smooth, low-albedo deposits that fill topographic lows and raised lenticular features that may have 
formed as viscous extrusions at the surface (Fagents, 2003; Lesage et al., 2021; Miyamoto et al., 2005; Quick 
et al., 2017). Salts and non-ice material appear to be concentrated near chaos and along lineaments (McCord 
et al., 1999). Some mechanical models for the formation of Europa's double ridges (Greenberg et al., 1998), triple 
bands (Fagents et al., 2000), blocky chaos (Schmidt et al., 2011), and lenticular features (Miyamoto et al., 2005; 
Michaut & Manga, 2014; Quick et al., 2017; Singer et al., 2021) invoke the presence of liquid water at or near 
the surface.

We did not identify any cases in which downward-propagating cracks reach a subsurface ocean on Europa. While 
this is a negative result, it does not preclude the formation of cryovolcanic conduits via other processes. Upward 

Figure 2.  Dynamics of cracks on Europa (left) and Enceladus (right). (a, d) The depth of crack penetration, expressed as a fraction of ice shell thickness. The black 
contour in (d) encloses the conditions under which cracks reach the subsurface ocean. The median depth at which tensile stresses exceed the tensile strength is shown in 
(b, e). (c, f) Number of crack formation events per 100 Myr eccentricity cycle.
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propagation of cracks is mechanically challenging due to the relaxation of stresses in the warm ice near the 
ocean-ice interface. The growth of upward-propagating cracks might occur by stress-corrosion cracking (Porco 
et al., 2014), but laboratory experiments do not find a reduction in strength after cyclic deformation (Hammond 
et al., 2018). Exsolved volatiles could provide a source of stresses (associated with buoyancy) that drives upward 
propagation of cracks (Crawford & Stevenson, 1988). Melt may be generated in situ by localized tidal heating, 
particularly if the salt content of Europa's ice shell is variable (O’Brien et al., 2002; Sotin et al., 2002; Vilella 
et al., 2020) or by frictional heating along faults (Nimmo & Gaidos, 2002). If water is present within Europa's 
icy crust, water pockets may become pressurized and generate upward-propagating cracks that reach the surface 
(Fagents, 2003; Lesage et al., 2020; Neveu et al., 2015; Wilson et al., 1997). Finally, impacts may directly or 
indirectly lead to the eruption of water (Steinbrügge et al., 2020).

Our results demonstrate that for a broad range of equilibrium ice shell thicknesses and heat flux perturbations, 
downward-propagating tensile cracks may reach a subsurface ocean on Enceladus. Cracks penetrate more deeply 
on Enceladus because gravity is an order of magnitude weaker than on Europa. The tiger stripe fissures on Ence-
ladus are clear examples of shell-breaching pathways that enable eruptions of ocean water as plumes (Postberg 
et al., 2009). In addition to the tiger stripes, Enceladus' south polar terrain contains intersecting double-ridged 
cracks that predate the tiger stripes (Patthoff & Kattenhorn, 2011). These cracks are straighter, narrower, and 
shorter than the tiger stripe fissures (though they may be truncated by more recently formed faults). The back-
ground of older cracks in the south polar terrain suggests a geologically recent change in Enceladus' activity, 
perhaps linked to the onset of a cooling episode that led to the formation of newer cracks.

Hemingway et al. (2020) proposed that the tiger stripes at Enceladus' south pole formed via a cascading failure 
mechanism in which the first crack is generated by the ocean overpressure mechanism and subsequent cracks 

Figure 3.  Departure from steady-state behavior. (a, d) Time delay (lag) between the minimum dissipation and the maximum ice shell thickness. In panels (b, e) we 
show the ratio of the range of thicknesses observed (Δh) to the range of thicknesses that would be attained under equilibrium conditions (Δheq). Panels (c) and (f) show 
the actual average ice shell thickness. The period of the oscillations in dissipation is 100 Myr in all cases.
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form due to bending stresses. Our models demonstrate the feasibility of producing an initial crack for ice shell 
thicknesses up to 15 km, compatible with estimates of Enceladus' present-day ice shell thickness of 20 km on 
average and 5–14 km near the south pole (Hemingway & Mittal, 2019). Although the models employed here 
assume spherical symmetry and uniform ice shell thickness, we expect that cracks would form preferentially 
where ice is thinner, concentrating stresses. Prior to the formation of the tiger stripes, we expect that the polar 
regions were thinnest due to spatial variations in tidal dissipation (Tobie et al., 2008) and instabilities in ice shell 
dynamics (Kang & Flierl, 2020). The cascading failure mechanism does not appeal to impact processes (e.g., 
Roberts & Stickle, 2021; Siraj & Loeb, 2021).

Our models predict that ice shell thickness variations can be significantly out of phase with variations in tidal 
dissipation, even for the 100 Myr forcing considered here. The lag between minima in dissipation and maxima in 
ice shell thickness increases with increasing equilibrium thickness and with increasing amplitude of dissipation 
variations (Figures 3a and 3d). The largest lags are approximately 10 Myr for the parameters considered here. 
The adjustment of ice shell thickness to increasing versus decreasing dissipation is asymmetric. When dissipation 
increases, the thinning response of the ice shell is rapid because dissipation occurs near the ocean-ice interface 
and the rate of thinning is linearly proportional to the power dissipated. On the other hand, when dissipation 
decreases, the rate of thickening is limited by the upward conduction of heat, which is inversely proportional to 
ice shell thickness. Because a thinner ice shell adjusts more quickly to changes in heat flow, the ice shell is closer 
to equilibrium during positive excursions in dissipation. Thus, the observed thickness variations are smaller in 
amplitude than what would be predicted from the variations in dissipation (Figures 3b and 3e). The asymmetry in 
response to changes in dissipation leads to time-averaged ice shell thickness that can be significantly thicker than 
the equilibrium thickness for a given value of q0 (Figures 3c and 3f).

The ability of cracks to reach the subsurface ocean depends on the assumed tensile strength of ice, which limits 
the maximum tensile stresses that can exist in the ice shell. Constraints on the mechanical properties of ice are 
offered by laboratory experiments and by modeling the behavior of glaciers, ice sheets, sea ice, and planetary ice 
shell processes. The largest tensile strength measured for intact, fine-grained laboratory specimens is 1.5 MPa at 
−10°C (Schulson, 2001). Polycrystalline ice with smaller grain size exhibits larger tensile strength. Terrestrial 
sea ice is weaker than laboratory specimens and its strength is strongly scale-dependent, with tensile strength 
values decreasing from approximately 0.5 to 0.05 MPa for 0.1–2 m scales (Dempsey et al., 1999). For terrestrial 
sea ice at temperatures greater than the NaCl-H2O eutectic (−35°C), variations in brine volume fraction lead 
to decreasing tensile strength with increasing temperature (Schulson, 2001; Weeks, 1962). The tensile strength 
inferred from modeling some glacial processes (approximately MPa) is comparable to that of laboratory speci-
mens and 10–100 times larger than that of sea ice (e.g., Ultee et al., 2020). The tensile strength of a planetary ice 
shell after many failure events over several cycles is likely to be lower than the upper limit indicated by laboratory 
specimens.

Tensile cracks are observed on Europa's surface parallel to some double-ridges, and the formation of these cracks 
in response to surface loads can be used, in principle, to estimate the in-situ tensile strength of ice. Billings and 
Kattenhorn  (2005) used the spacing between ridge-parallel cracks and the central trough of double ridges to 
constrain the elastic thickness of Europa's ice shell under the assumption of a line load on a broken elastic plate 
(Turcotte & Schubert, 2002). Assuming a line load of approximately 6 × 10 7 kg/m (estimated from the dimen-
sions of Androgeos Linea), we estimate maximum bending stresses at the surface of 10 −1 MPa, noting that this 
estimate is highly uncertain due to the uncertainties in the Young's modulus and elastic thickness. These flanking 
cracks do not appear to accumulate tectonic offsets and do not appear to be linked to cryovolcanic processes, 
suggesting that they may be superficial cracks that only penetrate highly fractured, weakened ice near the surface.

Convection may be occurring within the ice shells of Europa (e.g., Pappalardo et al., 1998) and Enceladus (e.g., 
Barr & McKinnon, 2007), but the style of convection and the relationship between surface features and convec-
tive upwellings and are not entirely understood (Howell & Pappalardo, 2018). In a convecting ice shell, the frac-
tional thickness of the elastic layer is smaller than for a purely conductive shell, owing to the steeper temperature 
gradient near the surface. This would make downward-propagating cracks less likely to reach an ocean. Changes 
in the pattern of convection in a thickening ice shell would lead to a more complex thickening history (Allu 
Peddinti & McNamara, 2019). Due to more efficient upward heat transport, a convecting ice shell can also adjust 
more rapidly to decreases in tidal heating (Green et al., 2021).
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5.  Conclusions
We modeled the evolution of stresses in the ice shells of Europa and Enceladus due to changes in ice shell thick-
ness driven by 100 Myr variations in orbital eccentricity. Changes in ice shell thickness generate thermal stresses 
due to the changing thermal gradient and global tensile stresses due to the volume change as water freezes to 
ice. Downward-propagating tensile cracks reach the subsurface ocean on Enceladus for plausible combinations 
of ice shell thickness and variations in tidal dissipation. On Europa, the generation of downward-propagating 
tensile cracks is inhibited and cracks do not reach the subsurface ocean. The presence of multiple, interacting, 
cracks further reduces the depth to which cracks can penetrate (Walker et al., 2021). Our models involve key 
mathematical simplifications, including the assumption of uniform ice shell thickness and tidal heating. In future 
work, it would be useful to consider the joint influence of thermal and ocean pressurization stresses, which can 
reach several MPa, and the 0.1 MPa tidal stresses to interpret the timing and location of crack formation and the 
development of tidally controlled cracks.

Data Availability Statement
The computer code necessary to reproduce all numerical results and figures is available on Zenodo (doi: 10.5281/
zenodo.5551865).
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