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ABSTRACT 

This article reviews the application of boundary integral methods to low 
Reynolds number free-boundary flows. The basic equations are developed 
for three prototypical problems: (i) a drop in an unbounded fluid, (ii) 
a rigid sphere translating towards a fluid-fluid interface, and (iii) a drop 
moving through an interface. The interfacial velocity field is expressed as 
a Fredholm integral equation of the second kind, where the integration do
main is the deforming interface. This velocity coupled with the kinematic 
condition determines the interface evolution. A brief discussion is given of 
the numerical treatment of the equations, and an illustration is given of 
time-dependent deformation for several two-interface problems. An exten
sive literature review is provided. 

1. INTRODUCTION 

Low Reynolds number flows are characterized by small velocities, 
small length scales and/or high fluid viscosities. In this limit the iner
tia terms in the N avier-Stokes equations are neglected; the fluid motion 
is governed by the linear (quasi-steady) Stokes equations [16, 19]. Inte
gral equation formulations are a natural choice for certain classes of Stokes 
flow problems [77]. The methods may be applied to flows involving only 
rigid boundaries (e.g., a suspension of rigid particles) and flows involv
ing at least one fluid-fluid interface, hereafter referred to as free-boundary 
problems. l The former subject has been discussed and developed by Kim 
and coworkers [26]. This paper presents a brief survey of the application 

1 Boundary integral methods have also been used to study high Reynolds number 
free-boundary problems. This is a separate subject and the interested reader can refer 
to [4, 38, 48]. 
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of boundary integral methods to free-boundary problems for flows at low 
Reynolds numbers. 

The dynamics of interface deformation in low Reynolds number flows 
is of interest in a wide variety of fields including chemical and petroleum 
engineering, solid-earth geophysics, hydrology, and biology. Typical appli
cations span an immense range of length scales from microns to hundreds 
of kilometers: biological studies of cell deformation; chemical engineer
ing studies of coalescence, flotation, coating flows and the dynamics of 
thin films; and geophysical studies of mantle plumes, lithospheric slabs and 
magma chambers. 

The principal difficulty with solving free-boundary problems is that 
the position of the interface is unknown a priori and must be determined as 
part of the solution. Thus, the problem of determining the time-dependent 
interface shape is inherently non-linear. 

The boundary integral method relates velocities at points within the 
fluid to the velocity and stress on the bounding surfaces. It is an ideal 
method for studying free-boundary problems. Advantages of the technique 
include the reduction of problem dimensionality, the direct calculation of 
the interfacial velocity, the ability to track large surface deformations, and 
the potential for easily incorporating interfacial tension as well as other 
surface effects (e.g., electric field-induced stresses). 

The boundary integral formulation for Stokes flows was theoretically 
described by Ladyzhenskaya within the framework of hydrodynamic poten
tiais [30]. This integral equation method was developed and implemented 
numerically by Youngren & Acrivos [80] in a study of the translation of 
arbitrarily-shaped rigid particles. Shortly thereafter, the method was ex
tended to the study of deformation of fluid-fluid interfaces: the deformation 
of bubbles and drops in extensional flows [63, 81] and the motion of a rigid 
sphere moving normal to a deformable interface [31]. In recent years the 
number of applications has increased enormously. 

Applications of boundary integral methods have ranged from the clas
sical study of a rising drop in an otherwise quiescent fluid [28, 29, 56], to 
more complex situations such as drop breakup in extensional flows, the 
deformation of a blood cell [33, 57], and the deformation of small drops 
in electric and magnetic fields [66]. The integral equation approach has 
also been applied to study the growth of two-dimensional Rayleigh-Taylor 
instabilities [45, 79] and the selective withdrawal of fluid from a stratified 
layer [36]. Although most work has been concerned with axisymmetric 
or two-dimensional interface deformations, which only require numerical 
treatment of line integrals, several studies have considered the more diffi
cult case of three-dimensional surface distortion [13, 25, 60, 61]. Recent 
studies have combined boundary integral methods with lubrication theory 
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LOW REYNOLDS NUMBER FLOWS 
Free-boundary problems 

r-C Axisymmetric 

Selective withdrawal 
~ Lister [1989] 

Tanzosh & Stone [1991] 

Filaments 

f- ~~':!'~:~:~ al. [1992] 

Pozrikidis [1992] 

l( Drops 

I 

Marangoni effects 
Ascoli & Leal [1990] 
Stone & Leal [1990a] 
Zinemanas & Nir [1988] 

f- Nir [1989] 
Hiram and Nir [1983] 

Sapir and Nir [1985] 
Milliken and Leal [1991] 

H Electromagnetic effects 
Sherwood [1988] 

Drops in tubes 
Martinez & Udell [1989,1990] 

f- Borhan & Mao [1992] 
Pozrikidis [1992b] 

Drop/cells in external flows 
Youngren & Acrivos [1976] 

Rallison & Acrivos [1978] 
Stone & Leal [1989abc,1990b] 

Stoos & Leal [1989] 
Li et al. [1988] 

Pozrikidis [1990c] 

( 2D flows 1\ ____ ____ 

HThin films 
Pozrikidis [1988] 

~ 'Fi;; ~;;r-ri~id ·o-bj;ci; ~ 
: Pozrikidis [1987a] : 

~ Higdon [1985] : 
I : Lee & Leal [1986] : 

I Peristaltic flow I 

: Pozrikidis [1989] : 
~----------------- ~ 

H Fluid slabs 
Manga et al. [1991] 

Rayleigh-Taylor 
instabilities 

~ Yiantsios & Higgins [1989] 
Newhouse & 

Pozrikidis [1990] 

I I Jet 
-, Kelmanson [1983] 

Buoyant Drops 

~ Koh & Leal [1989, 1990] 
Pozrikidis [1990a} 
Manga & Stone [1991] 

- ( 3D flows ,,-------
Drops in shear flows 
Rallison [1984, 1981] 
DeBruijn [1989] 
Kennedy et al. [1991] 

Thin Films 
Pozrikidis & 

Thoroddsen [1991] 

r---------------~ 
I Rigid particles I 

: Kim & Karilla [1991] : 
: Youngren & ! 
~ Acrivos [1975] I 

I I 
I Tran-Cong & I 

: Phan-Thien [1989] : L _______________ ~ 

Drops/Spheres and interfaces 
Lee & Leal [1982] 
Geller et al. [1986] 
Chi & Leal [1989] 

Dandy [1987] 
L Ascoli et al. [1990] 

Stoos & Leal [1990] 

Koch & Koch [1991] 
Pozrikidis [1990b] 

Figure 1: Summary of free-boundary problems studied numerically using 
the boundary integral formulation for low Reynolds numbers flows. Selected 
studies involving flow over rigid surfaces are included (dashed boxes). 
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to characterize the fluid motion in thin regions between two fluid layers 
[5, 11, 37, 78]. Many aspects related to integral equation methods for free
boundary problems are described in a recent book by Pozrikidis [58]. 

Figure 1 summarizes applications of integral equation methods to free
boundary problems. The studies have been classified according to whether 
the geometry is axisymmetric, two-dimensional, or three-dimensional. Drop 
problems are further subdivided according to application. Table 1 provides 
a more detailed summary. The problems have been classified according to 
the number and form of the bounding interfaces. The primary (.) and sec
ondary (0) driving forces (e.g., externally-driven, interfacial-tension-driven 
or buoyancy-driven) responsible for the deformation are also indicated. 

We proceed by considering some of the details of the boundary integral 
formulation. In Section 2 we provide a derivation of the basic integral 
equations, along with the modifications necessary for the study of more 
complicated problems. In Section 3, we outline the numerical techniques 
typically applied in the treatment of free- boundary problems and, iri Section 
4, present a summary of some of the research in progress in our group. 

2. ANALYTIC FORMULATION 

In this section we present the basic equations necessary for studying 
free-boundary problems using integral equation methods. A variety of free
boundary problems can be posed, each involving different combinations of 
fluid-fluid interfaces, rigid boundaries and external flows. A generic treat
ment covering all possibilities is rather difficult, so details of the method 
are discussed within the framework of several prototypical problems: (i) 
a drop in an unbounded fluid, including the presence of an external flow, 
§2.4j (ii) a rigid particle translating toward (and through) a deformable 
interface, §2.5j and (iii) a drop translating toward a deformable interface, 
§2.6. These free-boundary problems illustrate the basic elements necessary 
for treatment of, respectively, (i) unbounded and external flows, (ii) rigid 
boundaries, and (iii) multiple fluid-fluid interfaces. In principle, general
ization to other geometries is straightforward. 

2.1 Equations and boundary conditions 

In the low Reynolds number limit, incompressible fluid motion is gov
erned by the Stokes and continuity equations 

V.T=-Vp+IlV2u+pg=O and V·u=O, (1) 

Table 1: Research organized according to surface geometry - Fluid interface: open 
(layer, thread) or closed (drop, capsule); Rigid interface: none (-), open (rigid 
wall/pipe) or closed (rigid particle). The numbers reference the bibliography. Forc
ing: • refers to primary forcing; 0 secondary forcing. Geometry: axisymmetric (AS); 
three-dimensional (3-D); two-dimensional (2-D) and/or periodic in one direction (P). 



24 Boundary Element Technology 

where u is the velocity, p is the pressure, I' and p are the fluid viscosity 
and density, respectively, and g is the gravitational acceleration. Here 
the stress tensor T is defined to include the hydrostatic body force, T = 
- (p - pg. x) 1+1' (Vu + (Vu)T), in order to define a divergence-free field. 
The body force will appear expliCItly in the boundary conditions if there are 
density contrasts across fluid-fluid interfaces. The low Reynolds number 
assumption requires n = pull I' ~ 1 where u and I are characteristic 
velocity and length scales of the fluid motion. 

J.1,p 
VI 

fluid 1 

..... 

Figure 2: A translating and deforming drop in an unbounded fluid. 

For illustrative purposes, consider the case of a drop of viscosity AI' 
immersed in a second immiscible fluid of viscosity I' with an externally
imposed velocity field UOO(x) (Fig. 2). The boundary conditions at a fluid
fluid interface Sint require a continuous velocity and a balance between the 
net surface traction and interfacial tension forces. Hence, 

Ul(X) - UOO(x) as Ixl- 00, 

and the stress jump [n . T], accounting for a density difference across the 
interface, is given by (the normal n points into fluid 1) 

(n· T] == n·T1 -n·T2 = a (V.·n)n-V,a-~p(g·x)n for x. E Sint. (3) 

Here a denotes the interfacial tension, ~p is the density difference, V. = 
(I - nn) . V is the gradient operator tangent to the interface, V, . n is the 
mean curvature of the interface and x. denotes a point on the interface. 
The stress balance (3) includes both a normal stress jump, proportional to 
the product of interfacial tension and the local curvature, and a tangential 
stress jump, -V ,a, owing to variations in interfacial tension along the 
surface. These variations may result from either temperature gradients 
or the presence of surfactants in the fluid. In such instances, additional 
field equations determine the temperature profile or the distribution of 
surfactants along the interface [2, 70]. Other stresses may be included 
in the stress jump boundary condition. For example, in studies of drop 
deformation, Sherwood [66] examined the effect of electric or magnetic 
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field-induced stresses and Li, et al. [33] studied the role of elastic stresses 
generated in a thin membrane surrounding a drop. 

A kinematic constraint relates changes in the interface position to the 
local velocity. For example, the interface evolution may be described with 
a Lagrangian representation dx./dt = u(x.). 

Although time-dependence does not appear explicitly in Stokes equa
tions, it is consistent to study time-dependent interface distortions. This 
quasi-static assumption requires that [2/ v ~ T where v is the kinematic 
viscosity, and T is a typical time for a change of the flow or geometry. Gen
erally, T = min [O(l/U OO ), O(lp/a)], where the former is a time scale for 
an externally-driven flow, and the latter is the time scale of an interfacial
tension-driven motion. In most situations, the larger of the two fluid vis
cosities should be used for these estimates. Physically, the quasi-static 
approximation means that the fluid immediately adjusts to changes in the 
boundary location owing to rapid vorticity diffusion. 

2.2 Green's functions 

In order to derive an integral representation for Stokes flows, the 
fundamental singular solutions for Stokes equations are needed. These 
singular solutions correspond to the velocity and stress fields at a point x 
produced by a point force F located at y and may be derived, for example, 
using Fourier transforms [26]. Denoting the singular solution by a A and 
solving \7 ·1'+F 8(x-y) = 0 with \7·u = 0 and lui, 11'1- 0 as lxi- 00 

yields 

u(x) = .!:. J(xly) . F 
p 

and 1'(x) = K(xly)' F, (4) 

where the kernels, or Green's functions, are denoted J and K. The free-field 
Green's functions mapping a force at y to the field at x in an unbounded 
three-dimensional domain are 

1 (I rr) 3 rrr J(xIY) = - - + - and K(xly) = ---
811' r r3 411' r5 (r = x - y, r = Irl) (5) 

and in an unbounded two-dimensional domain are 

1 ( rr) J(xly) = - 1 logr - 2" 
411' r 

1 rrr 
and K(xly) = --4 . 

11' r 
(6) 

Green functions for other geometries have also been derived. In prac
tice, these modified Green's functions reduce the number of boundary con
ditions which must be imposed in boundary integral applications, thereby 
simplifying the problems. Examples are listed in Table 2. 
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Table 2: Selected Green's functions for Stokes flow. 

Geometry Reference 
Rigid plane wall Blake [6] 

Semi-infinite plate Hasimoto et al. [17] 
Solid sphere Oseen (as cited in Kim & Karrila [26]) 
Two intersecting planes Sano & Hasimoto [64] 
Inside a circular cylinder Liron & Shahar [35] 
Solid planar wall with a hole Davis [10], Miyazaki & Hasimoto [44] 

Between two parallel plates Liron & Mochon [34] 
2-D Periodic: Symmetric with 

respect to a point or plane Pozrikidis [51, 52] 

2.3 Integral representation of Stokes equations 

For two solenoidal velocity fields (u, T) and (6, t) it is straightfor
ward to derive the Reciprocal theorem (a Green's theorem), which states 

where n is the unit outward normal to the fluid volume V, S represents 
all surfaces bounding the domain (including a surface at infinity Soo) and 
integration occurs with respect to x. 

Substituting the fundamental singular solutions (4) into the Recip
rocal theorem, using (1), removing the arbitrary vector F, and, for conve
nience, interchanging the labels x and y yields the integral equation 

- f n. T . J(xly) dSy + f n· K(xly)' u dSy = !u(x.) 
1 { u(x) 

p1s 1s 0 

x E V (8a) 
x. E S. (8b) 
x ¢ V (8e) 

The reader is warned that other sign/nomenclature conventions are in use 
and reminded that J and K are, respectively, symmetric and antisymmetric 
tensors with respect to r = x - y. The factor of 1/2 arises from the jump 
in the value of the K integral as the surface is crossed. This assumes that 
the surface is Lyaponov smooth, which requires that a local tangent to 
the interface exist everywhere; sharp corners, cusps or edges violate this 
assumption and must be treated separately [42]. 

Equation (8) relates the velocity field u(x) at any point inside (or 
outside) a fluid volume, or on the boundary, to the velocity u(xs ) and 
traction n . T(x.) on the bounding surface. For points on the boundary 
S, this is a Fredholm integral equation of the second kind for the velocity 
u(x.) and of the first kind for the traction n . T(x.). Finally, equation 
(8c) is a useful identity for developing integral equations with a minimum 
number of unknowns (see §2.5-6). 
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There are alternative procedures for producing integral representa
tions for Stokes flow problems. Rather than using the primary variables 
u(xs), n . T(xs) as in (8), an integral representation is developed in terms 
of non-physical single-layer or double-layer distributions. For example, the 

single-layer distribution is u(x) = is J. q dSy , with a similar expression 

for the associated stress field. Unlike (8) which yields an integral equation 
of the first kind for the stress distribution n· T, this alternative formulation 
yields an integral equation of the second kind. For problems involving rigid 
particles, the reader is referred to [22, 26]. The approach has also been 
applied to free-boundary problems [45, 55]. 

2.4 Integral equation for a fluid-fluid interface 

Consider the case of a fluid drop, volume V;, in an unbounded fluid, 
volume Vi, as shown in Fig. 2. The viscosity ratio is denoted by A. If 
there is an imposed flow UOO(x), the basic equations are developed in terms 
of 'disturbance variables'. Define for both fluids 1 and 2 the disturbance 
velocities U~,2(X) = UI,2(X) - UOO(x) and disturbance stresses T~,2(X) = 
T I,2(X) - Tt'2(X). 

Equation (8) holds for u' in both fluids and only the fluid-fluid in
terface Sint need be considered. The enclosing boundary at large distances 
Soo may be neglected because of the l/r and 1/r2 decay of the velocity 
and stress fields characteristic of disturbance Stokes flows [16]. Therefore, 
remembering that n is directed from fluid 1 to fluid 2, we can write the two 
equations 

-; J, n . T; . J dS, - J, n . K . u; dS, ~ { 

and 

>.~ J, n . T', . J dS, + J, n . K . u; dS, ~ { 

XEVI~V2 
Xs E Sint 

XEV2~VI 

XEVI~V2 
Xs E Sint . 

XEV2~VI 

(9) 

(10) 

Multiplying equation (10) by A, adding to (9), and using boundary condi
tions (2-3) yields 

-~1s [n· T']· J dSy - (l-A)ln. K· u~ dSy= 1 + AUI(x.) x. E Sint(llb) { 
UI(X) X E VI (lla) 

f.l Sin' Sin' 1U2(X) X E V2 (lIe) 

where the disturbance stress jump [n· T'] = [n . T] - [n . Tool Alterna
tively, for problems with externally-imposed flows, it is more common to 
recast (11) in terms of the actual interfacial velocity and UOO(x). Using the 
identity 

f V'. (Too. J + K· UOO ) dV = 0, iV2 

(12) 
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one obtains the widely applied integral equation 

UOO(Xs) - ~ 1 [n· T]· J(xly) dSy 
Il Sinl 

Rallison & Acrivos [63] first presented (13b) for the interfacial velocity and 
Pozrikidis [56] presented the complete form of (13) for the general case 
of points off the fluid-fluid interface. Power [49] showed that this integral 
equation has real eigenvalues corresponding to A = 0 or 00, and that a 
unique and continuous solution exists for 0 < A < 00. 

For a given external flow and a known interface shape Sint, equation 
(11 b) (or 13b) is a Fredholm integral equation of the second kind for the un
known disturbance velocity u'(xs) (or the actual velocity u(xs)), which de
pends on the stress jump [n . T] across the deformable surface. The stress 
jump is a function of the interface shape, with dependence on the position, 
normal and curvature as given by equation (3). The above equations are 
the starting point for numerical investigation of numerous free-boundary 
problems. In addition, for a known interfacial velocity and interface shape, 
equations (l1a, c) or (13a, c) determine the velocity at points off the surface 
and thus are useful for obtaining a detailed picture of the entire flow field. 

The majority of studies assume that the interface shape is axisymmet
ric. In this case the azimuthal integration can be performed analytically, 
thereby reducing the surface integral to a line integral. The resulting kernels 
involve elliptic functions (e.g., [31, 80]). For the case of equal fluid viscosi
ties (A = 1), equations (11) and (13) simplify to an explicit expression for 
the interfacial velocity. If the problem sketched in Fig. 2 is bounded, for 
example, by a rigid planar boundary, a modified Green's function may be 
used to account for the rigid surface; only integration along the deformable 
interface Sint is required [3, 55]. 

In principle, either (11) or (13) and the kinematic condition are solved 
numerically in order to follow changes in the interface shape. However, be
fore discussing details of the numerical solution, two additional applications 
are described for common free-boundary problems. 

2.5 Application to a rigid particle near a fluid-fluid interface 

Consider the slightly more complicated problem of a rigid buoyant 
sphere translating with unknown velocity Up normal to a deformable fluid
fluid interface in an otherwise quiescent fluid (Fig. 3a). Label the fluids 1 
and 3 to be consistent with the related problems shown in Figs. 2 and 3b. 
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(a) 

p 

fluid 1 

fluid 3 

AJ.L p+~p 
fluid 3 1 II 

''1It"" P + ~Pn 

Figure 3: (a) Rigid sph r and (b) drop approaching an int rface. 

For fluid 1, use (8) and write four integral identities, two for field points 
on either of the bounding surfaces and two for points in either of the fluid 
volumes: 

-.!. r n.T!. J dSy - r n.K·uldSy 
fL J Sint J Sint 

-.!.1 n . TI . J dSy = { 
fL Srigid 

UI(X) 
Up 

tUI(X) 
o 

xEVl 
x. E Srigid 

X. E Sint • 

x E Y3 

(14) 

The identity 1 n· K dS = -~I, which follows from the Divergence Theorem 
Sd_d 2 

and V . K + I b'(r) = 0, has been used to simplify the integral over Srigido 

In a similar manner, for fluid 3 write the four equations 

J.-l no T 3 · J dS + 1 n· K· U3 dS = { I ~ A" y y -u (x) 
r Sint Sint 2 3 

U3(X) 

x E VI 
x. E Srigid 

X. E Sint . 

xE V3 

(15) 

Multiplying (14) by A, adding to (15), and again using the boundary con
ditions (2-3) of continuous velocity and the stress jump [n . T] yields 

J dSy - (1 - A) lsint n . K . UI dSy 

- .!.1 n . TI . J dSy = { 
fL Srigid 

UI(X) 
Up(x) 

l+A 
-2-UI (x) 

h3(X) 

(16) 

xEVl 
x. E Srigid 

x. E Sint . 

x E Y3 
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The problem statement is completed by imposing the integral force con

straint on the buoyantly rising particle, 1 n· T1 dS = constant, where the 
Srigid 

spherical particle is assumed not to rotate. 

Equation (16) and the kinematic condition represent coupled equa
tions for the unknowns U1(X3 E Sint), n· T1(x, E Srigid), the rise speed of 
the particle Up, and the interface shape. If the particle translation velocity 
is specified, the force constraint is not applied. Also, following determina
tion of the unknowns, the velocity field off the interface can be calculated. 
This formulation involves fewer unknowns than previous studies, which re
quired solving for the actual stress distribution along the interface e.g., 
[31]. 

The problem formulation as an integral equation may be generalized 
easily to allow for an arbitrarily-shaped rigid particle by introducing an 
unknown particle rotation rate and imposing a torque-free constraint. 

2.6 Generalization to multiple fluid-fluid interfaces 

We now extend the discussion given in §2.4-5 to examine free-boundary 
problems involving multiple fluid-fluid interfaces. Consider the motion of a 
deformable drop moving normal to a deform~ble interface, sketched in Fig. 
3b. Numerical results for this problem are presented in §4. 

In many previous applications of boundary integral methods to prob
lems with multiple deformable interfaces, both the interfacial velocity and 
interfacial stresses remained as unknowns in the final equations, e.g., [71]. 
However, by making full use of the integral relation defined by equation (8), 
integrals involving the actual stress can be replaced by integrals involving 
only velocities and stress jumps at each of the deformable interfaces. This 
formulation avoids solving an integral equation of the first kind for the 
stress. 

The fluid velocities Ul, U2 and U3 (see Fig. 3b) can be written as 
integrals over all bounding surfaces using equation (8). Using a superscript 
I or I I to distinguish the interfaces, the derivation presented in §2.5 can 
be generalized to show that the velocity field at any point along either of 
the two interfaces, S{nt and S{!t, or in either of the three fluid volumes is 
given concisely by 

~ IJn. TI]. JdSy - (I-AI) lp· K· u{dSy - ~ iII [n· TIl]. JdSy 
P Sin. Sin. P Sin. 

U1(X) X E Vi (17a) 
AIU2(X) X E Vi (17b) 
AIIU3(X) X E V3 (17c) 

l~AIuHxs) X.ES{nt (17d) 

1 + All II() SII (17 ) --2-U1 Xs X. E int e 
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where [n· TI] and [n· TIl] denote the stress jumps across the two fluid
fluid interfaces. Equations (17d) and (17e) represent two coupled integral 
equations for the unknown interfacial velocities ui and u{/ and involve only 
the two stress jumps. 

3. NUMERICAL IMPLEMENTATION 

This section summarizes standard numerical solution procedures for 
treating the free-boundary problem. The discussion refers to the simplest 
case of deformation of a single interface (§2.4), but can be easily extended 
to multiple interfaces. 

In many problems, the interface is continually deforming and the rate 
and degree of deformation (e.g., drops breaking into smaller drops) are 
common topics of study. Numerical approaches for these transient problems 
will be addressed here; other approaches for determining steady shapes are 
discussed in [53, 81]. 

The integral equations derived in §2 are linear equations for the in
terfacial velocity u(x.), but are non-linear when the unknown shape is 
included. The interface evolves according to dx./ dt = u(x.). Representing 
the interface at N discrete points x~, the numerical problem is to determine 
the evolution of x~ according to the system of equations 

dx~(t) = ( i) = 'L { i dX~(t)} 
dt u x. or x., dt ' i = 1, ... ,N (18) 

where the non-linear functional F (e.g., equation llb) depends on the 
unknown interface shape (hence involves knowledge of the surface normal 
and curvature) and the unknown interfacial velocity. 

Almost all solutions of this problem linearize (18) by relaxing the 
kinematic condition so that the velocity calculation decouples from the de
termination of the unknown shape. There are three primary steps in this 
iterated solution procedure: (i) describe the deformed interface; (ii) cal
culate the surface velocity for a given shape by solving the second kind 
integral equation (llb) or (13b); (iii) march the interface shape forward in 
time using the kinematic condition. These three items are now discussed. 

3.1 Interface description 

Free boundary problems, which involve interfacial tension, must accu
rately determine the position, normal and curvature of the interface. Thus 
the deforming interface shape ideally should have a twice continuously dif
ferentiable representation. 

Axisymmetric or two-dimensional interface shapes have been stud
ied extensively. In such cases it is common to represent the surface at N 
discrete nodal points. The position, normal, and curvature may be evalu
ated either directly at the nodes using a finite difference scheme [63], or at 
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inter-nodal locations using interpolation. Examples of the latter use either 
a local interpolating function over a boundary element (piecewise polyno
mial interpolation [42], local circular arc approximation [45]), or a global 
interpolation involving all nodes (cubic spline e.g. [15]). Potential difficulties 
with highly distorted shapes, such as multi-valued representations and/or 
infinite derivatives, may be eliminated using an arclength parameterization 
scheme. The interface is represented using two cubic splines with inter
face arclength as the independent variable [68] (e.g., r = r(s),z = z(s) 
where r, z are a cylindrical coordinate representation of the surface and s 
is the arclength). Investigations of three-dimensional surface deformation 
are still in their early stages and only modest distortions have been com
puted, primarily in the context of drop deformation in simple shear flow 
[13, 25, 60, 61]. 

3.2 Calculation of the interfacial velocity (solution of the integral equation) 

Given a description of the interface, the integral equation is reduced 
to a system of linear algebraic equations for the interfacial velocities u(x~), 
following one of several possible numerical techniques [1, 21, 26]. The most 
commonly used is a collocation technique, whereby the unknown velocity 
is discretized and approximated using a local polynomial interpolation, a 
quadrature scheme is introduced and the integral equation is enforced at 
the discrete points. 

The resulting system of equations produces a dense matrix which may 
be solved by a direct method such as Gaussian elimination. Pozrikidis [60] 
has shown that iterative methods may be more efficient because a good 
initial guess for the value of the unknown is available from the previous 
time step. The potential time-savings may be important as larger and 
more complex problems are studied. 

3.3 Interface evolution 

The interface shape is updated using the kinematic condition. For 
example, the marker points may be marched forward using the actual sur
face velocity (a Lagrangian representation). This procedure tends to sweep 
points tangent to the surface even if only small shape changes actually oc
cur. Consequently, frequent redistribution of points is necessary. For this 
case it is straightforward to implement a multi-step integrator. 

Alternatively, an Eulerian view point can be taken [3]. In practice, 
points on the interface are moved in a direction normal to the interface using 
the normal projection of the surface velocity, dxs / dt = (n . u(xs )) n. This 
has the advantage that marker points tend to remain evenly distributed. 
A simple explicit Euler method is generally used because it is unclear how 
best to implement higher order integrators. 
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3.4 Miscellaneous remarks 

The kernels Jand K have integrable singularities (at y = x.) and 
some care is needed in the numerical integration. Common procedures 
either cut out a region surrounding the singularity and perform the lo
cal integration analytically [63] or subtract the singularity directly in the 
numerical approximation of the integral [33]. 

If the interface extends to infinity (e.g., Fig. 3), a simple approxima
tion to solve the integral equation is to truncate the interface at a finite 
distance and verify that the truncation distance is adequate [31]. Alterna
tively, the interface may be extrapolated with an approximate curve, and 
the integration to infinity treated using an appropriate quadrature scheme 
[36]. 

In most studies of drops, the constant volume of the drop is not 
imposed, but rather volume changes are used as a measure of the accuracy 
of the numerical method. For A = 1, the volume changes typically are 
insignificant. However, most researchers report noticeable volume changes 
for low viscosity ratios, A.:sO.l, and may resort to a shape rescaling in order 
to continue the simulations for long times. 

There have been one or two preliminary attempts, e.g. [79], to solve 
(18) using a fully implicit (Newton) scheme. In addition, parallel processing 
has been recently applied to boundary element calculations of suspensions 
of rigid spheres in Stokes flows [23]. Future work in both of these directions 
would be useful. 

4. APPLICATIONS TO SELECTED PROBLEMS 

In this section we show examples of the deformation of buoyant drops 
in axisymmetric three-fluid systems to illustrate the use of the boundary 
integral approach: (i) two drops translating parallel to their line-of-centers, 
(ii) translating double emulsion drops, and (iii) a drop approaching an 
interface. For a given initial configuration and a constant interfacial tension 
five dimensionless numbers characterize the system: two viscosity ratios, 
AI and All (see Fig. 3b), two Capillary numbers, CI = fLU/UI and CII = 
fLU/UII, where U is a representative settling speed in an unbounded fluid, 
and a buoyancy parameter B = f'::lPII/f'::lPI. 

The integral equations are solved using a collocation technique. The 
interfaces are described by twice continuously differentiable taut cubic 
splines parameterized in terms of arclength [12]. To minimize numerical 
error collocation points are concentrated in regions where the interface 
separations are smallest and are redistributed at each time step. Typically 
30-100 collocation points and 400-1000 Euler time steps are used. Compu
tation times ranged from 20 minutes to 12 hours on a Sparc 2. The simula
tions are stopped when the interface separation becomes smaller than the 
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(b) 
C = 10 C=2 C = 00 C = 10 C=2 

Figure 4: Time-dependent deformation of (a) two buoyant drops and (b) dou
ble emulsion drops for different values of interfacial tension, 0'. The Capillary 
number C = P:/J./O'. The fluids have the same viscosity (AI = All = 1) and both 
interfacial tensions are equal (0'1 = O'Il). The buoyancy parameter B = 1. 

(a) AI = 1000 AI = 0.5 (b) AI = 1 
All = 0.1 All = 0.1 All = 1 

0 0 0 

Figure 5: Time-dependent deformation of a buoyant drop passing through an 
interface showing the effect of (a) drop viscosity (All") and (b) lower fluid viscos
ity (AIlP.). The buoyancy parameter B = 0.2, and there is no interfacial tension 
(C = 00). 
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local node spacing. 

Fig. 4 illustrates the time-dependent deformation of two buoyant 
drops or double emulsion drops translating parallel to their line-of-centers 
for different values of the inteifacial tension. Each column shows a sequence 
of drop shapes at different times. For low values of the interfacial tension, 
the drops may become highly deformed. Fig. 5 shows the effect of fluid 
viscosity on drops approaching a fluid-fluid interface. Drop viscosity plays 
an important role in the rate and nature of film drainage while the viscosity 
of the lower fluid influences the mode of deformation: either a tailor a 
cavity develops at the back of the drop. Figs. 4 and 5 display the ability 
of the numerical method to track successfully large deformations. 

5. SUMMARY 

Integral equations of the second kind for the velocity along a fluid
fluid interface in low Reynolds number flows have been discussed. The 
development is extended in a straightforward manner to problems with 
multiple interfaces. In all cases, only the interfacial velocities and stress 
jumps across fluid-fluid interfaces, and the stress distributions and velocities 
along rigid surfaces, appear as unknowns. A summary of the numerical 
solution of these free-boundary problems has been given and an example 
shown of the deformation of buoyant drops in systems with other drops or 
interfaces. 
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