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Abstract

Many geological and geophysical processes may be characterized by low Reynolds
number multiphase fluid flows. This thesis focuses on the dynamics of deformable
drops and bubbles in multiphase fluid systems. Specifically, several model flow prob-
lems are considered: the interactions of buoyant drops and bubbles in suspensions,
the motion of drops and bubbles through fluid-fluid interfaces, and the deformation
of buoyant volumes of fluid in externally-imposed flows. A combination of numeri-
cal calculations, laboratory experimental results and analytical methods are used to
study the model flow problems.

Free-boundary problems of interface deformation in Stokes flows are solved nu-
merically using the boundary integral method for axisymmetric, two-dimensional and
three-dimensional geometries. Boundary integral equations of the second kind involv-
ing only the unknown interfacial velocities are presented for problems with multiple
fluid-fluid interfaces. Laboratory experiments are presented for two bubbles interac-
tions, and the motion of particles through fluid-fluid interfaces. The experimental
results for bubble interactions are used to develop a model for coalescence in suspen-
sions; the model is then used in population dynamics simulations. Analytical results
for the far-field interactions of deformable drops are determined using a combination
of the method of reflections, domain perturbation methods and the Lorentz reciprocal
theorem.

Geological applications considered in this thesis include the interaction of bubbles
in magmas and lavas, the ascent of mantle plume heads in a compositionally layered

Earth, the stability of continental roots, the entrainment of the D” layer at the base

il



of the mantle by a convecting mantle, and the formation and evolution of Venusian
coronae and highlands.

Bubble deformation leads to a greatly enhanced rate of coalescence in magmas
and lavas if the bubbles have radii greater than a few millimeters. An instability
is predicted to occur in suspensions of deformable bubbles which will Tesult in spa-
tial variations of bubble concentrations. Plume heads passing from the lower mantle
into a less viscous upper mantle become extended vertically and develop a cylindri-
cal geometry. Continental roots must be several orders of magnitude more viscous
than the surrounding mantle (in order not to sink, spread or be entrained). If D”
is approximately 2-3% more dense than the lower mantle, it is possible that D” is
not entrained into the convecting mantle (due to compositional buoyancy) but may
still become thermally unstable and form thermal plumes. The surface expression
of rising and spreading plume heads or diapirs is consistent with many features as-
sociated with coronae on Venus. The surface expression of crustal thickening above
downwellings, notably the plateau-shaped topography and pattern of surface stresses,
is characteristic of many of the plateau-shaped highlands on Venus. Variations of the
thickness of the lithosphere, associated with ocean-continent boundaries, results in
large-amplitude and short-wavelength deviatoric stresses and dynamic topography

near the ocean-continent boundary.
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Chapter 1

Introduction

Many processes in geology and geodynamics involve, or may be characterized by,
the motion of fluids. Some geological processes, such as the coalescence of bubbles
in lavas, involve more than one fluid phase. In the case of bubbles in a lava flow,
the two phases are the molten rock and the gas bubbles. Flows involving two or
more fluid phases are referred to as multiphase flows. In many geological flows,
for example flowing lavas or problems in mantle dynamics, viscous effects are very
important. Qualitatively, viscously dominated flows occur where (i) fluids have very
high viscosities, (ii) the characteristic length scales are small, (7ii) velocities are small,
or (i) some combination of (i)-(i#). Such flows for Newtonian fluids are described
by the equations of low Reynolds number hydrodynamics. The low Reynolds number
assumption requires that viscous forces are large compared to inertial forces. Consider
a particle with characteristic size a translating with velocity U in a fluid with viscosity

t and density p. The low Reynolds number assumption requires that

R= pUa <1, (1.1)

7
an approximation typically valid when the length scale is small (in many biological
fluid processes and chemical engineering applications), or the viscosity is very large
(in many Earth Science applications), or flows are slow (low Reynolds number flows

are often called “creeping” flows).



We consider a number of low Reynolds number multiphase flow problems and
focus on limits in which substantial deformation of fluid-fluid interfaces occurs. The
dynamics of interface deformation in low Reynolds number flows are of interest in
a wide variety of fields including chemical and petroleum engineering, solid-earth
geophysics, hydrology, and biology. Typical applications span an immense range
of length scales from microns to hundreds of kilometers: biological studies of cell
deformation; chemical engineering studies of coalescence, flotation, coating flows and
the dynamics of thin films; and geophysical studies of mantle plumes, lithospheric
slabs and bubbles in magmas and lavas.

In this thesis we study flows driven by density variations, referred to hereafter as

buoyancy-driven flows. In particular we will focus on three model problems:
1. the buoyancy-driven motion and interaction of deformable drops and bubbles

2. the motion of drops, bubbles and rigid particles normal to a deformable fluid-

fluid interface, and
3. the dynamics of drops attached to a free-surface.

Geological applications of the three model problems include bubble dynamics in mag-
mas and lavas, bubble and crystal separation in stratified magma chambers, the ascent
of mantle plume heads in the Earth’s mantle, the formation of coronae and highlands
on Venus, and the dynamics of continental roots and mantle dregs. We employ a
combination of numerical, analytical and experimental methods in our studies.

We begin this chapter with a discussion of the governing equations and then end
this chapter with a brief overview of the problems and applications discussed in the

remaining chapters of this thesis.



1.1 Governing equations

A point-wise statement of a balance of linear momentum (Newton’s second law) for

a Newtonian fluid gives rise to the Navier-Stokes equations

ou
p [Wﬂl-VuJ = ~Vp + pV?u + pg, (1.2)
where p is the fluid density, u is the fluid viscosity, p is the pressure, u is the fluid
velocity and g is the gravitational acceleration. Conservation of mass gives rise to
the continuity equation

%+V-(pu) =0. (1.3)

For the low Reynolds number limit, in which viscous forces, the right-hand side of
equation (1.2), dominate over inertial forces, the left-hand side of equation (1.2), and
for incompressible flows, the Navier-Stokes and continuity equations simplify to the
Stokes equations

V.-T=-Vp+uViu=0 (1.4)

and
V.-u=0. (1.5)

"The stress tensor T in the Stokes equations (1.4) has been defined to include hydro-

static pressure variations, and thus is divergence free,
T = —pI+ p(Vu+ VuT) + p(g - x)L (1.6)

With the definition of the stress tensor (1.6), the body force will appear in the bound-

ary conditions involving pressure.

1.1.1 Boundary conditions

We are concerned with the evolution of deformable fluid-fluid interfaces. Consider a
fluid-fluid interface, denoted by S, separating fluids 1 and fluids 2 with viscosities

and 2 and densities p; and p, respectively (see figure 1.1).



fluid 1
K, P ' c

S

Figure 1.1: Geometry of the generic two fluid problem. Fluid 1 has density p; and
viscosity p;, and fluid 2 has density p; and viscosity pp. The two fluids are separated

by a fluid-fluid interface S, which is characterized by the interfacial tension o.

(a) Boundary conditions on velocity

Fluid velocities are continuous across fluid interfaces
u(x) =up(x) x€8, (1.7)

where X is a position vector. Additionally, there is a boundary condition on velocity

far away from the interface,
u(x)=0 as |[x|] - o0 (1.8)
if the ambient fluid is at rest far away from the fluid interface, or
u(x) =u®(x) as |[x] — oo (1.9)
if there is an externally-imposed flow u®(x).
(b) Boundary conditions on stress
The stress jump, [n - T], across the fluid interface is given by
[n-TJ=n-T;-n T, =0 (V,-n)n—-V,0—-(p2—p1)g-xn on S. (1.10)

Here o denotes the interfacial tension, V, = (I - nn) - V is the gradient operator

tangent to the interface, V, - n is the mean curvature of the interface, and n is a unit
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normal vector directed from fluid 2 into fluid 1 (see figure 1.1). Since the body forces
are incorporated into the definition of the stress tensor, equation (1.6), the buoyancy
forces appear in the boundary conditions involving stress, equation (1.10).

The contribution to the stress jump from interfacial tension stresses normal to the
interface is given by ¢ (V, - n)n. If there are interfacial tension variations, produced
as a result of variations of surfactant concentration or temperature variations, there
is a contribution to the stress jump tangent to the interface of V,o.!

The stress jump may be nondimensionalized by choosing U = Apga?/p; and a as
characteristic velocity and length scales, respectively, so that the characteristic stress
is #1U/a and the characteristic advective timescale is p1/Apga. The dimensionless

boundary condition for stress (if there are no interfacial tension variations) is given

n a macroscopic description, whereby the interface is treated as a two-dimensional surface
separating two distinct bulk fluid, the interfacial tension o acts as a tensile force per unit length
of a curve in the interface. In the absence of buoyancy forces, a local force balance over a surface

element S bounded by curve C (the contour C is traversed counterclockwise) requires that

/ (n T -n-Tp)dS = —f otdl, (1.11)
s c

where n is a unit normal vector outward from S, and t is a unit vector tangent to S and perpendicular

to the bounding curve C (see the sketch below).

Applying Stokes theorem (see Leal [1992])
f otdl = / Va0dS — / onV, - ndS. (1.12)
c s s
Thus the local boundary condition on the stress jump (neglecting buoyancy forces) becomes

nT-n-Ty=0¢(V, n)n-V,s on S. (1.13)



by

n-’i‘l—)\n-’i‘2=%(V,-n)n—-g-)“cn on S, (1.14)

where the " is used to denote dimensionless variables, and g is a unit vector in the

direction of g. Two non-dimensional parameters appear: the viscosity ratio

K2
A== 1.15
H ( )
and the Bond number
_ 2
B= ("2+)~"a. (1.16)

The Bond number represents the ratio of buoyancy to interfacial tension stresses.

(c) Kinematic condition

Additionally, if the interface is deforming, motion of material elements which
define the fluid interface satisfies a kinematic constraint which requires that points
on the interface remain on the interface for all time; formally, the constraint, expressed

from a Lagrangian point of view, is given by

— =u(x) on S. (1.17)

1.1.2 Further approximations and assumptions

We have already discussed the low Reynolds number approximation which requires
that the Reynolds number

R = ”ﬂﬂ <1 (1.18)

We will further assume that the fluids of interest are homogeneous (constant density
and viscosity) in each fluid domain. The Peclet number, which represent the ratio of
advection to diffusion must be large in order to neglect diffusive processes which may

affect the fluid density and viscosity. Thus, the Peclet number

Pe= % > 1, (1.19)



where U and a are typical velocity and length scales, respectively, and & is a dif-
fusivity. The diffusivity may be a thermal diffusivity if temperature variations are
large, Brownian diffusion if the particles are small, or represent chemical diffusion
of, for example, gas from a liquid into a bubble. Furthermore, we will assume that

interfacial tension variations and thus Marangoni effects are negligible, i.e. V,o = 0.

1.2 Free-boundary problems

The principal difficulty with solving free-boundary problems, problems in which the
fluid-fluid interface shown in figure 1.1 is deformable, is that the position of the
interface is unknown a priori and must be determined as part of the solution to
the boundary value problem. Thus, the problem of determining the time-dependent
interface shape is inherently nonlinear even though the governing equations of motion,

the Stokes equations (1.4-5), are linear.

1.2.1 Integral representation of Stokes equations

The Stokes equations may be solved numerically using the boundary integral method.
The method is well established and has been used, for example, to study drop defor-
mation in extensional flows [Rallison & Acrivos 1978; Stone 1994] and the buoyancy-
driven motion and stability of translating drops [Koh & Leal 1989; Pozrikidis 1990].
The boundary integral approach involves recasting the Stokes equations, which are
differential equations, as integral equations. The resulting integral equations involve
only information on fluid interfaces and boundaries if the fluids are assumed to
be homogeneous, and thus there is a reduction of the geometric dimension of the
numerical problem: a two-dimensional flow problem reduces to one involving one-
dimensional line integrals and a three-dimensional problem reduces to one involving
two-dimensional surface integrals. In appendix A we derive the basic equations and
provide a summary of the application of the boundary integral method to Stokes flow

problems.



The Stokes equations (1.4-5) may be recast as integral equations

u(x) xeV,
2 0T I(x-y)dS, + [n-K@x—y)-uds, = 4 1 5. (1.20)
5 Js™ ) Sy + fn-K(x-y)-udsy = { du(x) xes, (L
0 xgV.
where S includes all surfaces bounding the fluid domain V (S is assumed to be a

Lyapunov smooth boundary). The kernels J and K map a force at y to the field at

position x in an unbounded three-dimensional domain:

1 I X — -
Jx-y) =+ (Ix—yl 4 ,xyz(’;ls y>) (1.21)
and
K(x-y)= —%(x—y)l(:_";ll(x_y). (1.22)

The analogous equation to (1.20) for the pressure is given by,

p(x) x€V,

1 X -

Z;[gn-T I( ;’,g ds,,+"‘/ ——%) udS, =4 lp(x) xeS, (1.23)
0 x €V,

Equations (1.20) and (1.23) for the velocity and pressure, respectively, represent for-
mal integral equation solutions for the velocity and pressure fields u(x) and p(x) of
the generic Stokes flow problem. A more complete discussion of the boundary integral

equations is provided in appendix A.
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Figure 1.2: Geometry of (a) one and (b) two interface free-boundary problems.

1.2.2 Integral equations for problems with one and two de-

formable fluid-fluid interfaces

Integral equations of the form of equation (1.20) can be applied to problems involving
single and multiple fluid-fluid interfaces (see appendix A).

First, consider a problem with one fluid-fluid interface, denoted Sy, separating
fluids 1 and 2, with viscosities 1 and A, respectively (see figure 1.2a). The unit
normal vector is outward from fluid 2. The integral equations for a single fluid-fluid

interface are given by

—i/& [n-T] - J(x-y)ds,

ul(x) X € ‘/la
-(1- /\)/ n-K(x-y) u dS, = um(x) XES,, (1.24)
Sy 2
Aug(x)  x € V.

Second, consider a problem with two fluid-fluid interfaces, denoted Sy and S,, sep-
arating fluids 1 and 2, and 1 and 3, respectively (see figure 1.2b). The unit normal
vector is an outward normal from fluids 2 and 3 directed into fluid 1. We assume

the fluid viscosities are u, Ax and Yp in fluids 1, 2 and 3, respectively. The integral



equations for a pair of fluid-fluid interfaces are given by

1 I _ K. 1o,
- #/Sll[n T - JdS, — (1 /\)/Sln K - u,dS, u/&[n T!]. 3ds,

,

u(x) xeW,
Aag(x)  x €V,
Tuz(x) x € V3,

- (1—7)/ n-K-wds, = ¢ (1.25)
52 1+
2

u(x) x €5,

14
¢ 2

7u1(x) X € Sy,

where [n - T] and [n - T'] are the stress jumps across S; and Sa, respectively, and

account for the different density contrasts.

1.3 Translation of a single deformable drop in an
unbounded fluid at low Reynolds number

In this thesis we study a number of problems involving the deformation of two or
more drops or the motion of a drop through an interface. A useful starting point for
this thesis is thus to review the dynamics of a single deformable drop translating in an
unbounded fluid. In this section we summarize the numerically observed deformation
of translating drops as a function of B, X and initial drop shape. Since a spherical

drop translating with the Hadamard-Rybczyiski velocity

__ 20+ (p2—p)a®
3(2+3)) L

(1.26)

is an exact solution to the Stokes equations and satisfies all boundary conditions,
then a spherical drop is a steady shape provided the drop is far from all bound-
aries. However, Kojima, Hinch & Acrivos [1984] presented a stability analysis and
some experimental results which demonstrate that a deformed drop is unstable to

shape perturbations, unstable in the sense that the drop will deform continuously, for
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Figure 1.3: Interface shapes during the buoyancy-driven translation of initially non-
spherical drops for b/c = 1.2, 1.05, 0.95 and 08, B=00, A=1.

sufficiently low values of interfacial tension. Numerical results calculated using the
boundary integral method were presented by Koh & Leal [1989] and Pozrikidis [1990a]
for a wide range of viscosity ratios A (defined in figure 1.2a) and initial drop shapes.
Both numerical studies demonstrate that for large enough values of the Bond number
initially prolate drops will develop a long tail behind the drop whereas initially oblate
drops develop a cavity at the back of the drop. For sufficiently low values of the
interfacial tension an annular tail will develop at the back of an initially oblate drop,
and the tail will surround the cavity inside the drop. Koh & Leal [1989] determined
the critical Bond number for a given viscosity ratio and shape above which the drop
deforms continuously and below which the drop eventually assumes a spherical shape.
Koh & Leal [1990] also successfully compared numerical and experimental results.
In figures 1.3-6 we present interface shapes for single translating axisymmetric

drops at different times during the translation of the drop and evolution of the drop
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(@) (b)

Figure 1.4: Calculated streamlines in a frame of reference translating with the
Hadamard-Rybczyiiski velocity for (a) an oblate drop with b/c = 1.5 and (b) a
prolate drop with b/c = 2/3; B = 0o, A = 1. Similar streamlines for a spherical drop

do not intersect the drop surface since the drop surface is a streamsurface.

shape. Interface shapes are shown at positions corresponding to the actual displace-
ment relative to the initial position of the drop. The initial shape and position of
the drop are labeled ¢ = 0. Time is normalized by #/Apga. In figure 1.3 we assume
B =00 and A = 1 and vary the initial shape of the drop: results are shown for aspect
ratios of b/c = 1.2, 1.05, 0.95 and 0.8. The aspect ratio b/c is defined in figure 1.3.
The volume of the drops in the four simulations is the same. Oblate drops, b/c > 1
develop an enlarging cavity at the back of the drop, and an annular tail forms behind
the drop surrounding the cavity, e.g. drop shape at ¢ = 40 for b/c = 1.2. In or-
der to help understand the two distinct modes of deformation, we present calculated
streamlines for an oblate drop (figure 1.4a) and prolate drop (figure 1.4b) in a frame of
reference translating with the Hadamard-Rybczyniski velocity. For the oblate drop,
the sides of the drop will be swept around the drop leading to the formation of a

cavity. For the prolate drop, an extensional flow (in a frame of reference translating
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Figure 1.5: (a) Interface shapes during the buoyancy-driven translation of initially
oblate drops for B = 00, 20 and 10; b/c = 1.5, A = 1. (b) Interface shapes during the
buoyancy-driven translation of initially prolate drops for B = o0, 10 and 5; b/c = 0.5,
A=1.

with the drop) develops at the front and back of the drop. The extensional flow at
the front the drop will flatten the drop whereas the extensional flow at the back of
the drop will lead to the formation of a tail.

In figure 1.5 we consider the effect of changing the Bond number on the evolution
of drop shapes. In figure 1.5a we present three simulations for B = 00, 20 and 10 for
oblate drops; b/c = 1.5, A = 1. For large Bond numbers, B = oo a cavity develops
inside the drop and an annular tail forms behind the drop. For smaller Bond numbers,
B = 20, a cavity still forms inside the drop but no tail develops. For still smaller Bond
numbers, B = 10, the drop returns to a spherical shape. In figure 1.5b we present
three simulations for B = oo, 10 and 5 for prolate drops; b/c = 0.5, A = 1. For large
Bond numbers, B = 0, a long tail forms behind the drop and a small amount of the

external fluid is entrained inside the nearly spherical “head” of the drop. For smaller
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Figure 1.6: Interface shapes during the translation of initially nonspherical buoyancy-
driven drops for A =5, 2, 1, 0.5 and 0.2; B = 00, bfc=2/3.

Bond numbers, B = 10, a tail still forms behind the drop but the “head” of the drop
remains nearly spherical. For still smaller Bond numbers, B = 5, the drop returns to
a spherical shape.

Finally, in figure 1.6, we present simulations for different viscosity ratios for A = 5,
2,1,0.5 and 0.2; B = 00, b/c = 2/3. The effect of increasing the viscosity ratio is to
decrease the rate of deformation. Koh & Leal [1989] showed numerically that the rate
of deformation scales as 1/(1+ ) for large Bond numbers (a limit in which interfacial
tension has little effect on deformation). as suggested by the form of the integral

equations, for example (1.24).
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Figure 1.7: Geometries considered for the buoyancy-driven translation, interaction,

and deformation of deformable drops and bubbles.

1.4 Thesis overview

Below we present a brief outline and summary of the thesis.

1.4.1 Part I. Buoyancy-driven drops in suspensions

In part I of this thesis we consider the time-dependent interactions between two
buoyancy-driven deformable drops in the low Reynolds number flow limit for suffi-
ciently large Bond numbers that the drops become significantly deformed. Chapter
2 considers the interaction and deformation of axisymmetric drop configurations (see
figure 1.7a). Boundary integral calculations are presented for Bond numbers in the
range 0.25 < B < oo and viscosity ratios in the range 0.2 < A < 20. Specifically, the
case of a large drop following a smaller drop is considered, which typically leads to the
smaller drop coating the larger drop for B > 1. Three distinct drainage modes of the
thin film of fluid between the drops characterize axisymmetric two drop interactions:
(i) rapid drainage for which the thinnest region of the film is on the axis of sym-

metry, (ii) uniform drainage for which the film has a nearly constant thickness, and
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(ii) dimple formation. The initial mode of film drainage is always rapid drainage.
As the separation distance decreases, film flow may change to uniform drainage and
eventually to dimpled drainage. Moderate Bond numbers, typically B = O(10) for
A = O(1), enhance dimple formation compared to either much larger or smaller Bond
numbers. The numerical calculations also illustrate the extent to which lubrication
theory and analytical solutions in bipolar coordinates (which assume spherica] drop
shapes) are applicable to deformable drops.

We next consider the ‘stability’ of axisymmetric drop configurations. Two-dimensional
and three-dimensional boundary integral simulations and laboratory experiments are
used in chapter 3 to study the interactions between two horizontally offset drops (see
figure 1.7b). For sufficiently deformable drops, alignment occurs so that the small
drop may still coat the large drop, whereas for large enough drop viscosities or high
enough interfacial tension, the small drop will be swept around the larger drop. If
the large drop is sufficiently deformable, the small drop may then be “sucked” into
the larger drop as it is being swept around the larger drop. In chapter 4 we explain
the alignment process by calculating the shape and translation velocities of widely
separated, nearly spherical drops using the method of reflections and a perturbation
analysis for the deformed shapes. The perturbation analysis demonstrates explicitly
that drops will tend to be aligned for B > O(d/a) where d is the separation distance
between the drops.

Finally we demonstrate that the deformation of drops and bubbles in suspensions
enhances the rate of coalescence. Three-dimensional numerical simulations demon-
strate that two drop interactions are representative of the interactions between groups
of drops (see figure 1.7¢). The analytical results developed in chapter 4 are used to
determine the rate of coalescence in dilute monodisperse suspensions. The coalescence
rate of bubbles in a dilute polydisperse suspension is determined experimentally. We
find that the rate of coalescence of deformable bubbles with B =~ 10 may be more than
one order of magnitude greater than the equivalent rate of coalescence of spherical

bubbles. Population dynamics calculations are then presented for (i) homogeneous
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and isotropic suspensions of bubbles, and (1i) suspensions of bubbles in which separa-
tion of the dispersed phase may occur due to differential rise speeds of bubbles with
different radii.

Large Bond numbers are characteristic of many problems in solid-earth geophysics
and geology because of the large length scales in these systems. The Reynolds number
is generally much less than 1 since the viscosity of the mantle is about 102! Pa s and
the viscosity of magmas ranges from 10— 107 Pa s. For example, mantle plumes, which
are believed to be low viscosity (relative to the rest of the mantle) and low density
instabilities produced in a thermal boundary layer at the base of a convecting mantle,
may be described to a good approximation as buoyant drops since the Peclet number
is very large [Singer & Olson 1985; Griffiths et al. 1989]. Mantle plumes are believed
to consist of a large nearly spherical plume head followed by a tail or conduit attached
to the thermal boundary layer [Griffiths & Campbell 1990]. On the basis of the results
presented in this thesis, we expect that mantle plume heads (which may described as
buoyant drops) in close spatial and temporal proximity would tend to merge. Mantle
plume heads form frequently enough and rise slow enough that situations may arise
in which plumes may interact, particularly during the Cretaceous period when many
plumes erupted on the surface of the Earth. The interaction of plumes may explain
some of the variation in inferred plume size [Richards et al. 1989] and some of the
variation in the size of highlands and coronae on Venus which are thought to be
produced by plumes spreading beneath the planet’s surface [Koch 1993].

At smaller length scales, geological applications associated with high Bond number
dynamics include air bubbles in magmas, where bubble radii are less than a few
centimeters. The coalescence and interactions of bubbles in ascending magmas and in
magma chambers may be important processes governing the style of volcanic eruptions
[Jaupart & Vergniolle 1989]. Understanding the interactions between bubbles may aid
in the interpretation of the distribution of bubbles in solidified volcanic flows and the
process of bubble formation in magmas. Chapter 6 contains an extended discussion

of the importance of deformation on bubble dynamics in magmas and lavas and
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Figure 1.8: Geometries considered for studying the translation and deformation of

drops, bubbles and rigid particles translating normal to a fluid-fluid interface.

provides an overview of some of the implications of bubble dynamics for the eruption
of basaltic magmas and evolution of bubble concentration in effusive lavas. We also
discuss an instability which may develop in suspensions of deformable bubbles owing
to deformation: local velocity gradients produced as a result of variations of bubble
concentration will lead to a migration, due to deformation, of bubbles from regions
of lower to higher bubble concentration. In addition, at small length scales, the rate
of coalescence of drops of liquid iron during the earliest stages of the Earth’s history
may have affected the rate of segregation of the Earth’s core and also the amount of

iron and other heavy metals that are removed from the mantle.
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1.4.2 Part II. The motion of drops through fluid interfaces

The motion of a single drop through a fluid-fluid interface serves as a useful model for
understanding the dynamics and evolution of separating multiphase flows, e.g., the
separation of gas bubbles or sedimenting particles in stratified fluids. In chapter 7
we consider the time-dependent deformation of a drop passing through a deformable
fluid-fluid interface. The initially flat fluid-fluid interface will be referred to hereafter
as the interface. Drops passing from a higher to lower viscosity fluid become extended
vertically (and thus accelerate), whereas drops which do not accelerate substantially
develop a cavity at the back of the drop as they pass through the interface. The
two modes of deformation are analogous to the two modes of deformation of a, single
drop in an unbounded fluid, e.g. figure 1.3. We then consider experimentally the
dynamics of one or more particles passing through fluid-fluid interfaces. We find that,
in agreement with numerical calculations, rigid particles entrain more fluid through
the interface than bubbles entrain.

We also consider the motion of slender bodies, rigid particles with aspects ratios
much greater than one (such as rods and fibers), sedimenting through a fluid-fluid
interface. We find that an initially inclined slender body entering a lower viscosity
fluid will become oriented parallel to gravity. Slender bodies entering a more viscous
fluid do not become oriented perpendicular to gravity. The dynamics of particles
passing through interfaces suggest that in some limits, as discussed in chapter 7,
structures may form in the separating phase in a stratified fluid.

In chapter 8 we apply the results of the study of drops passing through interfaces
to the ascent of mantle plume heads passing through compositional discontinuities in
the Earth’s mantle. The effect of a viscosity decrease in the upper mantle, generally
thought to be a factor of 10 to 30 [Hager & Clayton 1989), results in the vertical
extension of plume heads, and may play a role in creating hotspots which persist
following the emplacement of continental flood basalts, We also consider two other
problems with application to mantle plumes: the motion of a plume head away from

an interface and a plume head spreading beneath the surface of the Earth. The surface
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Figure 1.9: Schematic illustration of various components of the convecting mantle

[after Lay 1993]: continental roots, mantle plumes and mantle dregs (D” layer).

dynamics and stresses associated with a rising and spreading plume head appear to
be consistent with the emplacement of continental flood basalts and the formation of

coronae on Venus.

1.4.3 Part ITII. Dynamics of continental roots and mantle

dregs and the formation of the Venusian highlands

In chapter 9 we consider a few features associated with buoyancy-driven flow in the
mantle where the fluid domains under consideration may have different viscosities.
Although we will be approximating regions of the mantle as having a uniform viscos-
ity and density, the simplified geometry and model may help provide a better physical

understanding of some of the buoyancy-driven features associated with mantle con-
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vection. Specifically we will consider the effect of viscosity contrasts on the surface
expression of flow in the mantle, the dynamics of continental roots, the formation of
Venusian highlands above downwellings, and the dynamics of mantle dregs.

Continental roots, regions of anomalously fast seismic velocity extending to depths
of up to 500 km beneath continental shields, have been interpreted by Jordan [1975]
to be compositionally distinct mantle and named the “tectosphere”. The presence of
seismic anomalies beneath all continents requires that the continental root be very
viscous and in order not to be sheared apart from the continent by mantle convection
stresses and not be too dense that it delaminates from the overlying continent.

The Venusian highlands, topographically elevated plateau-like regions with diam-
eters of 1000 to 3000 km, are thought to be caused by either upwelling mantle plumes
[Kiefer & Hager 1991ab), or form as a result of crustal convergence and thickening
above a downwelling [Bindschadler et al. 1990]. We re-examine the latter hypothesis
in order to consider the dynamic feasibility of the crustal thickening model.

Finally we end chapter 9 by discussing the dynamics of mantle dregs, an expression
used to describe the compositionally unknown material which constitutes the D” layer
at the base of the mantle. Proposals for the composition of D” include, among others,
reaction products between the core and mantle, accumulated dense components from
subducted slabs or residual material remaining from early Earth differentiation. We
examine the dynamics of compositionally distinct dregs beneath a convecting mantle
in order to determine the limits in which material from D” may be entrained into the

convecting mantle.
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Chapter 2

Interaction of two axisymmetric

buoyancy-driven drops

In this chapter, we consider the hydrodynamic interactions between two buoyant
drops in a viscously dominated flow. Our contribution to the subject area is to
investigate the case where buoyancy forces are much larger than the restoring forces
due to interfacial tension, and hence large drop distortions are possible. We use
the boundary integral method to study numerically the on-axis interaction of two
deformable translating drops. In the following two chapters we will consider the

interaction of drops which are initially horizontally offset.

2.1 Introduction

The low Reynolds number study of the buoyancy-driven interaction between a pair
of drops or a drop and an interface serves as a useful model for understanding the dy-
namics of multiphase systems, e.g. liquid-liquid extraction which eventually requires
the coalescence of a drop with its homophase, or the evolution of the dispersed phase
volume fraction in multiphase flows common to industrial processing. Most previous
studies of two drop interactions assume spherical drop shapes, a limit which requires

that interfacial tension forces are large compared to viscous and pressure forces. For
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example, the Stokes flow field around two translating spherical drops, as well as the
rise speed and associated drag forces, have been examined theoretically using bipolar
coordinates [e.g. Stimson & Jeffrey, 1926; Haber et al., 1973, Chervenivanova & Za-
pryanov, 1987], the method of images [e.g. Fuentes et al., 1988], and the method of
reflections [e.g. Hestroni & Haber, 1978; Reed & Anderson, 1980].

Coalescence of two drops requires that the separation distance between the two
drops eventually becomes very small; thus, the thin film geometry and flow charac-
teristic of the near contact between two drops has received much attention. Most
studies make ad hoc approximations for some features of the thin film flow geometry,
though two recent studies obviate this deficiency. An approximate lubrication theory
description of the two drop geometry, valid for two nearly touching spherical drops,
is presented by Davis et al. [1989] and Barnocky & Davis [1989].

Yiantsios & Davis [1990] extend the lubrication approach to account for inter-
face deformation in the limit that interfacial tension is sufficiently strong to allow
only small deformations. The evolution of drop shape as a function of viscosity ra-
tio between the two fluids is determined and the formation of a dimpled shape is
demonstrated without any ad hoc approximations other than assuming the validity
of the lubrication approximation. The finite deformation and associated film drainage
of a drop approaching a deformable fluid-fluid interface, in particular the effects of
viscosity contrasts and interfacial tension, is addressed by Chi & Leal [1989] using a
boundary integral method. The studies of Yiantsios & Davis and Chi & Leal thus
describe the complete time evolution of an isolated drop interacting with a deformable
boundary, at least for cases where only modest drop deformation occurs.

In the limit of low interfacial tension, drops may become highly deformed even
when separation distances are large. Large shape distortions lead to a number of
different types of two drop interactions at low Reynolds numbers. The flows are
characterized by large values of the Bond number, B = Apga?/o, which represents
the ratio of buoyancy forces to interfacial tension forces: Ap is the density difference

between the drop and surrounding fluid, g is the gravitational acceleration, q; is the
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Figure 2.1: Sequence of photographs of air bubbles in corn syrup. The Bond number
based on the larger drop is B ~ 50 and the Reynolds number is R &~ 10~%. Pho-
tographs are shown at 5 second intervals. The trailing bubble has a small tail which
develops initially as the bubble is released and the tail is about one bubble radius
long. Owing to the large viscosity of corn syrup, the tail does not completely relax

before the first photograph is taken.

radius of the larger of the two drops, and ¢ is the interfacial tension. In figure 2.1
we show the interaction that results from two air bubbles translating along their line-
of-centers in a large container of corn syrup. The Bond number for this experiment
is large, B ~ 100, and the Reynolds number based on the bubble radius a; and rise
speed U is small, R = pUa;/p ~ 10~2. This series of photographs illustrates that
deformation may be large even when separation distances are large, and that the
spherical drop assumption commonly used to study drop interactions is not always a
reasonable approximation.

We note here that for situations where the interfacial tension forces are weak,

such as the experiments illustrated in figure 2.1, the flow-field created by the trailing
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drop (radius a;) will tend to flatten the leading drop into an oblate shape. The
velocity difference thus generated across the leading drop (radius a,) is approximately
Au ~ ayU;/d for large separation distances d in a viscously dominated flow where
Uy is the speed of the trailing drop. Consequently, neglecting interfacial tension, the
total strain or deformation experienced by the leading drop is TAu/a,, where 7 is a
characteristic time for the deformation to occur. Choosing 7 = a;/U;, which is the
advective time scale characteristic of interaction of the two drops, gives a strain a;/d
experienced by the leading drop as a consequence of motion of the trailing drop. Thus,
for separation distances of 4 drop radii, we can expect strains of 25%, or aspect ratios
of about 3/2. We will see that even such modest shape distortions are important
when considering the interaction of two drops which are not aligned initially along
the vertical direction. The two drop interaction shown in figure 2.1, characterized by
large distortions owing to large Bond numbers, is the primary focus of this chapter.
The spherical shape assumption is justified in many chemical engineering systems
involving aqueous media so long as the drop radii are smaller than O(10pm). Larger
drops may be characterized by Bond numbers greater than O(1) and significant defor-
mation should be expected. We note that the study here is also relevant to a number
of geological and geophysical problems where the Reynolds number is small because
of high viscosities and the Bond number is large because of large length scales. At the
longest length scales, the behaviour of mantle plumes and diapirs with length scales
ranging from 10 km to 1000 km, can be modeled as buoyancy-driven drops [Manga
et al. 1993; Koch 1993]. At smaller length scales, bubbles with typical radii of 1 mm
to 1 cm, in high viscosity silicate magmas, have Bond numbers greater than O(1).
Large Bond numbers may also be achieved owing to the presence of surfactants which
may substantially decrease interfacial tension, though surfactants also induce motion
because of gradients of interfacial tension. Such Marangoni motions are outside the

scope of this investigation (but see the discussion in §4.5).
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Figure 2.2: Geometry of the problem considered in chapter 2. The unit normal vector
n is outward from the drops. Drops 1 and 2 have radii a, and az, respectively. The
drops have viscosity Ay and density p — Ap; the external fluid has viscosity w4 and
density p. The interfacial tension is denoted by o. The separation distance between

the drops is ha;. The surfaces of the drops are denoted by S; and S,.

2.2 Problem formulation

The interaction of drops translating parallel to their line-of-centers is modeled by con-
sidering three fluid domains, the ambient fluid and the two drops, as shown in figure
2.2. To reduce the number of parameters we assume that the drops are composed of
the same fluid, which corresponds to the most common problems of physical interest.
We denote the fluid domains by subscripts 1 and 2 for drops 1 and 2, respectively,
and by the subscript ezt for the external fluid.

We require that the velocity decays to zero far from the drops,

Uezr — 0 as |x| — o0 (2.1)

26



and that the velocity is continuous across ajl interfaces,
U] = U 0N S; and Uy = Ugy 0n Sy, (2.2)

where S is the surface bounding drop 1, and S, is the surface bounding drop 2.
The stress jump [n - T]; across interface i is balanced by the density contrast and

interfacial tension forces, which depend on the local curvature V, - n of the interface:
[nT);=nTepy—n-Ty=0¢ (Vo n)n+nlpg-x onS; (2.3)

n-Tl,=n-Tey—n-Ty=¢ (Vs n)n+nlApg-x on Sy, (2.4)

where o denotes the constant interfacial tension, n is the unit normal directed into
the external fluid, and V, = (I - nn) - V is the gradient operator tangent to the
interface. Additionally there is a kinematic constraint, which requires that a fluid
element on a fluid-fluid interface remain on that interface for all time; formally, the

kinematic constraint may be expressed with the Lagrangian description

%c =u(x) for €8;,8S.. (2.5)
For convenience, the trailing drop is labeled drop 1, and the leading drop is labeled
drop 2. The equations are nondimensionalized by choosing the characteristic length
as the radius of the trailing drop, radius a;, the velocity scale as Apga?/u and an
advective time scale of 1/Apga;. For a given initial configuration (dimensionless
separation distance h in figure 2.2), three dimensionless parameters characterize the
flow: the ratio of drop radii, a, /az, the viscosity ratio, A, and a Bond number based
on the properties of the trailing drop

A 2
B = %. (2.6)

The Bond number characterizing the deformation of drop 2 with radius a, is B(a,/ a1)?.
In this chapter we will assume that the drops are of comparable sizes, and often use

a to denote a typical drop radius.
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We solve for the time-dependent deformation and translation of the drops by
recasting the Stokes equations as a pair of coupled integral equations of the second
kind for the interfacial velocities, equations (1.25). The integral equations involve
only stress jumps, equations (2.3) and (2.4), across the interfaces and the unknown
velocities along the interfaces. For the axisymmetric configuration considered in this
chapter, the azimuthal integration may be performed analytically (see appendix B)
reducing the surface intergrals to line integrals. The integral equations are solved by a
collocation procedure and integration is performed using Gauss-Legendre quadrature.
The interface shapes are described by taut cubic splines [deBoor 1978] parameterized
in terms of arc length. Typically, we use 50-120 collocation points on each half-
interface.

Cumulative numerical error, estimated by monitoring the volume change of the
drops, may occasionally be as high as 5-10% for the most severe distortions and the
times of the longest numerical simulations, particularly for problems involving large
viscosity contrasts. Such volume changes are larger than those reported in previous
studies because of the large distances over which the drops translate in the simu-
lations. Typically, calculated interfacial velocities for a, single spherical drop in an
unbounded fluid differ by less than 1% from the exact Hadamard-Rybczyniski result.
In the results presented in this chapter, the volume changes were always less than

10% and no volume rescaling was implemented.

2.3 On-axis Interaction of Axisymmetric Drops

The numerical results presented below illustrate the interaction between two axisym-
metric drops translating along their line-of-centers. Qualitatively, the numeriéal re-
sults have some similarities with the problem of a drop approaching a deformable
interface presented by Chi & Leal [1989]. Most notably, the style of film drainage

between the two drops is similar to the film formed between a drop and a fluid-
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fluid interface, though we allow for much larger interface distortions since the Zero
interfacial tension limit is studied.

We consider the case of a large drop following a smaller drop so that interaction
eventually occurs; the two drops are composed of the same fluid and the radius ratio
a1/az = 2 in all the simulations. Thus, the Bond number for the smaller drop is
0.258. Both drops are assumed to be initially spherical and the initial separation
distance between the two drops (the distance h shown in figure 2.2) is usually chosen
as one half the radius of the large drop. Changing the ratio of drop sizes and the
initial drop separation distance results in only modest qualitative changes in drop
behaviour. However, the history of deformation is important for the understanding
the detailed drop deformation in the high Bond number limit owing to the long-range
nature of Stokes flows; in §2.3.4 we summarize typical results observed when the

initial separation distance is changed.

2.3.1 Effect of interfacial tension

In figure 2.3 we illustrate the effect of interfacial tension on the shapes of translating
drops. A sequence of interface shapes at equal time increments is shown for Bond
numbers B = 00, 10 and 1. For all Bond numbers the smaller leading drop initially
deforms into an oblate shape and the larger trailing drop deforms into a prolate shape;
both types of deformation are a result of the flow produced by the neighbouring drop.
For example, as schematically indicated in figure 3.4 using the simple idealization of
treating the translating drop as a point force, the trailing drop becomes elongated
(prolate distortion) owing to the viscous stresses associated with the convergence of
streamlines in the flow produced by the leading drop. Conversely, the leading drop
becomes flattened (oblate distortion) owing to the viscous stresses associated with
the divergence of streamlines in the flow produced by the trailing drop (analytical
descriptions of the nonspherical shapes are given in chapter 4).

For translational motions in an unbounded fluid the spherical drop shape is stable

to infinitesimal perturbations provided the interfacial tension is finite, i.e. B < o0
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Figure 2.3: Effect of interfacial tension on drop deformation; B = oo, 10, 1; \ = 1;

a1/az = 2. Interface shapes are shown at times ¢ = 0, 10 and 20.

[Kojima et al. 1984]. However, finitely deformed drop shapes are unstable, and
subsequently undergo a continual deformation, if the restoring interfacial tension
forces are not sufficiently large: prolate drops will develop long tails and oblate drops
will develop cavities [Koh & Leal 1989; Pozrikidis 1990; see figure 1.5]. For the
isoviscous drops shown in figure 2.3, Bond numbers of the order 10 appear to be
sufficient to prevent the large drop from developing a tail (see figure 2.6 for shapes at
longer times). As the restoring interfacial tension force is reduced, the smaller leading
drop deforms substantially, spreading over the surface and thus coating the larger
drop, as illustrated for the B = oo and B = 10 simulations (figure 2.3). At longer
times, the separating film thins substantially, the drops numerically make contact,

and the simulation is terminated. The same manner of interaction and deformation
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was shown previously for the two air bubbles interacting in corn syrup (figure 2.1).
In the experiments, coalescence occurs shortly after the final photograph shown in

figure 2.1.

2.3.2 The style of film drainage

The interaction over long times and possible coalescence of two nearly touching drops
is controlled by the dynamics of the thin film between the drops. Interest in the
coalescence process has been the primary motivation for the extensive study of the
film drainage problem. The use of a boundary integral method allows us to study the
complete evolution of the thin film for large drop deformations. When the interfaces
are deformable, three distinct modes of film drainage characterize the interaction of
two drops, analogous to the three modes described in Chi & Leal [1989] for a drop
approaching its initially planar homophase. The three styles of interface deforma-
tion, which provide insight into the probable manner and location of coalescence, are
referred to as (i) rapid drainage, (i) uniform drainage and (4éi) dimple formation,
depending on the thickness profile of the film and the manner in which the film thins.

Numerical simulations illustrating the three modes of film flow are presented in
figure 2.5. The film profiles (gap thickness as a function of radial position) are also
shown. We note that ‘uniform drainage’ characterizes an almost (but not exact)
uniform film thickness between two drops.

The three modes of film drainage also characterize different stages in the evolution
of a given film. As we will see in the following sections, as the separation between
the drops decreases, the characterization of the drainage flow may change from rapid
to uniform drainage and then dimple formation. For the range of viscosity ratios
considered in this chapter, the separation distance h, at which dimple formation
begins, decreases with decreasing viscosity ratio A for a given Bond number. In the
study by Yiantsios & Davis [1990], which is restricted to small Bond numbers, B « 1,
dimple formation is always predicted to eventually occur. However, in our high Bond

number calculations (e.g. B = oo shown later in figure 2.6) and experiments with air
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deformed shape
undeformed shape

Figure 2.4: Illustration of the effect of a point force, F, on drop deformation. Drops
in front of a point force, which models the presence of a second drop, become oblate

spheroids. Conversely, drops behind a point force become prolate spheroids.

bubbles (e.g. figure 2.1) dimple formation never appears to occur prior to coalescence.
In the following section we discuss the effects of interfacial tension and drop viscosity
on the style of drainage and outline the physical mechanisms responsible for the

corresponding drainage mode.

2.3.3 Rate of film drainage and dimple formation

In figure 2.6 we present the time evolution of the gap thickness measured at r = 0,
shown with a solid line, for different values of the Bond number and \ = 1. Corre-
sponding drop shapes at different stages of the interaction are shown and identified

with the letters a, b, ¢, etc. The minimum separation distance between the two drops
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Figure 2.5: The three modes of film drainage, analogous to the three modes described
in Chi & Leal [1989]: (i) rapid drainage, (i7) uniform drainage, and (7%4) dimple
formation. Examples of calculated shapes for each mode are shown for B = 10;
A =0.2,1and 5; a;/a; = 2. On the bottom we plot gap thickness versus radial

distance to illustrate more clearly the differences in gap geometry.

is shown with a dashed line. Dimple formation in the thin film thus begins when the
solid and dashed lines diverge indicating that the smallest separation distance is no
longer along the centerline. The solid and dashed curves for B = 1 and oo overlap
since no dimple develops. The film thickness decreases most rapidly for the large
interfacial tension simulation (B = 1), and most slowly for the moderate interfacial
tension simulation (B = 10) which forms a dimpled film.

In order to explain the variation of film thickness with time, we note that for

smaller Bond numbers (hence smaller distortions), film drainage is more rapid because
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Gap thickness

Time
Figure 2.6: The rate of film drainage versus time for drops with Bond numbers B = 1,

10 and oo; A = 1; a3 /a; = 2. The solid curve corresponds to the thickness of the film
on the axis of symmetry, » = 0, and the dashed curve corresponds to the minimum

film thickness. Drop shapes at different times are shown for reference.

the two drops remain nearly spherical and thus fluid in the gap is not forced to flow
over too large a surface area. For the case of vanishing interfacial tension (B = o),
the smaller drop coats the larger drop, so that the increase in surface area provides
additional resistance to fluid motion in the narrow gap which delays film thinning.
Dimple formation for moderate Bond numbers (B = 10; see also figure 2.5) means
that the narrowest portion of the film is away from the centerline; this geometric
constriction further slows the rate of film drainage. From the results shown in figure
2.6, we observe that in the absence of interfacial tension (B = o0) the thin film has

a nearly uniform thickness over the entire near-contact surface and no dimpled film
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Figure 2.7: The rate of film drainage versus time for drops with viscosities A = 0.2,

1 and 5; B = 10; a;/a; = 2. The solid curve corresponds to the thickness of the film
on the axis of symmetry, r = 0, and the dashed curve corresponds to the minimum

film thickness. Drop shapes at different times are shown for reference.

develops; hence, the rate of thinning is intermediate between the B =1 and B = 10
simulations.

Varying the viscosity ratio also has a significant effect on the rate and manner of
film drainage, as shown in figure 2.7 for the case of B = 10. A dimpled film forms
earliest for the isoviscous drops; for higher viscosity ratios, a dimple forms at larger
drop separation distances. Nevertheless, if we instead choose to nondimensionalize
time so as to highlight the higher viscosity fluid, i.e. define dimensionless time, t, such
that £ = t/(1 + A), then dimple formation actually occurs earlier for high viscosity

drops.
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For low viscosity drops, corresponding to a more mobile interface [Davis et al.
1989], the rate of film drainage is enhanced. For high viscosity drops the interface
becomes immobile, and not only offers additional resistance to fluid flow in the thin
film, but also enhances the formation of dimples thus leading to a slower rate of
drainage. We observe that in the higher viscosity ratio simulations, such as the case
A = 5 shown in figure 2.7, the gap thickness along the axis of symmetry actually
increases after a certain stage in the development of a dimpled film. Since very large
pressures exist at 7 = 0 in order to squeeze fluid out of the thinning film, it becomes
easier for the drop to distort such that the thickness of the gap increases at the film
midpoint. This behaviour is associated with moderate values of the Bond number
and is to be contrasted with the qualitatively different, monotonically thinning, low
Bond number film profiles determined by Davis et al. (1989] and calculated by Chi &
Leal [1989]. Although the thin film thickens along the axis of symmetry, the volume
of fluid contained within the thin film region continues to decrease with time.

For drops that remain nearly spherical (small Bond numbers), the radius of the
dimple can be predicted by balancing the pressure in the film against the buoyancy
force, giving a dimple radius of r; = O(a1B)'/%) [e.g. Yiantsios & Davis 1990]. In
figure 2.8 we plot the dimple radius against time for the case of B =10 and A = 1,
5 and 20. For all cases the initial dimple radius is about 0.15a; and increases with
time. The low Bond number estimate is not valid for these highly deformed drops
since dimple radii greater than the drop radius are predicted. Predicting dimple radii
for highly deformed drops is difficult since simple analytical approximations of drop

shapes and pressure in the gap are not yet available.

2.3.4 History effects

For each of the above calculations we have assumed that the initial separation distance
is 0.5a;. In figure 2.9 we show the rate of decrease of gap thickness, dh/dt, for initial
separation distances of 0.5a; and 2.5a; and different viscosity ratios. The Bond

number is taken to be large enough, B = 10, that large distortions are possible. The
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Figure 2.8: Dimple radius (normalized to a;) as a function of time for viscosity ratios
A =1, 5 and 20; B = 10; a; /az = 2. The initial dimple radius is about 0.15a; for all

cases.

results in figure 2.9 demonstrate that for small dimensionless separation distances h,
the approach velocity dh/dt is smaller at a given h for larger initial separations. If
the initial separation distance is large (2.5a;), the corresponding drop distortions are
larger: larger initial separations provide more time for deformation.

From the numerical simulations, we observe that for the drop pairs with A = 1 and
5, the dimple forms at larger separations A which leads to smaller rates of approach
dh/dt when two different initial conditions are compared at the same separation
distance. For the case with A\ = 0.2 dimples do not develop during the simulation.
We note that although dh/dt initially increases for A = 0.2 for the small initial
separation distance (because the large trailing drop becomes a prolate ellipsoid and
is extended) the separation distance between the center-of mass of the two drops

decreases monotonically.

2.3.5 Comparison with analytical results

Here we consider the extent to which analytical results may be applied to describe the

on-axis interaction of deformable drops. In figure 2.10 we show the rate of decrease
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Figure 2.9: The effects of initial drop separation distances. Examples are shown for
A = 0.2, 1 and 5 with B = 10 and initial separation distances of 0.5a and 2.5a;

a1/az = 2. The initial configuration does not change results qualitatively.

of gap thickness, dh/dt, as a function of the dimensionless separation distance h, for
(¢) two numerical simulations (B = 1 and 10; \ = 1) indicated by the solid curves,
(¢4) the results of a lubrication analysis indicated by a dotted line, and (i) an exact
solution for spherical drops in bipolar coordinates indicated by a dashed curve.

The lubrication analysis which combines lubrication theory and boundary integral
methods [Barnocky & Davis 1989; Davis et al. 1989] is applicable to spherical shapes
characteristic of small Bond numbers, B < 1, and not surprisingly differs significantly
from the behaviour of moderately distorted drop pairs characteristic of larger Bond
numbers, B > 1. Exact solutions in bipolar coordinates for spherical drops [Haber et
al. 1973] are reasonably accurate for deformable drops when separation distances are
large and thus the drops have not distorted to a significant degree. As the separation
distance decreases, the analytical result for the rate of approach overpredicts the
deformable drop result. The calculated and analytical results differ by less than 10%

for separation distances greater than 0.8a; for B =10 and 0.07q, for B = 1.
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Figure 2.10: Comparison of boundary integral results with analytical results for spher-

ical drops; A = 1; a;/az = 2. Numerical results are shown by solid curves for B = 1
and B = 10. The bipolar coordinate solution is shown by a dashed curve [Haber et al.
1973]. The combined lubrication theory and boundary integral analysis for spherical
drops is shown by a dotted line [Davis et al. 1989]. The inset shows a (distorted)
magnification of the geometry of the gap between the drops with solid curves for
B =1 at h = 0.02; the shapes of spherical drops, with the same volume, are shown

by dashed curves.

Although the drops for B = 1 appear to be nearly spherical (figure 2.6¢), the
inset of figure 2.10 shows a magnification of the thin gap between the deformable
drops (solid line) and undeformed spherical drops with the same volume (dashed
line). Clearly, the area over which fluid in the gap is squeezed is much larger for
the deformed drops, and the mode of film flow is characterized by uniform drainage.
For comparison, the results of Yiantsios & Davis [1990] show that for drops with
B < 1 approaching a deformable surface, the rate of film drainage decreases from
dh/dt o h1/? for large and moderate gap thicknesses h, (characteristic of spherical

drop solutions [Davis et al. 1989; Haber et al. 1973] to dh/dt  h* along the axis of
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symmetry and dh/dt oc %2 for the minimum gap thickness (at the rim of the dimple)
when h becomes very small. For comparison, we find numerically that dh/dt oc ht3

at h = 0.02 and 7 = 0 for the case with B =1 in figure 2.10.

2.3.6 Cusps and tails

In the experiments (later stages in figure 2.1) and in the calculations (e.g. figure 2.6h),
regions of very high curvature develop at the back of the trailing drop or bubble. Two
features of the flow contribute to the development and maintenance of interfaces with
high curvatures. First, by analogy to the formation of pointed ends on a drop in a
steady extensional flow, where the radius of curvature of the end the the drop scales
as B3 [e.g. Acrivos 1983], we might expect that the flow behind the trailing drop,
which locally resembles an extensional flow, may allow a tail with a region of high
curvature to develop. Second, while the spherical drop shape exactly satisfies the
normal stress balance [Batchelor 1967] and is stable to infinitesimal distortions for
B < 00, the effect of the leading drop is to allow the trailing drop to become prolate,
and thus to become unstable for large Bond numbers [Koh & Leal 1989; Pozrikidis
1990]. The combination of the local extensional flow and a distorted prolate shape
allow the drop to be extended and the tail to develop.

Regions of very high curvature also develop at the rim or edge of the coating drop
(see figure 2.1 and figure 2.6¢) where the flow is locally extensional. Near the rim of
the coating drop the flow is locally two-dimensional since the thickness of the coating
drop is much smaller than the radius of the larger drop.

Recent studies of two-dimensional free-surface flows by Joseph et al. [1991] (ex-
periments) and Jeong & Moffatt [1992] (experiments and theory) have demonstrated
that regions of very high curvature, which may appear macroscopically to be cusps,
may develop even for systems with finite interfacial tension. The two drop interac-
tions shown here fall into the category of flows which allow regions of high curvature

to develop.
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2.4 Concluding remarks

In this chapter we have considered the time-dependent buoyancy-driven interaction
between two axisymmetric low Reynolds number deformable drops in the limit that
buoyancy forces dominate over restoring interfacial tension forces. For axisymmetric
configurations, the film drainage between the drops may be characterized by three
distinct modes: (¢) rapid drainage for which the thinnest region of the film is on
the axis of symmetry, (¢) uniform drainage for which the film has a nearly constant
thickness, and (#i) dimple formation. As the separation distance between the two
drops decreases, the mode of film drainage may change from rapid drainage to uniform
drainage and eventually a dimple may form. The numerical calculations presented
here cover Bond numbers 1 < B < oo and viscosity ratios 0.2 < X < 20. For a given
viscosity ratio (e.g. A = 1) the separation distances at which the dimple begins to form
is larger for intermediate Bond numbers (B = 10) than for very large or very small
Bond numbers (B = oo and 1). The separation distance between the drops at which a
dimple begins to form decreases as the drop viscosity contrast decreases. Lubrication
theory results and combined lubrication theory-boundary integral analyses [Barnocky
& Davis 1989; Yiantsios & Davis 1990; Davis et al. 1989], which are appropriate for
B < 1, differ significantly from the behaviour of drops for B > 1. Exact solutions
in bipolar coordinates for spherical drops [Haber et al. 1973] are reasonably accurate

for deformable drops when drop separation distances are large.
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Chapter 3

Interaction and stability of offset

drops

In this chapter we consider the hydrodynamic interaction between two horizontally
offset deformable drops and bubbles. We present experimental results for air bubbles
in corn syrup, and two-dimensional and three-dimensional boundary integral calcula-
tions in order to demonstrate that the effects of deformation due to drop interactions
may result in the alignment and eventual coalescence of initially horizontally offset
drops. The effects of deformation which promote the coalescence of drops should lead

to an enhanced rate of coalescence in suspensions of buoyant deformable drops and
bubbles.

3.1 Introduction

We consider the stability of the axisymmetric drop configuration studied in chapter 2.
Stability is examined by considering the tendency for an initially off-axis configuration
to evolve either towards or away from an aligned configuration. Again we consider
the case of a large drop translating behind a smaller drop, however, the centers-of-
mass are initially offset horizontally. Experimental results are presented in §3.2, and

a qualitative explanation for the evolution of off-axis configurations is presented in
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§3.3. Numerical solutions of an analogous two-dimensional geometry are presented
in §3.4 to provide an improved quantitative understanding. In general the two drop
free-boundary problem is difficult for nonaligned drops, and numerical solutions are
complicated by the necessity of treating three-dimensional geometries. Previous ana-
lytical studies of two drop interactions have been limited to spherical shapes. Some of
the features characteristic of drop interaction and deformation at low Reynolds num-
bers have been observed in finite-difference/front-tracking numerical studies at finite
Reynolds numbers for both two-dimensional and three-dimensional drops [Unverdi &
Trygvasson 1992]. In §3.5 we present some three-dimensional boundary integral cal-
culation to demonstrate the importance of relative drop size, interfacial tension char-
acterized by the Bond number, and viscosity ratios on the deformation and alignment
of horizontally offset drops and the expected eventual coalescence of drops.

The interactions between two drops model a great many two body interactions
common in multiphase sedimentation processes - a quantitative understanding of two
particle interactions is the starting point for studies which attempt to characterize
the behaviour (sedimentation rate and coagulation rate) of suspensions. In chapter
4 we consider analytically the two drop problem studied numerically and experi-
mentally in this chapter. The results presented below demonstrate that sufficiently
deformable drops (moderate to large Bond numbers, low viscosity ratios) with only
modest horizontal displacements will interact in a manner which induces alignment.
The alignment of deformable drops owing to hydrodynamic interactions increases the
likelihood of coalescence of buoyancy-driven drops. Hence final configurations similar
to the results presented in chapter 2 are obtained. We note that drop interaction
and alignment may produce uneven concentrations of drops and bubbles in dispersed
multiphase systems, analogous to the inhomogeneities which develop in suspensions

of nonspherical particles [e.g. Koch & Shagfeh 1989], see chapter 6.
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3.2 Interaction of offset bubbles: Experimental
results

In figures 3.1 we show examples of two types of interactions between air bubbles
rising in a large container of corn syrup. The interactions leading to alignment arise
as a consequence of the deformation of the bubbles. The Reynolds numbers in these
experiments are small, R = 5 x 1073, and the Bond numbers are large, B ~ 20.

The experiment in figure 3.1 illustrates a process we will refer to as drop align-
ment, which is a far-field interaction, where the long-range, interaction-induced de-
formation of the bubbles leads to a lateral component of translation and the eventual
alignment of the bubbles. The two bubbles start about one bubble radius apart and
eventually align and coalesce over a translational distance of about five bubble radii.

‘The experiment in figure 3.1b illustrates a short range process in which the small
bubble is advected around the larger bubble and is “sucked” or entrained into the
larger bubble, finally translating vertically with an almost axisymmetric configuration
prior to eventually coalescing. Coalescence occurs shortly after the last photographs
shown in each sequence in (a) and between the last two photographs shown in (5).
The difference between the experiment shown in figure 3.1b and the experiment shown
in figure 3.1a is that the initial horizontal separation distance was sufficiently large
that the small bubble does not coat the larger trailing bubble.

The experimental results indicate that the axisymmetric two drop configuration
studied in chapter 2 is a stable geometry in the limit of large Bond numbers since
bubble and drop deformations lead to alignment. For both experiments shown in
figure 3.1 we note the large degree and complexity of deformation of both bubbles
and the formation of tails and regions of high curvature.

In the chapter 5 we present a more detailed experimental analysis of the two air

bubble interaction.
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Figure 3.1: Interaction and deformation of two air bubbles rising in a large container
of corn syrup: (@) alignment and (b) “suction” or entrainment of bubbles which are
initially horizontally offset. The Reynolds number, R ~ 1073, and the Bond number,

B ~ 20. Times and a scale bar are shown on the photographs.
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Figure 3.2: Illustration of the interaction between non-deformable spherical drops.
Owing to the reversibility property of Stokes flows, the horizontal offset between the

drops is preserved as the small drop is swept around the larger drop.

3.3 Flow-induced deformation leading to align-
ment

As a preliminary, we note that the corresponding problem of two translating spherical
drops evolves so that, relative to a reference frame translating with the larger sphere,
the small sphere is swept around toward the back, as shown in figure 3.2. The off-axis
configuration is unstable as a consequence of the hyperbolic stagnation point at the
front of the larger drop (the stagnation point at the front and back of the large drop
exists in a frame of reference moving with the large drop).

For the dynamics shown in figure 3.1q, it is straightforward to provide a quali-
tative explanation, schematically illustrated in figure 3.3, for the alignment of offset
deformable drops. The alignment occurs since the long range effect of drop interac-
tions (figure 2.4) is to deform the trailing drop into a prolate shape, suitably inclined

with respect to the vertical; the leading drop is deformed into an oblate shape. Owing
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Figure 3.3: Illustration of the mechanism for the alignment of two rising deformable
drops. The deformation of each drop by the flow produced by the other drop, as
shown in figure 2.4, allows the drops to translate with velocities U; and U, which

have horizontal components that favour alignment.

to the deformation, each drop has a horizontal component of velocity in a direction
opposite to that shown in figure 3.2. If deformation is sufficiently large, the horizontal
velocities may favour alignment, as indicated in figure 3.3. In chapter 4 we calculate
the deformation-induced velocity in the limit of small shape distortions.

We suggest that the second type of two drop interaction (figure 3.10), in which the
small drop is first advected around the larger drop and then sucked in from behind,
is the result of short range dynamics owing to the deformation of the larger drop.
The dynamics are dictated by the continual deformation of the larger drop so that in
a frame of reference moving with the larger drop, streamlines will not be contained
entirely within the drop, as they are for spherical drops. Deformation at the back
of the drop results in closed streamlines which leave and re-enter the drop defining a
vortex or “wake”, which is illustrated numerically in figure 3.4a for an axisymmetric

drop. Thus, a neutrally buoyant fluid element in the region behind the leading drop
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may be advected into the cavity which develops behind the deforming leading drop.
In figure 3.4b we show numerical calculations of the streamlines (again in a frame of
reference moving with the front of the leading drop) for an axisymmetric two drop
geometry (the volume of trailing drop is 1/4 the volume of the leading drop). The
effect of the second drop is to increase the extent of the vortex outside the leading
drop. A sufficiently deformable drop partly located in the vortical region will tend
to be entrained. At higher Reynolds numbers a similar entrainment phenomenon
occurs for two spherical drops owing to the formation of a low pressure wake [e.g.
deNevers & Wu 1972]. We emphasize the distinction between the high Reynolds
number dynamics, and the low Reynolds number dynamics shown in figure 3.1 which

rely on the deformation of the drop.

3.4 Numerical results: Two-dimensional calcula-
tions

A full three-dimensional treatment of the boundary integral equations (the geometry
required to study offset drops) requires the numerical description of a twice differ-
entiable three-dimensional surface. The boundary integral method has been used to
study three-dimensional free-surface problems, but has been limited to modest defor-
mations [e.g. deBruijn 1989; Pozrikidis 1992]. We first introduce a simplification and
consider two-dimensional (cylindrical) drops. A two-dimensional geometry allows us
to consider the most important feature of the problem, namely, the horizontal off-
set. To the extent that such two-dimensional simulations represent the important
dynamical processes of the three-dimensional problem, the results presented below
provide an improved understanding of the nature of two drop interactions. We will
see that the two-dimensional calculations reproduce the qualitative behaviour of two
drop systems for both types of two drop interactions observed in the experiments
shown in figure 3.1. Three-dimensional calculations are presented in §3.5 and chapter
5.
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(a) (b)

Figure 3.4: Streamlines, relative to the translating drop, (a) for a single deforming
drop, and (b) for a pair of drops (the volume of the trailing drop is 1/4 the volume
of the leading drop); B = 50; A = 1. Notice that the streamlines leave the drop and
travel through the developing cavity at the back of the drop. Thus, fluid elements in
the cavity will be entrained into the drop. The effect of the second drop is to further
extend the vortex outside the leading drop. An axisymmetric geometry is assumed
and the streamlines are calculated using the boundary integral method described in

Appendix A and chapter 2.

The boundary integral method has had limited application to buoyancy-driven
two-dimensional free-boundary problems [e.g. Newhouse & Pozrikidis 1990]. An im-
portant consideration with two-dimensional Stokes flows is the logarithmic behaviour
of the velocity kernel which in unbounded domains leads to Stokes paradox. We elim-
inate this difficulty by including a planar free-slip lower surface; boundary conditions
for the planar surface are accounted for by using the appropriate image system. The
lower boundary has the physical effect of creating tails on drops due to viscous re-
sistance by the planar surface. However, the development of a tail does not have a

noticeable effect on the dynamics of drop interaction. The parameters which describe
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Figure 3.5: The effect of initial configuration. Results are shown for three different

offsets; A = 1; B = 00; a;/a; = 2. The horizontal line represents a free-slip lower

planar surface.

the two-dimensional problem are the same as the parameters describing axisymmetric
drops. The numerical implementation follows the discussion given in chapter 2 and
Appendix A; the kernel functions and image singularities are given in Appendix A.
In figure 3.5 we show three simulations for different horizontal offsets for the case
A = 1 and zero interfacial tension. As the initial horizontal offset increases, the
tendency of the smaller leading drop to spread over the larger trailing drop decreases.
Even for large offsets, the deformation of the leading drop is large owing to the long
range nature of Stokes flows. For the axisymmetric two drop interactions studied in
chapter 2, a tail develops on the trailing drop owing to the deformation induced by the
leading drop, and the natural instability of nonspherical shapes when the interfacial
tension is small [Kojima et al. 1984]; the tail which develops in the two-dimensional
calculations is larger because of the presence of a nearby free-slip surface.

In figure 3.6 we show that provided the drops can sufficiently resist deformation,
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Figure 3.6: The effect of interfacial tension and drop viscosity on drop interactions
illustrated in a frame of reference translating with the drops. The initial geometry is
the same as the initial geometry in figure 3.5a. Calculations are shown for A=1and
B =2and A = 50 and B = 00; a;/a; = 2. For both cases the small drop is swept
around the leading drop, whereas in the previous figure the small drop coats the large

drop. The horizontal planar surface is not shown.

by either having a large viscosity contrast or large interfacial tension, then the small
drop may be swept around the large drop. Specifically we show calculations for A = 50
and B = 00, and A = 1 and B = 2. Since the drops translate very large distances
in the simulations shown in figure 3.6, typically about 40 drop radii, we show drop
shapes at different times in a frame of reference moving with the drops. The initial
drop configuration is the same as the initia) configuration for the drops in figure 3.5a.
In both cases shown in figure 3.6 the small drop is swept around the large drop.
However, the interaction between the two drops differs in the two cases. For large
viscosity ratios (such as the A = 50 case) the separation distance between the drops
remains large since the fluid between the drops is squeezed out slowly due to the small

amount of flow in the drop. For the case of A = 1 the fluid can drain more quickly
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Figure 3.7: The effect of interfacial tension on the interactions between a small drop
trailing a larger drop illustrated in a frame of reference moving with the drops. Cal-
culations are shown for B = 2.5,1.25 and 0.5, A = 0.1; a1/a; = 2 (Bond number
based on the trailing drop). For large enough Bond numbers, the small drop may
be entrained into the larger drop owing to the deformation of the larger drop. The

horizontal planar surface is not shown.

and the drops remain in very close proximity.

Finally, in figure 3.7, we illustrate the importance of drop deformation on the
“suction” or entrainment of a small trailing drop by a larger drop. As in figure 3.6,
we show drop shapes at different times in a frame of reference translating with the
front of the large drop. Simulations are shown for )\ = 0.1 (which allows for rapid and
larger drop distortions) and B = 0.5, 1.25 and 1.5 (where the Bond number is based
on the radius of the smaller trailing drop). For large interfacial tension, B = 0.5, the
small drop is left behind. Notice however that the drops are eventually aligned. For

smaller interfacial tension, B = 2.5, the larger drop is indented and the trailing small
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drop is advected into the developing cavity. At times greater than ¢t = 5 the drops
numerically make contact and the simulation is stopped. In the two-dimensional
simulations, we found that the initial separation distance needed to be very small
in order for the small drop to be entrained into the larger drop. This quantitative

feature is not a feature of the experimental results presented in figure 3.1b.

3.5 Numerical results: Three-dimensional calcu-
lations

The numerical solution of three-dimensional free-boundary problems is difficult and
only limited work has been done using the boundary integral approach. Previous work
has consider the deformation of neutrally buoyant drops in shear flows in the limit of
modest shape distortions [e.g. Rallison 1981; Kennedy et al. 1993; deBruijn 1989).
Below we present three-dimensional numerical calculations of the buoyancy-driven
translation of drop which we believe are the first for buoyancy-driven interactions
and deformations, and the first simulations to consider large interface distortions.
Details of the numerical procedure and implementation are discussed in Appendix
C. Briefly, the numerical method involves discretizing the drop surfaces by a mesh
of 3200 triangular surface elements and a grid of 382 collocation points. All surface
variables (normals and curvatures) are assumed to vary linearly over each surface
element. Integration is performed using 7 point Gaussian quadrature. The interface
is advected at each time step using an Euler time step. Typically we use 500 time
steps in the simulations reported below. Since the three-dimensional calculations are
extremely expensive computationally, calculations were performed for drops with the
same viscosity as the surrounding fluid (A = 1).

In figures 3.8, 3.10 and 3.12 we show interface shapes of buoyant translating drops
at different times. In figure 3.8 we consider the effect of the initial horizontal offset,
in figure 3.10 we consider the effect of interfacial tension characterized by the Bond

number, and in figure 3.12 we consider the effect of the relative drop size. Corre-
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Figure 3.8: Three-dimensional boundary integral calculations illustrating the effect of
interfacial tension (Bond number) on the alignment of three-dimensional offset drops

for B=1, 10 and 100; A =1, az/a; = 0.5.

sponding to the simulations presented in figures 3.8, 3.10 and 3.12 we also present
computed trajectories of the center-of-masses of the drops in figures 3.9, 3.11 and
3.13, respectively. Presenting the drop trajectories allows for a more direct and quan-
titative comparison of the importance of deformation and relative drop orientation
on drop interactions.

We begin by presenting a few results, derived in the following chapter, which

will provide insight into the hydrodynamics of interacting drops. First, the relative
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Figure 3.9: The effect of interfacial tension (Bond number) on the trajectories of
three-dimensional offset drops for B = 1, 10 and 100 corresponding to dotted, dashed
and solid curves, respectively; A = 1, az/ay = 0.5. Trajectories correspond to the

drop shapes presented in figure 3.8.

magnitude of drop distortion ¢; of drop 4 is given by (§4.2.3)

€ _ (g 2

2 <a1) . (3.1)
Second, to leading order, the correction to the rise speed of each drop is described by
the first reflection (a “push” on the leading drop by the trailing drop and a “pull” on
the trailing drop by the leading drop). The additional speed of drop 1, Uy, due to

drop 2 is given by (§4.1.2)

3
v, = 0 (2225) (32

and the additional speed of drop 2, §U», due to drop 1

§U = O (AZ—Z“?) (3.3)
where d is the separation distance between the drops. Finally, we note that in the limit
of small distortions the magnitude of drop deformation is O(aBa?/d?) and thus the
correction to the rise speed of the drop is O(U(® Ba2/d?), where U is the Hadamard-
Rybzinski rise speed (§4.4).
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Figure 3.10: Three-dimensional boundary integral calculations illustrating the effect
of initial horizontal offset on the alignment of three-dimensional offset drops for initial

horizontal offsets of 0.5a;, 0.9a; and 1.3a;; B=10, A =1, az/a; = 0.5.

8.5.1 Effects of interfacial tension (Bond number)

In figures 3.8-9 we consider the effect of interfacial tension, described by the Bond
number, on the alignment of drops. We present three simulations for the same initial
condition but different Bond numbers; B = 1, 10 and 100, A = 1, and a2/a; = 0.5. For
B =1 the drops remain nearly spherical and the small drop does not coat the larger
drop, whereas for B = 100 the small drop is flattened by the trailing drop and coats
the trailing drop. The thickness of the film of fluid trapped between the drops also

decreases most rapidly for the B = 1 simulation, similar to the observations presented
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Figure 3.11: The effect of initial horizontal offset on the trajectories of three-
dimensional offset drops for initial horizontal offsets of 0.5a1, 0.9a; and 1.3a; corre-
sponding to solid, dashed and dotted curves, respectively; B =10, A =1, as/a; = 0.5.

Trajectories correspond to the shapes presented in figure 3.10.

in figures 2.3 and 2.6. The effects of deformation on the translation of the drops are
observed in the trajectories shown in figure 3.9. For the simulation with B = 100,
the larger trailing drop experiences a greater horizontal drift, due the greater shape
distortion. The effects of deformation on the trajectories of the small drops is less
noticeable since the effects of deformation are small compared to contribution from

the first reflection, equation (3.5).

3.5.2 Effects of horizontal offset

In figure 3.10-11 we consider the effect of the initial horizontal offset of the alignment
of drops. Results are presented for initial horizontal offsets of 0.5a;, 0.9a; and 1.3a;;
B = 10, ag/a; = 0.5 and A = 1. As the initial horizontal offset is increased the
magnitude of deformation decreases. There are two reasons for the decrease in the
magnitude of deformation: first the separation distance between the drops increases

as the initial horizontal offset increases, and second, the magnitude of deformation
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Figure 3.12: Three-dimensional boundary integral calculations illustrating the effect

of relative size on the alignment of three-dimensional offset drops for size ratios (az/a; )
of 0.75, 0.5 and 0.25; B =10, A = 1.

depends on the relative orientation of the drops. The magnitude of deformation is
AL a,2
e=0 (a|d : gIBd—z) ) (3.4)

where d is a unit vector joining the centers of the two drops and g is a unit vector
in the vertical direction (see §4.3). In the figure showing drop trajectories, we also
observe that as the initial horizontal offset increases the translation distance over

which the large drop overtakes and passes the smaller drop decreases.
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Figure 3.13: The effect of relative drop size on the trajectories of three-dimensional

offset drops for size ratios (az/a;) of 0.75, 0.5 and 0.25 corresponding to solid, dashed
and dotted curves, respectively; B = 10, A = 1. Trajectories correspond to the shapes

presented in figure 3.12.

3.5.3 Effects of relative drop size

Finally, in figures 3.12-13 we consider the effect of the relative drop size on the
alignment of drops. Results are presented for size ratios az/a; = 0.75, 0.5 and 0.25;
B =10 and A = 1. The initial horizontal offset between the center-of-mass of the
drops is identical in all three simulations. From the drop shapes, figure 3.12, we
observe that as the relative drop size decreases, the likelihood of alignment decreases:
for az/a; = 0.75 the small drop coats the larger drop whereas for az/a; = 0.25
the small drop is advected around the larger drop. We also note that, as in the
previous results, the magnitude of deformation of the small drop is always greater
than the larger drop, as expected from equation (3.1). From the figure showing
drop trajectories we observe that the horizontal translation of the larger drop in the
simulation with a;/a; = 0.25 is small since the contribution of the first reflection to

the rise speed of the larger drop is small.
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3.6 Concluding remarks

We have shown experimentally that the interaction between initially horizontally off-
set deformable drops may result in the alignment and eventual coalescence of the
drops, demonstrating that the axisymmetric two-drop problem studied in the previ-
ous chapter is a stable geometry. Thus, many of the features studied in chapter 2,
namely the dynamics of the film drainage problem, are relevant to the interaction of
deformable drops in suspensions since geometries similar to the axisymmetric prob-
lem will be produced as a result of drop alignment or entrainment. The importance
of deformation on drop interactions and coalescence is highlighted by observing in the
experimental results shown in figure 3.15 that bubbles separated by more than the
sum of their radii may eventually coalesce. Deformation due interactions will result in
a greatly enhanced rate of coalescence in suspensions of deformable drops and bubbles
(chapter 5). In the following chapter we will demonstrate, using far-field approxima-
tions, that deformable drops migrate towards each other provided B > O(d/a), where
d is the separation distance between the drops.

Although the spherical drop assumption, commonly employed in most investiga-
tions, allows for the development of many analytical results and approximations, in
the limit of moderate to large Bond number, typically B > 1, drops become highly
deformed, and results based on spherical drops may become invalid. Some character-
istics of drop interaction cannot be predicted by assuming spherical drop shapes, such
as the alignment of drops owing to interaction-induced deformation and the coating
of large drops by smaller drops. Although we have not included the effects of sur-
factants, we expect that the results presented in chapters 2 and 3 may qualitatively
describe the behaviour of drops where the interfacial tension is greatly reduced by

the presence of surfactants.
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Chapter 4

Long range drop interactions

In this section we study analytically the lateral translation of two drops arising from
their interaction-induced deformation. We demonstrate explicitly that the degree of
deformation, controlled primarily by the Bond number and the separation distance
between two drops, determines whether two drops will eventually coalesce.

There are three analytical features necessary to calculate the shape-induced mi-
gration. The method of reflections [e.g. Happel & Brenner 1965; Leal 1992] is used in
§4.2 to determine the approximate velocity field in the neighbourhood of each drop.
The local velocity gradient deforms the drop and the deformation is calculated in
§4.3 using standard procedures for nearly spherical, distorted drops. The transla-
tional velocity induced by the nonspherical shape is then calculated in §4.4 using the
Reciprocal theorem [e.g. Haj-Hariri et al. 1990]. We will assume for simplicity that

both drops are composed of the same fluid.

4.1 Scaling analysis: An overview of drop align-
ment by flow-induced shape changes

Consider two widely separated drops, labeled 1 and 2, rising in an unbounded fluid
at low Reynolds numbers (figure 4.1). The vector d indicates the direction and

magnitude of the separation between the centers of the two drops. We will always
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n=a,[1+¢f,©0¢)]

Figure 4.1: Geometry of the two drop problem and definition of the normals n and
n, and the spherical polar coordinate system. Drops 1 and 2 have radii a; and ay,
respectively, and are separated by a distance d and are oriented at angle § with

respect to gravity.

choose drop 1 to be the trailing drop, and define a Bond number based on the radius

of drop 1

2
B= #. (4.1)

4.1.1 Translation of a single drop in an unbounded fluid

Each drop will rise, to a first approximation, as though alone in an unbounded fluid.
The rise speed as a function of the viscosity ratio A is given by the Hadamard-

Rybczynski result
© _ _ 2(1+ 1) Apa?
PO3(243))
where the subscript ¢ is used to denote drops 1 or 2. In the limit that A — 0 (bubble),

U©® = —~Apga?/3u and in the limit A\ — oo (rigid sphere) U = —2Apga? /9.

t1=1,2, (4.2)
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4.1.2 Method of reflections

Drop 2 experiences an O(U{O)al/d) change to the Hadamard-Rybczyriski velocity
owing to the long-range interaction with drop 1. Physically, we can think of the first
reflection of O(Ua/d) as representing the additional translation speed of each drop
due to the flow created by the other drop: drop 2 is “pushed” by drop 1, whereas
drop 1 is “pulled” by drop 2. If the drops remain spherical, the next correction to the
rise speed is O(U{”q3 /@) [Kim & Karrila 1991]. However, when deformation occurs,
we will show that there is a translational velocity component due to the nonspherical

shape.

4.1.3 Shape distortion

Let ¢; measure the small distortion away from a spherical shape. The far-field velocity
gradient generated by drop 1 in the vicinity of drop 2 is Uya; /d% A balance of viscous
stresses, ulUa,/d?, by the interfacial tension stresses of drop 2, €20/as, which tend to

keep the drop nearly spherical, leads to a small shape distortion with magnitude

3
ajaxApg 2102
o=t =5(). (43)
A similar analysis for drop 1 gives
3 3
_ m0Apg a3
€1 = _——O'dz =B (aldz) . (44)

We note that the small drop is always more deformed than the larger drop (see
figures 2.3, 3.7, 3.8 and 3.12), Although restoring interfacial tension stresses are larger
for small drops, scaling as €20 /ay for drop 2, the viscous stresses deforming drop 2
are proportional to a3. Thus, the size of the other drop controls the magnitude of
drop distortion. The relative magnitude of distortion

- &

By contrast, for B « 1, the larger drop becomes more deformed than the smaller

drop [Yiantsios & Davis 1991].
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The small distortions are oblate for the leading drop and prolate for the trailing
drop, e.g., figure 2.3. We will demonstrate that the O(¢) shape distortion leads to an
O(eU®) contribution to the drops’ translational velocity, with particular importance
assigned to the horizontal component of translation which may lead to alignment.
Thus, drop alignment depends on the relative magnitudes of a/d and e. We will show

that drop deformation should lead to drop alignment in an on-axis configuration when

B>0 (Q) . (4.6)

a
Nevertheless, there is an upper bound on the small deformation analysis we describe
which requires B < O(d/a)?.

4.1.4 Quasi-steady assumption

Implicit in arriving at equations (4.3) and (4.4), a quasi-steady small distortion is
assumed; the drop deforms in response to the viscous stresses created by the motion
of the other drop on a timescale 74 for deformation that is less than the timescale Ta
over which the separation distance d changes. Estimates of these timescales for drop
2 are

T4~ a2(1 + /\),U,/O' and Ta d/lUl - Uzl, (47)

where the factor of 1+ X indicates that the largest fluid viscosity controls the rate of
drop deformation. The quasi-steady assumption neglects explicit time-dependence in
the free-boundary problem, and thus, requires that

d
T+ NI - a/allar

For nearly equal sized drops, large separation distances, and A < O(1) the right hand

B <

(4.8)

side of equation (4.8) is very large and the assumption of rapid shape adjustment to
changes in the local flow is justified. For (4.3-4) and (4.8) to be consistent the drops
must have similar radii so that the local flow near either drop changes slowly. For

equal sized drops, 7, ~ eU® (see §4.4), and thus leads to the constraint
2 d’
B°<0 (@) (4.9)
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which is less restrictive than (4.8). The quasi-steady assumption, though restrictive,

is assumed in the analysis below.

4.2 Migration of spherical drops: Application of
the method of reflections

As a first approximation we assume the drops are spherical. Let r; denote the position
vector relative to the center of drop 7 (see figure 4.1). The velocity field due to the

translation of drop 4 in an unbounded fluid is

(0) N _ 27T(2+3)\) ) /\(1,12 2 . (0)
u; (r;) = REDE N a; |1+ —_2(2+3/\)V Ji-U; (4.10)
where
1 I r;r;
J,'(I‘,') = g <7‘_, + F) . (4.11)

UEO) is the Hadamard-Rybzcynski given by equation (4.2), and the superscript (0) is
used to denote that this velocity is the first approximation to the detailed velocity
field. There are a few interesting features of the flow field described by equation
(4.10), as discussed in Hinch [1988].

1. ‘The velocity field decays as O(U®a/r) for large . The external flow field
described by (4.10) includes a flow created by a point force, 27(2 + 3)\)a J -
UO/(1+ ), which decays as U®q/r and a contribution due to the finite size
of the drop 7Aa®V2J - U® /(1 + \) which decays as U O (a/r)3,

2. At large distances r away from the drop, the disturbance speed in front or
behind the drop is twice as large as the disturbance speed at a distance r to the

side of the drop.

3. Streamlines created by a translating drop diverge in front of the drop, and

converge behind the drop, see figure 2.4.
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Each drop will move faster owing to the interaction with the far-field flow produced
by the other drop. The change in translational velocity is proportional to the speed of
the other drop, with a magnitude that decays as O(U%a/d). The corrected rise speed
of drop 1 is caused by drop 2 and has a value u( )( = d); thus drop 1 translates
with velocity

Ui = UP+ (2)UP + oual/d)

243N a2 10, 110 34 (0) @5
ESYY [u + U -dd| + 0 (US = (4.12)

where d = d/|d| is a unit vector in the direction of the line-of-centers of the two drops,

directed from drop 1 to drop 2 (figure 4.1). Similarly, drop 2 rises with velocity

_ 0, 2430 ay 0 yO . 33 08
U, =UP + (H_/\)d[U + U7 -dd] + 0 (U sl (4.13)

The horizontal separation distance between the drops increases or decreases due

to the difference in horizontal velocities, AUy, given by

_ Apgad <a2)3
AUy = Sud sinfBcosf |1 , (4.14)

a1

where we observe that equation (4.14) is independent of the viscosity ratio A. We note
that if drop 1 is larger than drop 2, the case of interest here, then the the horizontal
separation distance will increase for spherical drops (AUy > 0), whereas, if drop 2 is
larger than drop 1 the separation distance will decrease (AUy < 0), in agreement with
the illustration shown in figure 3.2. In the following section we consider the correction
to the translational velocity arising from drop deformation with magnitude B(a/d)?,
e.g. equation (4.3). For the horizontal separation distance to decrease (for the drops
to align as in figures 3.1 and 3.3) we then require that B > O(d/a) to counteract the
drifting described by equations (4.12-14).

Higher order reflections, to O((a/d)*), may be derived by considering the sec-
ond derivative terms in Faxen’s relations. The rise speed of two drops, accurate to

O((a/d)®) is given in Kim & Karrila [1990].
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4.3 Shape calculation

The contribution of the second reflection to the flow-field due to translating spher-
ical drops produces corrections that are O(U®(a/d)?) [Kim & Karrila 1991]. The
corrections due to the second reflection are smaller than the high Bond number non-

spherical shape corrections which we now describe.

In the vicinity of drop 2 the velocity field produced by drop 1 may be represented

as a Taylor series
111(1‘1 =d+ 1‘2) = ull,.l:d +TIo: Vullr;:d +... (415)

The velocity gradient V|, —q in the neighbourhood of drop 2 is responsible for drop
deformation. Using the velocity field in equation (4.10) we find that

_ (2 + 3/\)(11
41+ N2

We will assume that the deformed shape of drop 2 may be described in spherical

Vuy|ry=a = [1d- U - 3ddd - U - qu® + uf’d].  (4.16)

coordinates (r,0, ¢) by
T2 = az [l + e2f2(8, §)] (4.17)

where € < 1. A drop immersed in a linear flow, ry - (Vu,), is distorted into an

ellipsoidal shape [Taylor 1932), described by

52f2(0, ¢) = %%/\)no . (Vlll) ‘', (418)

where n, is a unit normal to a spherical drop. In the derivation of (4.18) the quasi-
steady boundary condition u-n, = 0 is used. The quasi-steady approximation is
justified provided the timescale for drop deformation by viscous stresses is shorter than
the timescale for changes in the local flow producing the deformation, as discussed in
§4.1.4. Thus, using equations (4.16)-(4.18) and definition of the Bond number given
by equation (4.1), the steady deformed shape of each drop is an ellipsoid described

by second degree Legendre polynomials as

ry=ay [1 +B (Z—f) (%)2 %ﬂf—ig/\’\)) [1-3(d-n)d- J (4.19)
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and

= ay [1 _B (Z—f) (%)2 (g‘(%g/\’\)) [1-3@-n)?d- g] (4.20)

where § is a unit vector in the vertical direction (parallel to g). The drop shapes in
the experiments in figures 2.1 and 3.1 and the numerical calculations eventually lose
the ellipsoidal symmetry as the separation distance a/d becomes small and ¢ becomes
large.

In equations (4.19) and (4.20) the small parameter ¢ can be identified as Bayay/d?
for drop 2 and Ba3/a;d? for drop 1 (as deduced in §4.1.3). For simplicity, in the
discussion that follows we refer to the small deformation of either drop as having
magnitude O(Ba?/d?).

As expected on physical grounds, or from a sketch of the streamlines, the leading
drop deforms into an oblate spheroid whereas the trailing drop is deformed into
a prolate spheroid. We may expect by analogy to the motion of ellipsoidal rigid
particles in low Reynolds number flows that the ellipsoid shapes will migrate in a
manner tending to promote on-axis configurations (and possibly coalescence). We
now calculate explicitly this translational velocity. Rather than solving for the flow
field and then computing the translational velocity, we will use the Reciprocal theorem

to provide a direct calculation of the velocity.

4.4 Translational velocity from the Reciprocal the-

orem

The above analysis suggests a small O(Ba?/d?) correction to the local description
of the flow field owing to the drop’s deformation. Since a/d and B are independent
parameters we seek the next order correction to the velocity field, B(a/d)?u®(r),
satisfying the Stokes equations both inside and outside the drop. This analysis cor-
responds to the translation of an isolated slightly deformed drop in an otherwise

quiescent fluid. Thus, we seek solutions for the approximate translational velocity in
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the form
2 3
U(a/d, B) = UO + (3) U 1B (%) U® 40 (U“”SE) . (a2

Provided B > O(d/a) the dominant correction to the migration velocity arises from
the third term on the right hand side. Furthermore, so long as B > O(a/d), shape
modifications are at least as important as the O(a/d)® corrections calculated using
the method reflections for spherical drops.

The boundary conditions satisfied by u®(r) are obtained by using standard do-
main perturbation techniques whereby all variables are expanded in the neighbour-
hood of a spherical shape and evaluated at It = a;. For this part of the analysis
it is convenient to nondimensionalize the equations and boundary conditions. The

dimensionless boundary value problem assumes the form (see Appendix D.1)

V.- T®=0 r>1 V-T® =0 r<1

V.u® =0 V-a@ =0 (4.22)
u® —a® = A(n,, f) on r=1 (4.23)
U®.n
(2) = o —
u'” . n, = B(n,, f) + o onr=l1 (4.24)
n,  T® — )\n,. T® = C(n,,f) on r=1 (4.25)

where * denotes variables inside the drop. The dimensionless functions A, B and C
are derived in Appendix D.1, and depend on the detailed drop shape f(6, ¢).
We can then use the Reciprocal theorem (equation (D34) in Appendix D.2) to

obtain the second order velocity correction 1

(0)
-“—4,”(;] NS /S {[(1 + 201+ non,] - C(n,, f) + 3A[I - 3n,n,] - A(n,, f)
+3(2 + 3X)B(n,, f)n,} ds, (4.28)

1The following identities are very useful for integrating products of the unit normal over a spher-

u®

ical surface

2m  pm ) 47
nin; sin 0dfdd = —6;; (4.26)
o Jo 3
27 m 47l_
/ / nin;ninsin 0dddg = E(6ij6kl + 6,';_-61'1 + 6:’15jk)- (4.27)
0 0

Integrals of odd products of the unit normal vector over a spherical surface are zero.
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Figure 4.2: The function ¢()) defined by equation (4.31).

where S denotes a spherical drop surface. Evaluating the integrals we find

Ui = —c(W)U - d (e, d) [e. - 3e, - dd| (4.29)
and
U3 = c(A)UY - d (e - d) [e, — e, - dd]| (4.30)
where e, = —g is a unit vector in the vertical direction and
_ (16 +19X2)(8 — X +3)2)
oA = 240(1 + \)2(2 + 3)) (431)

Note that ¢ = 4/15 for a bubble, ¢ = 19/240 for a rigid particle, and ¢ has a minimum
value for A ~ 2.64. The function ¢()) is plotted in figure 4.2. The condition that the
horizontal separation between the drops decreases (see equation (4.14)) is given by

B(a3/a1d®) AU - e, — Blaras/d?)AUSR - e, + AUy < 0, ic.,

SRR o (G R

Using the above results we can integrate the drop velocities to determine the

trajectory of a pair of drops, assuming a quasi-steady deformation given by the in-
stantaneous separation distance. In figure 4.3 bubble trajectories (A = 0) are shown

for B =0, 10 and 50, and radii ratios az/a; =1 and 0.95. The bubbles are separated
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Figure 4.3: Trajectories of two bubbles (A = 0) for different values of the Bond
number and bubble sizes, in the limit of small deformation. The solid curves are for
B = 0, the dashed curves for B = 10, and the dotted curves for B = 50. The curves
for az/a; = 0.95 and B = 10 are stopped when the bubbles have aspect ratios greater
than 2. The bubbles are initially separated by a horizontal distance of 5¢; and a

vertical distance of 10q;.

initially by a horizontal (z) distance of 5 and a vertical (2) distance of 10, where the
length scale is normalized to the radius of the larger bubble a;. The vertical length
scale is compressed significantly. The calculations are stopped when the aspect ratio
of one of the bubbles exceeds 3/2.

For the equal-sized bubbles shown on the left, the B = 50 bubbles (trajectories
shown with dotted curves) are aligned. For comparison, spherical bubbles (B = 0)
drift horizontally maintaining the same orientation and separation distance. Even for

the B = 10 simulation there is a noticeable difference in bubble translation compared
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to the simulation for spherical bubbles. When the leading bubble is smaller than the
trailing bubble (az/a; = 0.95), the small bubble is swept around the larger one for
small Bond numbers, B = 0 and 10. In the B = 50 simulation, the bubbles are aligned
and in real systems would be expected to coalesce eventually. The examples shown in
figure 4.3 demonstrate explicitly the importance of deformation on drop and bubble

interactions, particularly for large Bond numbers.

4.5 Concluding remarks

We have calculated the magnitude of deformation and the translation speed of two
interacting drops in the limit that the separation distance between the drops is large,
d/a > 1, the magnitude of the deformation is small so that the drops are near-spheres,
B(a/d)? < 1, so long as a quasi-steady approximation is valid (section 4.1.4). The
results demonstrate explicitly that deformation due to interaction acts to align, or
tend to align, deformable drops. Note that even equal-size drops will eventually
coalesce since the leading drop becomes oblate and thus translates more slowly than
the trailing drop which becomes prolate. In the following chapters we apply the two
drop results to suspensions of many drops.

Finally, we note that although we have only considered the buoyancy-driven trans-
lation of drops in chapters 2-4, drop alignment should also be characteristic of drops
driven by other mechanisms. For example, neutrally buoyant drops driven by thermo-
capillary forces? may also be aligned. For neutrally buoyant drops in a temperature
gradient G, in which the interfacial tension gradient Vo « G, the external flow is
described by

I rr
u(r) x G- (W - 3@) . (4.33)
Streamlines corresponding to (4.33) and flow due to a point force are shown in

figure 4.4. Streamlines produced by a drop translating, as a consequence of interfacial

2Flows induced by interfacial tension gradients produced by temperature gradients are called

thermocapillary motions.

72



Thermocapillary migration

Point force

Figure 4.4: The flow produced by a small drop in thermocapillary motion, and the
flow produced by a point force. Both flows produce drop deformation which may

eventually lead to drop alignment.

tension variations, diverge in front of the drop and converge behind the drop. We
expect deformable drops to interact similar to the interaction shown in figure 2.4 and
3.3 (provided the the trailing drop is in a region where the streamlines produced by
the leading drop converge, and the leading drop is in a region where the streamlines
produced by the trailing drop diverge). The magnitude of the deformation, however,
will scale as O(B(a/d)*) for thermocapillary flows (where the Bond number B =
1U./o is based on an average value of ¢ and the translational velocity U,) compared
to O(B(a/d)?) for buoyancy-driven flows. Thus, for thermocapillary-driven motions
the process of alignment will be slower than for buoyancy-driven motions since the

velocity disturbance and associated deformations are weaker.
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Chapter 5

Three drops, four drops, clouds of

drops and suspensions

We demonstrate that the interactions which occur between three drops or four drops
may be characterized qualitatively by the two drop interactions considered in the
previous chapters. Thus the results of two drop studies should be applicable to sus-
pensions of deformable drops. In a dilute monodisperse suspension (a suspension in
which all particles have the same size), we calculate the rate of coalescence from the
far-field analytical results derived in chapter 4. We determine the rate of coalescence
in a dilute polydisperse suspension (a suspension in which particles have different
sizes) of bubbles in corn syrup by performing a large number of laboratory experi-
ments, for Bond numbers based on the larger bubble radius in the range 15 < B < 120.
The rate of coalescence is greatly enhanced owing to the effects of deformation com-
pared to the predictions of models for spherical bubbles which include hydrodynamic
interactions among spherical bubbles. The rate of coalescence is even greater than
the rate predicted by the Smoluchowski model which ignores all hydrodynamic inter-
actions (hydrodynamic interactions result in the small bubble being advected around
larger bubbles). The experimental results are used in conjunction with a standard
population dynamics model to calculate the evolution of the bubble-size distribution

in suspensions.
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5.1 Introduction

We are interested in studying the rate of coalescence of particles in a suspension in
order to calculate macrophysical properties of the suspension such as the particle-size
distribution and the average sedimentation rate.! The typical approach to calcu-
lating macrophysical properties involves using population dynamics models, and is
a standard procedure in the aerosol and hydrosol literature [e.g. Friedlander 1977].
Population dynamics models require an understanding of the interactions between the
many particles in the suspension. The hydrodynamics of two interacting particles are
microphysical properties of the suspension. Previous work for low Reynolds number
interactions has considered the interactions between two spherical drops (generally
including van der Waals forces) due to Brownian motion [e-g. Zhang & Davis 1991],
gravitational settling [e.g. Zhang & Davis 1991), interfacial tension variations due to
surfactant concentration variations or thermocapillary effects [e.g. Satrape 1992}, or
a combination of effects [e.g. Zhang et al. 1993).

In this chapter we consider the effects of particle deformation on the evolution of

the particle-size distribution and concentration. Deformation is characterized by the

!Characterizing quantitatively the behaviour of suspensions at low Reynolds number by account-
ing for all the hydrodynamic interactions has proven to be a challenging problem. Difficulties arise
because of the long-range interaction of particles at low Reynolds number. Consider, for example, an
attempt to calculate the settling speed of particles in a suspension at low Reynolds numbers. Since
disturbance velocities decay as 1/r away from a translating particle, equation (4.10), the velocity of a
particle Uy, due to the contribution Au(r) from all other particles at position r found by integrating

over the surrounding fluid volume,
U, =U 4+ / Au(r)p(r)dr® - 0o (5.1)

where p(r) is the probability of finding another particle at position r, with p — 1 as r — co. The
integral (5.1) diverges. The resolution to the apparent paradox was first discussed by Batchelor
(1972]. In real problems, boundary effects and back flow due to the presence of a bottom or top on
the container containing the particles results in a decrease of the average settling velocity of particles

— the presence of a lower boundary requires that the average fluid velocity < u > be zero.
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Bond number
2
B= A‘Zf“ . (5.2)

We will further assume that the Reynolds number is small, the Peclet number is
very large (negligible Brownian motion and diffusion, negligible growth by Ostwald
ripening), and interfacial tension variations are negligible. We begin in §5.2 by calcu-
lating the buoyancy-driven translation and deformation of drops in systems of either
three drops or four drops, and demonstrate that the interaction of drops may be
qualitatively described by the two drop interactions studied in chapters 2-4. In §5.3
we discuss the dynamics of particle clouds, discrete regions in space with a greater
than average concentration of particles. We then calculate in 86.5 the effects of de-
formation due to long-range hydrodynamics on the rate of coalescence in a dilute
monodisperse suspension. Next we determine experimentally in §5.6 the coalescence
rate of bubbles in a dilute polydisperse suspension as a function of the Bond number
and relative bubble size. Finally, in §5.7 we use a population dynamics model (fol-
lowing the methodology described in papers by Davis and coworkers) to calculate the

bubble-size distribution is suspensions.

5.2 Three drops and four drops

As a preliminary we extend the study of two drop interactions considered in chap-
ters 2-4. We present numerical calculations performed using a three-dimensional
boundary integral method (see Appendix C) for the buoyancy-driven translation and
deformation of drops in systems containing either three or four drops.

In dilute suspensions, it is commonly supposed that two particle interactions pro-
vide a good description of particle interactions in the suspension so that population
dynamics models can be based on two particle hydrodynamics. We consider briefly the
translation and deformation of three-dimensional buoyant drops with A = 1, where A
is the ratio of drop to external fluid viscosity. We demonstrate qualitatively that two

drop dynamics describe the interactions in systems with more than two drops.
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Figure 5.1: Shapes of three three-dimensional drops, for three equal-size drops with
different initial vertical offsets but identical horizontal offsets; B = 10, A = 1. Cross-

sections of drop shapes are shown. No symmetries are assumed in the calculations.

3.2.1 Three drops

In figure 5.1 we present calculated interface shapes for three different simulations of
three drop interactions. As in chapter 3, we present cross-sections through the three-
dimensional shapes. The initial configurations, i.e. the interface shapes at ¢t = 0,
are different for the three simulations; B = 10, A = 1. All the drops have the same
undeformed radius. In figure 5.1q showing three initially equally-spaced horizontally
aligned drops, the middle drop translates faster than the two outer drops. As with
spherical drops, the rise speed of the middle drop is largest owing to the sum of
the first reflections (§4.1.2) characteristic of drop interactions: the first reflection
for the middle drop gives rise to an 5U(0a/4d correction to its rise speed, whereas
the correction to the rise speed of the outer drops is 15UYq/16d, where d is the
separation distance between the drops and U ig the Hadamard-Rybczyniski rise

speed (see §4.2). The deformed drop shapes are consistent with predictions based
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Figure 5.2: Trajectories of three three-dimensional drops, for three equal-size drops
with different initial vertical offsets but identical horizontal offsets; B = 10, A = 1.
Trajectories correspond to the simulations shown in figure 5.1. The solid curves cor-
respond to 5.1q; the dashed curves correspond to 5.1b; the dotted curves correspond
to 5.1c.

on figures 2.4 and 3.3: the middle drop is squeezed by the flow created by the outer
two drops (so that it becomes elongated in the vertical direction and extended in
a direction perpendicular to the page) whereas the outer drops are extended in a
direction approximately aligned with a line joining the outer drops with the middle
drop.

In chapter 4 we derived analytical expressions for the magnitude of drop defor-
mation due to interactions. To leading order, the magnitude of drop deformation is
O(aBa®/d?). However, the magnitude of deformation also depends on the relative
orientation of the drops, described by equations (4.19-20), with vertically aligned
drops having the largest degree of deformation and horizontally aligned drops ex-
hibiting no deformation. To leading order the shape change, measured relative to a,

has magnitude

a®. .
€e=0 (B:i;d . g) y (53)
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Figure 5.3: Interaction of four three-dimensional drops initially placed in the same

plane and forming the sides of a square, for four equal-size drops with B = 1, 10 and
100; A = 1. Cross-sections of drop shapes are shown. No symmetries are assumed in

the calculations.

where d and g are unit vectors in the direction of d and g, respectively (see figure
4.1). The effects of relative drop orientation are evident in the two simulations in
figure 5.1 with initially vertically offset drops. In both simulations the middle drop
is deformed primarily by the drop on the left even though the separation distance
between the middle and right drop is less than the separation distance between the
middle and left drop. We note that the deformed drop shapes for the middle and
left drop are similar to the shapes in simulations with only two drops, such as in
figure 5.6. The importance of relative drop orientation is highlighted in figure 5.2
which shows trajectories of the center-of-mass of each of the three drops for the three

simulations shown in figure 5.1.
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5.2.2 Four drops

In figure 5.3 we show three simulations of four drop interactions, for B = 1, 10 and 100;
A = 1. Again we present cross-sections through the three-dimensional shapes. We
first describe the interaction of rising spherical nondeformable drops. The evolution
of the four drop system can be deduced by considering the first reflections: the two
lower drops approach each other, the two upper drops move away from each other,
and the two lower drops rise faster than the outer drops so that they rise and form
a horizontal line with the upper drops; the two middle drops continue to rise faster
than the outer drops and then move apart while the two outer drops approach each
other; a configuration identical to the initial configuration will then arise, however,
the lower drops will have replaced the upper drops. The evolution of the system will
continue and the drop motion may be described as “leap-frogging” [e.g. Hocking 1964;
Durlofsky et al. 1987]. If the drops are deformable, for example the simulations shown
in figure 5.3, the drops will deform and may coalesce without “leap-frogging”. Again,
the importance of the relative orientation of the drops on the shape and magnitude
of deformation is apparent in figure 5.3. Qualitatively, the interaction between the
right two drops is largely unaffected by the left drops (compare the simulations in

figure 5.3 with the simulations presented later in figure 5.6).

3.3 Clouds of drops

If the suspended phase consists of spherical nondeformable buoyant particles uni-
formly distributed in a finite volume, we call the finite group of particles a particle
cloud. The resulting evolution and deformation of the cloud of particles may be de-
scribed by the motion of a drop with negligible interfacial tension [e.g. Hinch 1989)].
A spherical cloud of uniformly distributed spherical drops (viscosity Ax and density
p + Ap), which remain uniformly distributed, translating in a fluid with viscosity u

and density p, far away from any boundaries, rises with speed

2(1+17) ApggR®
Udtoud = .
o= 3053y u (54)
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where R is the radius of the cloud, ¢ is the volume fraction of drops and qu is the
effective viscosity of the cloud. To leading order, the effective viscosity of the cloud

for small volume fractions ¢ is given by [Taylor 1932]2

14+5X/2

o). (5.5)

yu=(1+

Assuming the analogy between a cloud of particles and a drop of fluid is valid, then
a spherical particle cloud will remain spherical provided the cloud is far away from
any boundaries. However, if the cloud shape is non-spherical, the shape of the cloud
will deform continuously, with an initially oblate cloud developing a cavity inside the
cloud and and will produce an annular tail following the cloud (figure 1.3). If the
shape is initially prolate, the cloud will develop a nearly spherical shape followed by a
cylindrical tail (figure 1.3). If the particle cloud is moving towards, through or away
from a boundary or deformable interface, than the evolution of the cloud shape will
be similar to the results presented later in chapter 8 for X = 1.

If the particles are nonspherical, for example they might be ellipsoidal, then an
instability is predicted to develop in which local variations of particle concentration
will develop resulting in effective density variations [Koch & Shagfeh 1989]. Similarly
we expect that the effects of deformation will result in the coalescence of drops and
bubbles and thus a bubble cloud will evolve such that the bubbles which coalesce and
thus translate faster will separate from the smallest bubbles least likely to be involved

in coalescence events.

5.4 Coalescence in suspensions

Below we provide an overview of a method for determining the evolution of particle
size and concentration in dilute suspensions. The method involves first estimating
the collision or coalescence rate of two particles, and then developing a population

dynamics model to simulate a suspension. In §5.5 we consider the rate of coalescence

?In the limit A — 00, y = 1 + 5¢/2, a result first derived by Einstein (1906] (translated version

published in On the theory of brownian motion, Dover 1956).
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Figure 5.4: Schematic illustration of the collection radius or capture cross-section for
interacting drops. The horizontal separation distance between the centers-of-mass
of the drops at infinity which separates trajectories which result in alignment from
trajectories which result in entrainment is defined as Ya; the separation distance y,
separates trajectories which result in entrainment from trajectories of bubbles which

miss each other.

in monodisperse suspensions, in §5.6 we study experimentally the rate of coalescence
of bubbles in polydisperse suspensions of deformable bubbles, and in §5.7 we apply

the results of §5.6 to suspensions of bubbles using a population dynamics model.

5.4.1 Collision-frequency function

For a dilute suspension we make the standard approximation that only two particle
interactions need to be considered since the probability that a third particle will affect
the dynamics is small. The rate at which particles with radius i collide with particles

with radius j is given by the collision-frequency function [e.g. Davis 1984]
J,‘J‘ =n;n; /_ " ‘p,-j(r)(v,- - Vj) . f‘dS, (56)
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where n; is the number of particles of size 7 per unit volume, p;;(r) is the pair-
distribution function which represents the probability of finding a particle of size i
at position r with respect to the position of particle j, v; — v, is the difference in
velocities of particles of size a; and a;, and f is a unit vector in the direction of r. For
notational convenience we will assume that a; is the radius of the larger of the two
drops.

The pair-distribution function Dpi; satisfies a conservation equation

8p;
T4V (pylvi—vi)) = o0. (5.7)

In the limit that r — oo, the boundary conditions on the pair-distribution functions
are

p(r)ij = 1 as r — oo, (5.8)

since the suspension has particles uniformly distributed at large distances r. At

T = a; -+ a; the drops are in contact, and thus coalesce, so that
p(r)ij =0 at 7 = q; +a;. (5.9)

If the particle size and number distribution remain nearly constant at a given

position in the tank than we can make a quasi-steady approximation,
AV (p;]-[vi - V]']) =0. (510)
Applying the divergence theorem to the collision-frequency equation (5.6) we find

Jij = nin; / V- (p(r)ij[vi — vi))dV +

r=a;+a;

nin; /= p(r)ij(v,- - Vj) -tdS (5.11)

The first integral vanishes identically because of the quasi-steady assumption, equa-

tion (5.10), and the collision-frequency function simplifies to
Jij = n;n; /_ (V,' - Vj) - £dS, (5.12)

where we have applied the boundary condition on pi;(r) at infinity, equation (5.7).
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95.4.2 The Smoluchowski model

The collision-frequency function determined from the integral (5.12) involves an in-
tegration over the surface at infinity, S,. The surface S, encloses all possible drop
trajectories which result in coalescence. The surface S can be described as a circle
or disc of radius y., such that all drops with horizontal separation distances less than
Ye coalesce, and all drops with horizontal separation distances greater than gy, do not
coalesce (see figure 5.4). Since v; —v; = U® — U;O) as r — oo (interactions do not

affect the rise speed), the rate of coalescence is given by
J,'j = n,-n,-7r(U,-(0) - U}O))yf (5.13)

where U,-(O) is the Hadamard-Rybczyniski speed.

The Smoluchowski model (Smoluchowski [1917] as cited in Davis [1984]) assumes
that there are no hydrodynamic interactions between particles so that the drops rise
vertically, thus

Jij = ’I'Lian(Ui(O) - U;O))(a.- -+ aj)z. (5,14)

Hydrodynamically interacting spheres, as shown by previous investigators, have
a reduced collision rate compared to the Smoluchowski model (even if van der Waals
forces are present and included in the analysis) since small drops will tend to follow
streamlines around larger drops, e.g. figure 3.2. However we will demonstrate that
deformable drops not only have an enhanced rate of coalescence due to the effects of
deformation, but may also even have a a collision rate greater than predicted by the

Smoluchowski model (e.g. the experiments shown in figure 3.1).

3.5 Monodisperse suspensions

In chapter 4 we derived, in the limit of small deformation, an expression for the rise

speed of two widely separated particles, separated by distance d, of the form

) 4 %y701) a\% @) 0
U=U"+2y +B(E)U +0 (0% (5.15)
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Figure 5.5: Schematic illustration of the interaction of two deformable drops in a
suspension. The effects of hydrodynamic interactions result in deformation which

will always lead to a component of translation which tends to align two drops.

The difference in rise speed of two equal-size drops is O(U®Ba?/d?). The derivation
of equation (5.15) required a quasi-steady assumption for the drop shapes, i.e. that
the time scale for the drops to deform is less that the time scale for the two drop
geometry to change; e.g. see discussion in §4.1.4. Since two equal-size deformable
drops will always be aligned owing to the effects of deformation, figure 5.5, then S, is
a spherical surface at infinity. Using the far-field analytical results derived in chapter
4, the collision-frequency function J (a) for two drops with radius o in a monodisperse

suspension with n drops per unit volume is given by
J(a) = 4mn’c(N)a?BU©, (5.16)

In deriving equation (5.16) we have neglected all short range phenomena such as van
der Waals forces which are required for the eventual coalescence of particles and we
have assumed that the magnitude of drop distortion is small so tha the perturbation

expansion (5.15) is valid.
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B=10

Figure 5.6: Shapes of two three-dimensional drops, for equal-size drops with different

initial horizontal offsets; B = 10, A = 1. Cross-sections of drop shapes are shown. No

symmetries are assumed in the calculations.

In papers by Davis and coworkers the rate of coagulation of particles is character-

ized by a dimensionless collision efficiency function

Ei; = Ji; | J;, (5.17)

7

where

I = ningm(a; + a;) (U - Uv©) (5.18)

J

is the Smoluchowski result. Note that the dimensionless collision efficiency E;; is
infinite for equal-size bubbles for all Bond numbers (since Jf — 0 as a; — a;)
although the actual collision rate J;; will be finite.

In figure 5.6 we demonstrate numerically using a fully three-dimensional bound-
ary integral calculation that the effects of interaction lead to deformed shapes which
promote alignment, and thus the coalescence of drops, even in monodisperse suspen-

sions.
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5.6 Collision-frequency in polydisperse suspensions

In a polydisperse suspension, a suspension in which the drops may have different
sizes, we need to determine the capture cross-section, Y2, as a function of the Bond
number, B;, the relative drop size, a;/a;. and the viscosity ratio between the drops
and surrounding fluid, ), i.e.
Jij = ninymw(UY — U}O)) Y2 (B,-, %, )\) (5.19)
The complexity of the interaction of deformable bubbles prohibits the use of ana-
lytical results and numerical studies (e.g. chapter 2-4) to quantitatively characterize
the interaction of deformable bubbles. Numerical calculations are prohibitively time
consuming since many hundreds of simulations are necessary to construct a model.
In order to estimate the capture radius y,, the initial vertical separation distance
between the bubbles must be very large; the initial vertical offset in the numerical
simulations must be very large and thus, computation times become especially long.
In addition, numerical simulations are difficult for A # 1 and for large interface dis-
tortions. The analytical results developed in chapter 4 are limited to small ellipsoidal

drop distortions and thus large separation distances.

5.6.1 Experimental apparatus and procedure

In order to determine the collision frequency in a polydisperse suspension we per-
formed a large number of laboratory experiments characterizing the interaction of air
bubbles in corn syrup in order to develop a model for the coalescence of bubbles in
dilute suspensions.® In the experimental results presented here we consider only the
limit in which large distortions occur so that the deformation, as observed in figure

3.1, results in the capture and coalescence of bubbles. Interfacial effects such as van

SWe gratefully acknowledge the patience and devotion of Harvard undergraduate Joe Rice who

performed more than 500 experiments to collect the data presented in this section.
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der Waals forces or the presence of surfactants are important for the eventual coa-
lescence of two bubbles; however, for the limit of large distortions considered here,
such effects will only play a minor role in the rate of coagulation of bubbles. The
experiments were performed in a large tank with dimensions 61 cm X 61 cm X 122
cm filled with commercial grade corn syrup (figure 5.7). Bubbles were injected into
the bottom of the tank through a sequence of regularly spaced holes fitted with one-
way valves. Bubble volume was measured by calibrating a series of syringes. The
error in measuring bubble radius was less than 4%.% In the experiments, a smaller
bubble was injected first. In order to minimize the effects of not having an initially
infinite vertical separation distance between the bubbles, the second larger bubble
was injected once the small bubble has risen at least 25 cm. In order to minimize
boundary effects, all interactions were required to occur at least 25 cm away from a

boundary (side walls, the upper free-surface and the lower rigid boundary) in order

*The syringes used to inject the bubbles were calibrated so that the relative radius of the bubbles
could be determined from the volumes of air injected into the tank. In the table below we list
the syringe volume and associated rise speed of the bubble for typical experiments using different
syringe volumes. Between eight and ten measurements of the rise speed are used to determine
the uncertainties. Typically uncertainties of the bubble rise speed are about 1% so that typical

uncertainties of the relative bubble radii will be less than 1%.

Syringe volume | Bubble rise speed
ml cm/s
60 1.025 4 0.008
30 0.635 £ 0.008
20 0.472 £ 0.006
10 0.336 % 0.001
5 0.131 £ 0.002

Note that although the uncertainty of the relative bubble size is small, the uncertainty of the absolute
bubble radius will be larger; in order to calculate the bubble radius we need a measure of the fluid
viscosity, and the density contrast (since the radius is determined from a rise speed formula). The
uncertainties of the fluid viscosity and density contrast are 2% and 1%, respectively. Thus the
uncertainty of the bubble radius will be about 3-4%; however, the uncertainty of the relative bubble

radii will be only about 1%.
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to be included as acceptable data.

5.6.2 Experimental results

In figure 5.8, we present a series of experimental results which characterize the three
different possible modes of bubble interactions for B = 120; 73, 30 and 15. For
convenience we assume that the radius of the larger bubble is a; and that the Bond
number is based on the radius of the largest bubble, B = Apga? [o. The data illustrate
that for a given horizontal separation distance, Y, coalescence is more likely if the
bubbles have a nearly equal size than a very large size difference. For a given relative
size (fixed a;/a;, see figure 5.7), as the separation distance is increased, (%) the bubbles
first interact such that the smaller bubble spreads over or “coats” the larger bubble
(as in figure 3.1a), (4i) as the horizontal separation distance is gradually increased, the
small bubble may be advected around the larger bubble and then entrained inside the
larger bubble (as in figure 3.1b), and finally () for still greater horizontal separation
distances, the small bubble is advected around the larger bubble and coalescence does
not occur.

In figure 5.9 we present experimental measurements for the capture radius vy, in
equation (5.19) as a function of B and the relative bubble radius a;/a;; we use these
results to construct an approximate quantitative model for bubble coalescence. Re-
sults are presented for B = 15, 30, 73 and 120. Data points separate interactions
which result in coalescence (such as in figure 3.1) from interactions in which no coa-
lescence occurs. Error bars are not shown. Typical errors on measurements of bubble
radii are less than about 4%. Data presented in figure 5.9 is deemed acceptable if the
initial vertical separation distance was sufficiently large; specifically, we required that
the magnitude of bubble distortion based on the initial separation distance predicted
by the far-field analysis presented in chapter 4 was less than 10% (e < 0.1 as defined
by equations (4.3-4)). Despite the large volume of the tank, we could only accept
experimental results for a limited number of horizontal bubble separation distances,

Bond numbers and relative bubble sizes. A larger apparatus would be necessary to
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Figure 5.7: Schematic diagram of the tank used for the experiments presented in
figures 5.8 and 5.9. The tank is made of 3/4” plexiglass. Bubbles are injected from
calibrated syringes into the tank through tygon tubing connected to one-way valves.
The radii of the larger and smaller bubbles are a; and a;, respectively, and the hori-
zontal separation distance between the bubbles which separates interactions in which

coalescence occurs from trajectories in which the bubbles do not coalesce is Ye-
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Figure 5.8: The mode of bubble interaction as a function of bubble offset, 7., and
relative bubble size, a;/a; for (a) B =120 and (b) B = 73. “Coat” refers to interac-
tions as in figure 3.1a (shown with the symbol O), “entrain” refers to interactions as
in figure 3.1b (shown with the symbol A), and “miss” refers to interactions in which
the bubbles to not coalesce (shown with the symbol o). The bubbles are initially

separated vertically by at least 10a;.
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Figure 5.8: (continued) The mode of bubble interaction as a function of bubble
offset, y, and relative bubble size, a;/a; for (¢) B = 30 and (d) B = 15. “Coat”
refers to interactions as in figure 3.1a (shown with the symbol 0), “entrain” refers
to interactions as in figure 3.1b (shown with the symbol A), and “miss” refers to
interactions in which the bubbles to not coalesce (shown with the symbol o). The

bubbles are initially separated vertically by at least 18a;.
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Figure 5.9: Experimental results used to derive an approximate quantitative model
for the coalescence of deformable bubbles. Acceptable experimental results require
that the initial condition is a good approximation to bubbles with an infinite vertical
separation. Results are presented for B = 120 (O), B = 73 (A), B =30 (o) and
B = 15 (). Open symbols represent interactions in which the bubbles do not
coalesce and solid symbols represent interactions in which the bubbles coalesce. Error
bars are not shown. The solid curves represent predictions of a model of the form
yo/(a;+a;)? = 0.3(a;/a;)/24+0.58(a;/a;)°. We emphasize that the model is no¢ based
on analytical results or theory, but is only a useful functional relationship between
the capture cross-section, y., the Bond number and the relative bubble size, which is

approximately consistent with the limited amount of experimental data.
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collect additional data for bubbles with large Bond numbers (B = 73 and 120). For
comparison, predictions from an empirical model of the form

(a_f_a,? =03 (%) 7y %B (%)6 (5.20)
are shown with solid curves for the four values of the Bond numbers corresponding
to the experimental measurements. From equation (5.20), in the limit that B — 0
we approximately recover the result of Zhang & Davis [1991] for spherical bubbles.
Equation (5.20) is not based on analytical results or theory, but is only a useful
functional relationship between the capture cross-section, y2, the Bond number, and
the relative bubble size, which is approximately consistent with the limited amount
of experimental data presented in figure 5.9.

From the results shown in figures 5.8 and 5.9, we note that the capture cross-
section may even be larger than the sum of the bubble radii (see also the experiment
shown in figure 3.1). A capture cross-section equal to the sum of the bubble radii,
y2/(a; + aj)? = 1, corresponds to the interaction between spherical bubbles mov-
ing vertically with no hydrodynamic interactions (so that smaller bubbles are not
advected around larger bubbles).

The dimensionless rate of coalescence, Jij, is shown in figure 5.10 for the model de-
scribed by equation (5.19) and a capture cross-section defined by equation (5.20). For
comparison, the analytical results for spherical bubbles (i.e. B =0) from Zinchenko
[1982] are shown with small open circles. The rate of coalescence of deformable bub-
bles may be more than one order of magnitude greater than for spherical bubbles for
a wide range of size ratios, e.g. 0.7 < a;/a; < 1 for B = 10. For small a;/a;, the ef-
fects of deformation are small (although the magnitude of deformation may be large,
e.g. figure 3.12), and small bubbles tend to follow streamlines and are thus advected
around larger bubbles. As a;/a; — 1, equation (5.19) predicts no coalescence since
the relative velocity of the bubbles U; — U; — 0. However, as illustrated in figure 5.6
and discussed in §5.5, shape changes due to deformation will result in the eventual
coalescence of equal-sized bubbles. Thus the model described by equations (5.19-20)

underestimates the rate of coalescence as a;/a; — 1.
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Figure 5.10: Dimensionless rate of coalescence of deformable air bubbles rising in corn
syrup based on the model described by equations (6.19-20) for B =0, 0.1, 1 and 10.
For comparison, the analytical results for spherical bubbles (i.e. B=0) from Zinchenko
[1982] are shown with open circles. As illustrated in figure 5.6 and discussed in §5.4,
shape changes due to deformation will result in the eventual coalescence of equal-
sized bubbles, thus the model described by equations (5.19-20) and presented above

underestimates the rate of coalescence as aj/a; — 1.

5.7 Population dynamics simulations

In this section we calculate the size and concentration of buoyant deformable bubbles

in dilute suspensions. We will consider two problems:

1. the bubble-size distribution of bubbles as a function of time in an isotropic and

homogeneous suspension;

2. the evolution of the bubble-size distribution and concentration as a function of

time and position in a tank of finite size.
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Following the approach of Davis and coworkers [e.g. Zhang et al. 1993], we employ a
population dynamics model based on two bubble interactions. In the simulations we
ignore any boundary or wall effects and consider only the two particle interactions
described above. Despite the limitations of the rate-of-coalescence equation (5.19)
and the approximate nature of the model for the coalescence of deformable bubbles,
equation (5.20), we will apply the experimentally derived model presented in §5.6 to
the suspensions considered here. The problem of calculating dynamics in suspensions
is a difficult problem and the results we present are at least based on experimental
data and a theory valid for small volume fractions of bubbles, and hence capture
qualitatively if not quantitatively several of the important and characteristic features

of real systems.

3.7.1 The population dynamics model

In a homogeneous and isotropic suspension the discretized population dynamics equa-
tions which describe the rate of formation of particles of radius ax (the bubble-size
distribution is discretized into discrete intervals of bubble radii) are given by [e.g.

Friedlander 1977]

dnk 1 x
2= 3 i - Yda (5.21)
i+ji=k i=1

S—— S——
creation of bubbles 1033 of bubbles

where ny, is the number of bubbles with radius a; per unit volume, and Jij is the
collision-frequency function given by (5.6). The first term on the right-hand side of
(5.21) represents the creation of bubbles with radius ai; due to coalescence (the factor
of 1/2 accounts for double counting) and the second term on the right-hand side of
(5.21) represents the loss of bubbles with radius ay. due to coalescence.

We study the evolution of a given initial distribution of bubble sizes following
the approach of previous investigators [e.g. Zhang et al. 1993). Numerically, the
bubble distribution is represented as a discrete spectrum of bubble sizes with N bins
of bubble sizes equally spaced in the logarithm of the bubble volume. The initial size

distribution is assumed to be a normal distribution of the volume fraction ¢(a) about
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an average bubble radius a,. In all the results presented here the standard deviation
characterizing the initial bubble distribution is 0.2a, (e.g. the distribution at ¢ = 0

in figure 5.11). The total volume fraction ¢, of bubbles is given by

®o = /]oo . #(Ina)dIna (5.22)
The velocity characteristic of bubble interactions is
2
U, = 9%2 (5.23)

so that the characteristic time scale for interactions (based on the population dynam-

ics equations) is
p= P
c — .
Apgaspo

where a¢;! is the typical distance between particles in a dilute suspension.

(5.24)

In solving equation (5.21) for homogeneous isotropic suspensions we choose a
dimensionless time step of 0.0001 and discretize the bubble-size distribution so that

the bubble volume doubles every 5 bins.

5.7.2 Isotropic polydisperse suspensions with a homoge-

neous concentration distribution

We first consider the evolution of the bubble-size distribution in a suspension in which
the concentration and size distribution of bubbles are initially uniform throughout the
suspension and which remain uniform at all times. We will refer to such a, suspension
as an isotropic homogeneous suspension. Such a suspension might be characteristic
of local dynamics in suspensions for time intervals over which larger bubbles do not
rise and separate from the rest of the bubbles in the suspension.

In figure 5.11 we show bubble concentration in an isotropic homogeneous suspen-
sion as a function of time for different Bond numbers. The distribution of bubble
sizes is based on the population dynamics equations (5.21) with a collision frequency
function defined by equations (5.19) and (5.20). The Bond number labeled on the

curves and reported in the figure captions is based on the average initial bubble radius
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Figure 5.11: Bubble concentration in an isotropic homogeneous suspension deter-
mined by solving the population dynamics equations (5.21). The bubble distribution
is shown at dimensionless times ¢ = 0, 1, 2, 3, 4, 5 and 6, where time is normalized
by p/Apga,¢,. The solid curves correspond to a simulation with B, = 0, the dashed
curves a simulation with B, = 0.01, and the dotted curves a simulation with B, = 0.1.
The Bond number B, is based on the average initial bubble radius a,. The bubble

distribution for the simulation with B, = 0.1 is shown at times # = 0,1,2, 3,4 and 5.

G0, L.6. By = Apgal/o. We use equation (5.19) with B; based on the radius of bubble
¢ to describe the capture cross-section so that all Bond numbers are included in the
numerical simulations. As a result of coalescence the average bubble radius increases
with time. The mean bubble volume as a function of time is shown in figure 5.12 for
the simulations presented in figure 5.11. Notice in figure 5.11 that there is always a
peak in the bubble size distribution around a/a, = 1. Since the rate of coalescence
of bubbles becomes very small as a;/a; — 0 (figure 5.10), then as the average bubble
size increases due to coalescence, the smaller bubbles with afa, ~ 1 are less likely
to be involved in coalescence events. If the bubbles are deformable, a wider range of

bubble sizes develops in the suspension (compare the solid curve for nondeformable
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Figure 5.12: Average normalized bubble volume as a function of time in isotropic

homogeneous suspension. Time is normalized by u/Apga.¢,. Results are presented
for B, = 0, 0.01, 0.1 and 1. The Bond number B, is based on the average initial

bubble radius a, and curves terminate when the simulation is stopped.

bubbles with the dashed and dotted curves for deformable bubbles at times t = 5
and 6). As the average bubble size increases, the rate of coalescence increases; since
deformation enhances the rate of coalescence, the mean bubble volume in suspensions
containing deformable bubbles increases more rapidly than in suspensions of spherical
bubbles, as illustrated in figure 5.12.

We note that the approximate model for the coalescence of deformable bubbles,
equation (5.20), is based on experimental results for 15 < B < 120. We might
expect that the effect of deformation on the rate of coalescence becomes saturated
for large Bond numbers. Thus, in the simulations presented in figures 5.11 and 5.12,

we terminate the simulations once the Bond number of largest bubbles exceeds 150.
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Figure 5.13: (a) Average normalized bubble volume of bubbles at the top of a tank
as a function of time in an initially homogeneous suspension. Time is normalized by
1/ Apgasg,. The height of the tank is 50a,/¢o. (b) Volume flux of bubbles emerging
from the tank. Results are presented for B, = 0, 0.01, 0.1 and 1. The Bond number
B, iss based on the average initial bubble radius a,. Both the average bubble volume

and volume flux are normalized by their respective values at ¢t = 0.
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Figure 5.14: Total volume fraction of bubbles, normalized by the initial volume frac-
tion ¢,, as a function of tank height (0=bottom, 1=top), at dimensionless times ¢ = 1,
2, 4, 6 and 10. Results are presented for B, = 1 (dashed lines) and B, = 0 (solid
lines). Time is normalized by 1/ Apgaop,. The height of the tank is normalized by

50a,/¢,. The Bond number B, is based on the average initial bubble radius a,.

5.7.3 “Sedimentation” and separation in a polydisperse sus-

pension

In suspensions containing bubbles, the larger bubbles rise and separate from smaller
bubbles, and bubbles may also leave the suspension when they reach the upper surface.
Thus, we also performed a number of simulations in which we allow the bubble
concentration to vary with vertical position within the suspension.

If bubbles may leave the suspension, as occurs for example in a tank filled with
a bubbly fluid in which the bubbles are free to rise to an upper free-surface and
escape from the tank, the volume fraction distribution ¢(a) will also be a function of
position. In the one-dimensional simulations presented below we model the dynamics
by discretizing the tank height into L horizontal layers with thickness a,/¢, in which
bubbles of a given size are uniformly distributed. Bubbles are assumed to rise with the

Hadamard-Rybczyiiski speed U(® based on the bubble radius, thus, we are assuming
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Figure 5.15: The size distribution of bubbles at the top of the tank, at dimensionless
times ¢ = 0, 1, 2, 3, 4, 6 and 10; B, = 1. Time is normalized by ©/Apga.¢,. The
height of the tank is 50a,/¢,. The Bond number B, is based on the average initial

bubble radius a,.

there are no corrections due to interactions.’ Bubbles rise from one layer to the next
layer, so that nﬁ” which denotes the number of bubbles of radius q; in layer ! per unit

volume is given by

dn{V -
i %o AUg©® % 2y
dt a/o ao
————— N —
gain of bubbles by convection loss of bubbles by convection
1 ()
5 3> Jy - > T . (5.25)
i+j=k i=1

creation of bubbles due to coalescence 1033 of bubbles due to coalescence

In figure 5.13 we demonstrate the effect of bubble deformation on the rate of

separation of bubbles from the tank. The height of the tank is 50a,/¢,. Results are

SBatchelor [1972] has shown that the average translation speed in a dilute monodisperse suspen-
sion of rigid spheres is reduced to U = U® [1 — 6.55¢, + O(¢2)]-
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Figure 5.16: (a) Average normalized bubble volume of bubbles escaping from the top
of a tank as a function of time in an initially homogeneous suspension. Results are
presented for tank heights of 25a,/¢,, 50a,/d, 100a,/¢, and 250a,/¢o; B, = 0.1.
Time is normalized by u/Apga,¢,. The Bond number B, is based on the average
initial bubble radius a,. () Volume flux of bubble emerging from the tank. Both the

average bubble volume and volume flux are normalized by their respective values at
t=0.
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presented for B, = 0, 0.01, 0.1 and 1. The reported Bond number is based on the
average initial bubble radius a,. The rate of coalescence of bubbles is greatest for
B, = 1. Thus, the average bubble volume increases fastest for the system with B, = 1.
Since larger bubbles rise more rapidly, the volume flux of bubbles out of the tank will
also increase most rapidly for the system with B, = 1. The maximum volume flux
of bubble occurs at earlier times, and is greater in systems with deformable bubbles
than nondeformable bubbles; thus, the rate of separation of the dispersed phase is
increased by allowing the dispersed phase to deform. The importance of deformation
on the rate of separation of the bubbles is highlighted in figure 5.14 which shows
the volume fraction of bubbles as a function of height in the tank for systems with
deformable (B, = 1) and nondeformable (B, = 0) bubbles.

In figure 5.15 we show the size distribution of bubbles at the top of the tank for
the simulation with B, = 1. Initially the average bubble size increases as a result of
coalescence, and the volume fraction of bubbles is large since the tank still contains a
large number of bubbles (e.g. t = 1 and 2). As the larger bubbles rise and leave the
tank, the total volume fraction of bubbles decreases, see figure 5.14, and the volume
fraction and average size of bubbles decreases. For long times, (e.g. ¢ = 10), the
mean bubble size is small and the volume fraction is small.

Finally, in figure 5.16 we consider the effect of tank height on the average size
and rate of separation of bubbles in the tank. In figure 5.16 we show results for tank
heights of 25a,/¢,, 50a,/d,, 100a,/¢, and 250a,/¢,; B, = 0.1. The Bond number
is based on the average initial bubble radius - In larger tanks the total volume
of bubbles (for a given volume fraction ®,) is greater and the time available for
interactions is greater so that larger bubbles will form. Thus, the maximum volume
flux of bubbles out of the tank will be larger and the maximum average volume of

bubbles will also be larger in taller tanks.
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5.7.4 Limitations of the population dynamics simulations

Inherent in the simulations are a large number of approximations and assumptions
that will limit the applicability and quantitative accuracy of the procedure described
in §5.7.1 which is used to calculate the results presented in figure 5.11 - 5.16: (i)
the collision-frequency function and population dynamics model is applicable only
in dilute suspensions, for which two particle interactions are a useful model for de-
scribing the interactions in suspensions (although the simulations reported in §5.2
demonstrate that the interactions between many deformable drops may be charac-
terized qualitatively by two drop interactions; thus, the dilute limit might be less
restrictive for deformable drops than for rigid particles), (i) the collision frequency
model used in the simulations for deformable bubbles is based on a limited number of
experimental data and underestimates the rate of <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>