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S U M M A R Y
We use a wavelet transform to compute the local and azimuthal variations of the coherence
between Bouguer gravity and topography in eastern Canada. The isotropic coherence is calcu-
lated by averaging the wavelet spectra from optimally overlapping 2-D Morlet wavelets having
an isotropic spectral envelope in adjacent directions within 180◦, defining the so-called ‘fan’
wavelet. The isotropic wavelet coherence spectrum is inverted to obtain local estimates of the
elastic thickness (T e) of the lithosphere. We calculate the anisotropic coherence by restrict-
ing the fan wavelet over an azimuthal range of 90◦. The direction of maximum coherence is
diagnostic of the direction of preferred isostatic compensation, or the direction where the litho-
sphere is weakest. The coherence is inverted using the theoretical response of a thin anisotropic
plate model.

We have carried out extensive tests on synthetic topography and Bouguer gravity data sets to
verify that: (1) the wavelet method can recover T e for simple models with either homogeneous or
spatially variable rigidity patterns; and that: (2) the method can determine azimuthal variations
in the 2-D coherence for homogeneous models with anisotropic T e.

We have used data from the eastern Canadian Shield to infer the variations in T e and the
anisotropy of the coherence. The relative variations in T e show trends similar to those obtained
in previous studies that used different spectral methods. The wavelet transform gives T e values
between 30 and 120 km. T e is generally high (>80 km) throughout eastern Canada. Lower
values (30–60 km) are found in the eastern Grenville Province, in the northern Appalachians,
and in the Superior Province in the Great Lakes region. The high values found in Hudson Bay
are consistent with previous studies of elastic thickness and models of basin subsidence. The
direction of maximum coherence obtained from the wavelet method is also consistent with our
previous results obtained with the multitaper method and shows that the weak mechanical axis
is perpendicular to the fast seismic axis where seismic anisotropy has been detected.
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1 I N T RO D U C T I O N

The correlations between the topography and gravity anomalies pro-
vide important information on the level of isostatic compensation
of the lithosphere at the geological timescale, and reflect its ther-
momechanical state (Watts 2001). The response of the lithosphere
to surface (e.g. mountain belts, sedimentary basins) and internal
loadings (e.g. Moho undulations) is modelled by assuming that re-
gional isostasy is achieved by the flexure of a thin elastic plate
overlying an inviscid fluid. The effective elastic thickness T e of the
lithosphere is defined as the thickness of an equivalent elastic plate
that would give the same response under the known tectonic load-
ing. It is obtained from the flexural rigidity parameter, D, used in

the equation of flexure of a thin elastic plate

D = ET 3
e

12(1 − ν2)
, (1)

where E is the Young modulus and ν Poisson’s ratio (assumed to be
1011 Pa and 0.25 throughout this work). Elastic thickness depends
on many factors, including the density structure, the thermal and
stress state, and the mechanical properties of the lithosphere (Burov
& Diament 1995). In the oceans, the rheology is relatively simple
and the estimates of the flexural rigidity correlate well with the depth
to the 450–600◦C isotherm, calculated from a cooling plate model
(Watts 2001). In the continents, where the rheological properties of
the lithosphere are vertically and laterally heterogeneous, T e does
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not correspond to an isotherm or to a physical boundary. In general,
T e is low in young and tectonically active regions and increases in
the stable continent (Lowry & Smith 1994; Flück et al. 2003). An
approximate correlation between the long-term strength of the litho-
sphere and its age has been suggested in a few regions, for example,
in Europe (Poudjom-Djomani et al. 1999; Pérez-Gussinyé & Watts
2005), and Australia (Simons & van der Hilst 2002). This simple
model does not apply everywhere: for example, little correlation
of T e with heat flow or the geology is found in some shields, for
example, in the Siberian craton (Poudjom-Djomani et al. 2003) and
the Canadian Shield (Audet & Mareschal 2004a).

There are two main approaches in the estimation of T e: the direct
and inverse approaches. In the former, forward modelling of the
gravity anomalies computed from the assumed tectonic loading can
be compared with the observed gravity field to infer the mechanical
properties of the lithosphere. This method is useful for certain geo-
logical settings such as mountain belts, seamounts and sedimentary
basins, where the loading structure is well known (e.g. Karner &
Watts 1983; Stewart & Watts 1997). More often, however, the es-
timates of T e are inverted from the spectral relationships between
topography and gravity anomalies, assuming that the lithosphere
behaves as a thin elastic plate. Following Forsyth (1985), the major-
ity of researchers use the coherence between Bouguer gravity and
topography to estimate T e because it allows the decomposition of
the loads into surface and internal components and is less sensitive
to short wavelength noise in the data than the admittance between
free-air gravity and topography. The coherence between two fields
F and G is defined in the Fourier transform domain as:

γ 2
0 (k) = | 〈FG∗〉 |2

〈F F∗〉 〈GG∗〉 , (2)

where 〈〉 denotes some averaging in the 2-D wavevector space k,
and the asterisk indicates complex conjugation. The coherence is
a measure of the phase relationships between two fields. If no av-
eraging were done, the coherence would always be 1. The most
common averaging method consists of binning over different annuli
of wavenumber bands, but this destroys the azimuthal information
in the spectra. For a discussion on the different ways of averaging
the spectra, see Simons et al. (2000). For uncorrelated fields, the
phases of the cross-spectra at a given wavevector are randomly dis-
tributed and averaging cancels the coherence. For correlated fields,
the phases of the cross-spectra interfere constructively and averag-
ing yields a high coherence. When surface or internal loads are fully
compensated by the deflection of the plate at long wavelengths, the
Bouguer anomaly is negatively correlated with the topography, re-
sulting in a high coherence. At shorter wavelengths, the loads are
supported by the strength of the plate, and, if there is no correlation
between initial surface and internal loading, the Bouguer anomaly
is incoherent with the topography. The transition wavelength from
low to high coherence depends both on the rigidity and the loading
structure of the plate. For estimating T e, the observed coherence is
compared with the coherence predicted for a thin elastic plate with
some assumptions about the loading scheme (Forsyth 1985).

Major differences in the estimation of T e result from the use
of various spectral estimators when calculating the isotropic co-
herence. The fact that high flexural rigidity implies long transition
wavelengths imposes a lower limit on the size of the windows used
to calculate the spectra. Tests with synthetic data have shown that
the T e estimates based on the modified (windowed or mirrored)
Fourier periodogram and multitaper methods are highly sensitive to
window size (Ojeda & Whitman 2002; Audet & Mareschal 2004a;
Pérez-Gussinyé et al. 2004). The multitaper method calculates the

spectra with multiple orthogonal windows used as data tapers to
reduce the variance of the estimates, and averaging is done over
different, (approximately) independent, subsets of the data (Simons
et al. 2000). The resolution degrades with the number of tapers
used. Pérez-Gussinyé et al. (2004) showed that serious discrepan-
cies occur when comparing the multitaper coherence with theo-
retical curves, due to the large bias introduced near the transition
wavelength by the tapering procedure. Parametric spectral estima-
tors (e.g. maximum entropy) have been found to perform better on
synthetic data (Lowry & Smith 1994; Audet & Mareschal 2004a).
However, the basic assumption of the parametric estimation, that the
data were produced by an autoregressive stochastic process, while
likely to be met by numerically generated fractal surfaces, remains
to be verified in the case of heterogeneous and anisotropic data, such
as continental topography and gravity fields.

The flexural rigidity of the lithosphere is usually assumed to be
isotropic. This is a convenient assumption because it allows the
reduction of the problem to 1-D by averaging the azimuthal infor-
mation in the spectra. It has been shown by several recent studies
(Lowry & Smith 1995; Simons et al. 2000, 2003; Rajesh et al.
2003; Swain & Kirby 2003b; Audet & Mareschal 2004b) that the
coherence increases in one direction compared to the azimuthal
average, and this anisotropy reflects the preferred direction of iso-
static compensation where the lithosphere is weaker. The retrieval
of anisotropy in the coherence is hampered by the lack of a suit-
able averaging method. Multiple windowing techniques are better
suited to this task than either the modified periodogram or the max-
imum entropy method because the coherence can be calculated at
each wavevector, enabling the detection of anisotropy. However, all
the methods mentioned above return a single estimate of T e or its
anisotropy at each window, thus limiting the spatial resolution.

In the course of quantifying the lateral and azimuthal variations
of the coherence between topography and Bouguer anomaly, the
knowledge of the local phase information of these fields is necessary.
A multiple windowing technique that uses orthonormal Hermite
polynomials in 2-D, providing the necessary condition for both spa-
tial and spectral localizations and enabling the retrieval of anisotropy
in the coherence, has already been developed (Simons et al. 2003).
However, the use of many windows decreases the spectral resolution
and direct comparison of the coherence with predictions is inaccu-
rate, unless the same bias is carried in the calculation of the predicted
coherence (Pérez-Gussinyé et al. 2004).

In recent years, there have been new developments in the appli-
cation of wavelet analysis to geophysical data. The main advantage
of the wavelet analysis over the Fourier transform approach is that
it is applicable to non-stationary time-series. We believe that the
study of isostasy would benefit from a wavelet point of view since
the wavelet transform uses optimally sized windows to obtain the
spatial localization and does not require multiwindowing. So far,
the majority of applications using the wavelet transform in isostatic
studies have been restricted to the calculation of the local isotropic
coherence. Kido et al. (2003) constructed an isotropic wavelet-like
kernel by azimuthal averaging a 2-D Gabor function and correct-
ing for spherical geometry. Stark et al. (2003) derived a tensor-like
wavelet that makes use of the multiple derivatives of the real val-
ued Gaussian function in different directions. Recently, Kirby (2005)
showed that only the complex valued Morlet wavelet and its relatives
are able to reproduce the Fourier spectrum accurately because of the
similarity between the basis functions of the Fourier transform and
the Morlet wavelet. This property is important for the comparison
of the observed 1-D coherence curves with theoretical predictions
to yield T e estimates. Moreover, the directional selectivity of the
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Morlet wavelet in the spatial domain naturally allows for the detec-
tion of azimuthal information in the spectra.

Kirby (2005) developed a quasi-isotropic wavelet dubbed the
‘fan’ wavelet by superposing optimally spaced Morlet wavelets in
a given azimuthal range. This method is further exploited in a re-
cent paper by Kirby & Swain (2006) where they use a restricted
fan wavelet to detect anisotropy in the coherence. This paper will
first describe how the wavelet transform based on this directional
wavelet can be used in the study of lateral and azimuthal vari-
ations in the 2-D coherence. The method is then demonstrated
on synthetic gravity/topography with homogeneous, heterogeneous
isotropic, and with homogeneous anisotropic elastic thickness. We
apply this method to data from the Canadian Shield and compare the
results with relevant geological and geophysical information from
this area.

2 WAV E L E T A N A LY S I S

2.1 Wavelet transform

The literature on wavelets being quite extensive, we will only briefly
review here the basic theory necessary for our particular applica-
tion and refer the interested reader to Foufoula-Georgiou & Kumar
(1994), Torrence & Compo (1998), or Holschneider (1999). The
2-D wavelet transform is defined as the convolution of a signal
with a scaled and rotated kernel ψθ

a,b called a wavelet (Foufoula-
Georgiou & Kumar 1994). Manipulating the wavelet dilation pa-
rameter (or scale) a and azimuth θ has the effect of analysing a
signal at location b at different scales and directions, where a can
be related to an equivalent Fourier wavenumber. The wavelet trans-
form is thus a multiresolution operation that allows the detection
of non-stationarity and a localized characterization of the signal at
different scales and azimuths. The shape of the wavelet determines
its localization in both space and wavenumber domains. We shall
use the more general terminology physical space and spectral space
for the representation of a signal in the two reciprocal domains.

A wavelet must satisfy two conditions: (1) zero mean, to insure a
wave-like behaviour and (2) compact support in both physical and
spectral spaces. We construct the family of wavelets by translating
and dilating the argument of a mother wavelet

ψθ
a,b(r) = 1

a
ψ

[
1

a
Cθ (r − b)

]
, (3)

where r is the location in the 2-D physical plane (rx, ry), and Cθ is
the rotation operator

Cθ (r) = [rx cos(θ ) + ry sin(θ ), −rx sin(θ ) + ry cos(θ )], (4)

0 ≤ θ < 2π.

There are two classes of wavelet transform: (1) orthogonal and
(2) non-orthogonal. The orthogonal wavelet transform allows the
decomposition of a signal into a set of orthogonal basis functions,
like a Fourier transform, and its validity is restricted to discrete
signals. This property is appealing for the archiving of large data
sets, digital image compression and filtering. It also provides a min-
imally redundant representation of a signal. The orthogonal wavelet
kernels are usually complicated functions to express analytically
in both spaces. The non-orthogonal wavelet transform is defined
at arbitrary wavelengths, a useful property for the spectral analy-
sis of continuous signals. In this study we use a discrete version of
the non-orthogonal continuous wavelet transform (conventionally

termed CWT) Wf of f (r), defined as

W f (a, θ, b) =
∫

R2
f (r)ψθ∗

a,b(r), d2r, (5)

where the asterisk denotes complex conjugation. The kernel func-
tions ψθ

a,b determine the resolution of the wavelet transform in both
physical and spectral spaces. At large scales, the wavelet is spread
in physical space and the wavelet transform picks up information
at long wavelengths. At smaller scales, the wavelet is well localized
in physical space and the wavelet transform picks up information at
short wavelengths. The wavelet resolution is bounded by the uncer-
tainty principle, which states that physical and spectral localizations
cannot be simultaneously measured with arbitrarily high precision.
Hence the spatial localization of the wavelet comes at the expense
of the spectral localization.

In Fourier domain, the wavelet transform ŴF becomes

ŴF (a, θ, k) = F̂(k)ψ̂∗
a (Cθ (k)), (6)

where k is the two dimensional wavevector (kx, ky), F̂(k) is the 2-D
Fourier transform of f (r) and ψ̂∗

a (Cθ (k)) is the complex conjugate
of the Fourier transform of the wavelet ψ at scale a and azimuth θ .
The multiplication of the spectra in the Fourier domain is faster to
perform than the convolution in eq. (5), and one can take advantage
of the fast Fourier transform (FFT) algorithm for transforming back
and forth from space to Fourier domain.

2.2 Wavelets

The choice of a wavelet depends on several factors, including the
need for a real or complex valued function, shape and resolution
of the desired wavelet, and ultimately the capacity of resolving
anisotropic features in 2-D fields. In our case where we want to
calculate the coherence between two fields, it is important to use a
complex valued wavelet to retrieve the phase information. To com-
pare the coherence with Fourier-derived predictions, it is also natural
to use a wavelet constructed from complex exponentials modulated
by a smoothing function. The Morlet wavelet is thus an ideal can-
didate for this task and exhibits a natural property of directional
selectivity which allows the detection of azimuthal information in
2-D fields.

2.2.1 Morlet wavelet

In 2-D, the Morlet wavelet is an oscillating function of wavevector
k0 = (k0

x , k0
y) modulated by a Gaussian smoothing function

ψ(r) = e−ik0·re− 1
2 |Ar|2 , (7)

where |k0| ≈ 5.336 in order to satisfy the zero mean condition,
and A is the 2 × 2 anisotropic diagonal matrix where the first non-
zero element is ε, with 0 < ε ≤ 1, and the second element is 1
(Antoine et al. 1993; Kumar 1995; Antoine et al. 1996). By setting
ε = 1, the Morlet wavelet has an isotropic envelope in the spectral
space. This property will be convenient in the construction of the
fan wavelet to be described later. We refer to this wavelet as the
isotropic Morlet wavelet. In the spectral space the Morlet wavelet is
a Gaussian bandpass filter centred on the wavevector k0

ψ̂(k) = e− 1
2 |k−k0|2 . (8)

The Morlet wavelet in the spectral space is almost entirely sup-
ported in the positive domain, subject to the restriction |k | > |k0|.
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The wavevector k0 can be arbitrarily chosen and will filter informa-
tion in the direction given by

tan(θ0) = k0
y

k0
x

.

In Fourier domain, the peak representation of the Morlet wavelet
is at wavenumber

kF = |k0|
a

, (9)

which is considered as the equivalent Fourier wavenumber.

2.2.2 ‘Fan’ wavelet

In the context of finding a suitable isotropic wavelet that can be inter-
preted as a Fourier spectrum, Kirby (2005) showed that a controlled
superposition of directionally adjacent isotropic Morlet wavelets,
dubbed the ‘fan’ wavelet because of its shape in spectral space, pro-
vided better results than any of the commonly used wavelets (DoG
(Derivative of Gaussian), Paul, Perrier and Poisson). The fan wavelet
is expressed as

ψ̂F (k) = 1

Nθ

Nθ∑
i=1

ψ̂[Cθi (k)]. (10)

The geometry of the fan wavelet is achieved by averaging adjacent
isotropic Morlet wavelets separated by an azimuthal sampling of
δθ = 2

√−2 ln p/|k0|, where the optimal value of p was found to
be 0.75 (Kirby 2005). The fan wavelet is obtained by setting a single
range of azimuthal increments N θ = int(�θ/δθ ), where �θ is the
azimuthal extent. For �θ = π , the fan wavelet includes 11 adjacent
Morlet wavelets and is quasi-isotropic. For smaller values of �θ ,
the fan wavelet is anisotropic.

2.3 Cross-spectral analysis

Eq. (5) is used to compute a wavelet scalogram, which represents
the energy density of a function f (r) at scale a, location b and dire-
ction θ

S f f (a, θ, b) = |W f (a, θ, b)|2. (11)

The wavelet cross-scalogram of any arbitrary 2-D functions f and
g is calculated in the same way as (11)

S f g(a, θ, b) = W f (a, θ, b) · W ∗
g (a, θ, b). (12)

Eqs (11) and (12) are combined to estimate the local wavelet
complex admittance

Q f g(a, θ, b) = S f g(a, θ, b)

S f f (a, θ, b)
(13)

and the complex impedance Q ′
f g(a, θ , b) = Qg f (a, θ , b). The local

wavelet coherence is the product of admittance with impedance:

γ 2
f g(a, θ, b) = |S f g(a, θ, b)|2

S f f (a, θ, b)Sgg(a, θ, b)
. (14)

At this point, if no averaging is performed, the coherence is 1 at
all scales and azimuths. In the wavelet implementation using the fan
wavelet, the averaging is done over distinct azimuths

γ 2
f g(a, θ, b) =

〈∣∣S f g(a, θ, b)
∣∣〉2

θ ′〈
S f f (a, θ, b)

〉
θ ′

〈
Sgg(a, θ, b)

〉
θ ′

, (15)

where θ ′ = θ ±�θ . Details on the azimuthal averaging are discussed
in the next section. One can also calculate a global estimate of
the coherence from the wavelet scalograms by averaging the local
wavelet spectra over the spatial coordinates b at each scale and
azimuth.

γ̄ 2
f g(a, θ ) =

∣∣〈S f g(a, θ, b)
〉
b

∣∣2

〈
S f f (a, θ, b)

〉
b

〈
Sgg(a, θ, b)

〉
b

. (16)

2.4 Algorithm

We follow the standard practice and calculate the convolution in
Fourier domain using the fast Fourier transform (FFT) algorithm to
transform back and forth from space to spectral domains. We now
describe in more details the steps involved in the calculation of the
cross-spectral quantities (eqs 11 to 14).

We start by Fourier transforming the Bouguer and topography
fields. In the second step, we define (1) the range of scales to be
computed, depending on the size of the data window and the size
of the grid, and (2) the discrete angle increments for the azimuthal
selectivity of the fan wavelet (≈16.3◦). Second we loop over all
scales and azimuths up to 180◦

(i) Calculate the daughter wavelet in spectral space for this set
of parameters.

(ii) Compute the Fourier representation of the wavelet transform
by multiplying the daughter wavelet with the transformed fields
(eq. 6).

(iii) Inverse Fourier transform the result to obtain the local
wavelet transform in physical space (eq. 5).

(iv) Calculate the scalograms and cross-scalogram (eqs 11 and
12).

(v) Average the scalograms and cross- scalogram depending on
the type of analysis; and finally.

(vi) Combine the resulting quantities to obtain the local admit-
tance and coherence (eqs 13 and 14).

Step (v) is the key procedure in the algorithm, as it controls the az-
imuthal resolution and the variance of the coherence. In the isotropic
case, the averaging is performed over individual wavelet spectra cal-
culated from a range of Morlet wavelets spanning 180◦ in the spec-
tral space. By averaging the local spectra over a restricted range of
azimuths, the anisotropic coherence is obtained at the azimuth corre-
sponding to the middling value of the range. The width of the range
controls the variance by virtue of the number of selected spectra in
the averaging, while the overlap between adjacent ranges controls
the azimuthal resolution. Note that no averaging in wavenumber (or
scale) is performed. We follow Kirby & Swain (2006) and set the
azimuthal range to 90◦ in the anisotropic analysis. The azimuthal
distance between overlapping ranges is set to 5◦, which is smaller
than the azimuthal separation between adjacent Morlet wavelets.
This introduces some redundancy and increases computational time
but improves upon the azimuthal resolution in the inversion.

2.5 Limitations

While the use of the FFT to compute the convolution in the spectral
domain speeds up the calculations, it can also bias the scalograms at
the larger scales. Because we are dealing with finite size 2-D fields,
errors will occur at the edges of the grids, as the FFT assumes that the
data are periodic. This means that signals at one edge of the field will
get wrapped around the other end (Torrence & Compo 1998). This
effect is more pronounced at larger scales as the influence of each
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wavelet extends further in space. There is thus a cone of influence
beyond which edge effects become important. In our application, it
means that for gridpoints close to any edge of the grid which have
a large transition wavelength in the coherence (large T e), the esti-
mated elastic thickness and the anisotropy are affected by data from
the opposite side of the grid. This effect increases with increasing
contrast in T e at opposing edges of the study area.

There exists many pre-processing techniques aimed at removing
the edge effect in spectral analysis. The most obvious one that does
not require any data manipulation is to select a data window that is
much wider than the region of interest with the smallest grid sample
possible. This procedure is ideal but not applicable in all cases as
the data availability and resolution are usually limited. Another pos-
sibility is to mirror the edges of the window, calculate the spectra
on the larger data set, and retain only the initial quadrant in the final
analysis. However it is well known that this procedure introduces
artificially long wavelengths and can greatly affect the value of T e

(Lowry & Smith 1994; Ojeda & Whitman 2002; Swain & Kirby
2006). For example, small wavelength coherent signals at one edge
of the initial data window will be mapped at longer wavelengths
in the enlarged grid due to the mirroring, and the coherence curve
will be shifted accordingly, resulting in the elastic thickness being
over-estimated at the edges. The anisotropic coherence might suffer
even more from the mirroring since the weak direction will also be
mirrored at gridpoints close to any edge of the data window.

The preferred method used in this study pads the 2-D fields with
zeros to the next power of 2 in each direction, applies the FFT on the
larger grid, and retains only the relevant quadrant in the computation
of the scalograms. Spectral leakage due to discontinuities in the data
are dealt with by the application of a Hanning taper to all sides of the
initial data set. This procedure down-weights the wavelet spectral
power at the edges, but the phase of the cross-spectra is confidently
recovered and no artificial information is introduced in the data.

2.6 Isotropic coherence inversion

In the inversion step, T e is estimated by minimizing the misfit be-
tween the observed coherence and predictions from an ideal elastic
lithosphere, provided a certain amount of assumptions about the
loading scheme, depth to the surface of compensation, and the elas-
tic parameters. One approach compares the observed coherence with
theoretical (analytical) curves, that is, with the solution of the elas-
tic plate for an infinitely large window and a uniform load ratio
f (Kirby & Swain 2004). However, as outlined by Pérez-Gussinyé
et al. (2004) and Simons et al. (2000), there is a bias in the spectral
estimates of the coherence. The comparison of biased estimates with
theoretical (unbiased) predictions results in an inaccurate estimate
for the elastic thickness. The wavelet transform does not escape this
problem because the resolution in physical and spectral spaces is
bounded by the uncertainty principle. Wavelets are bandpass func-
tions, hence the transform at a single scale will include informa-
tion from neighbouring wavenumbers. As the scales increase, the
wavelets are more localized in the spectral space and the transform
is closer to the Fourier spectrum, at the cost of spatial resolution.
At wavenumbers near the transition from low to high coherence,
the estimated coherence is biased towards higher values because the
contribution to the coherence of the wavelet at neighbouring lower
wavenumbers will smear out the long wavelength information. The
fractal nature of the topography and Bouguer gravity fields will also
put more weight on the long wavelengths and together these effects
will shift the transition wavelength toward lower values, resulting

in the elastic thickness being underestimated. The assumption of
uniform load ratio f is also a crude approximation because it is a
wavenumber dependent parameter calculated from the data that af-
fects the shape of the coherence, albeit in a weaker manner than T e

(Forsyth 1985).
Pérez-Gussinyé et al. (2004) suggest to use the same spectral

estimator for calculating the predicted and the observed coherence.
In this case, the same biases affect both quantities and their effects
balance each other in the inversion for the elastic thickness. For the
wavelet spectral estimator, the Fourier-based deconvolution method
of Forsyth (1985) can be adapted to fit the purpose of T e calculation
by assuming that adjacent local spectra are decoupled, as was done
by Stark et al. (2003) and Swain & Kirby (2006).

The method proceeds as follows: (1) using the wavelet transforms
of the Bouguer gravity WB and topography WH at each scale and
azimuth, we select a particular spatial point and solve for the initial
surface WHi and internal WBi loads for a given value of T e; (2) the
initial loads are decomposed into the four components of the surface
(WHt and WBt ) and subsurface (WHb and WBb ) deflection that they
cause; and (3) the auto and cross-spectra are averaged and combined
to form the local predicted coherence, assuming that the initial loads
are statistically uncorrelated:

γ 2
p (kF ) =

∣∣∣〈WHt W
∗
Bt

+ WHb W ∗
Bb

〉
θ

∣∣∣2

(〈
WHt W

∗
Ht

〉
θ
+ 〈

WHb W ∗
Hb

〉
θ

) (〈
WBt W

∗
Bt

〉
θ
+ 〈

WBb W ∗
Bb

〉
θ

) ,

(17)

where the brackets indicate averaging overall azimuths. Thus by
minimizing the misfit between the observed and predicted coher-
ence, we are also able to calculate the local subsurface to surface
loading ratio f , which is given by

f 2 = (ρm − ρc)2

ρ2
c

〈
WBi W

∗
Bi

〉
θ〈

WHi W
∗
Hi

〉
θ

, (18)

where WBi and WHi are the components of the best fit solution, and
ρ c and ρm are the crust and mantle density, respectively.

Some authors have recently suggested to use the transition wave-
length from low to high coherence (typically a coherence of 0.5)
as a proxy for the mechanical strength, because it does not require
making many uncertain assumptions as those needed for inverting
T e, such as the depth and magnitude of the density contrast (Simons
& van der Hilst 2002; Rajesh & Mishra 2004). The inversion of the
observed coherence from synthetic data using theoretical curves
should then be equivalent to calculating the transition wavelength
since the density structure and the uniform load ratio are known. It is
expected that both inversion methods should yield similar results on
synthetic data when the transition wavelength is much smaller than
the window size. At longer transition wavelengths (higher T e) the
limited wavelet resolution introduces bias in the estimated coher-
ence near the transition wavelength and the Fourier deconvolution
method should be more accurate than the inversion based on theo-
retical solutions.

In the inversion, the misfit is calculated by the L2 norm weighted
by the variance of the observed coherence. In the next section we
compare the ability of the different inversion methods to recover T e

through the application of the wavelet method on synthetic grids.

2.7 Anisotropic coherence inversion

The full inversion of the 2-D coherence for anisotropic T e necessi-
tates the modelling of the lithosphere as a thin plate with anisotropic
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mechanical properties. Although this method has already been de-
veloped and used in isostatic studies (Swain & Kirby 2003b; Kirby
& Swain 2006), its application in a laterally varying lithosphere re-
mains ambiguous because of the complexity observed in the 2-D
coherence. The method compares the 2-D wavelet coherence with
theoretical solutions to the equation of the flexure of an orthotropic
elastic plate given a large number of assumptions, such as intrin-
sic orthotropy, and isotropy in the subsurface to surface load ratio,
which is kept constant at all wavelengths. The discussion about the
bias in the estimates of the wavelet coherence and how it affects the
recovery of T e also applies in this case. These arguments, coupled
with the observed complexity in the observed wavelet coherence,
render the interpretation in terms of the elastic thickness in two per-
pendicular directions debatable. However the response of the litho-
sphere should in theory be close to that of a thin elastic plate, and
the orthotropic elastic plate model has the advantage of determining
physical estimates of the anisotropy, whether the assumptions are
valid or not. We thus choose to invert the 2-D coherence using the
theoretical solutions as in Kirby & Swain (2006). Relative compar-
isons can be made between the recovered isotropic and anisotropic
elastic thicknesses, while the estimates of the weak direction are
regarded as absolute.

In the 2-D coherence inversion, the misfit is weighted by the
inverse of wavenumber to down-weight the contribution of short
wavelength coherent features that are not associated with the re-
sponse of an elastic plate (Kirby & Swain 2006).

3 N U M E R I C A L E X A M P L E S

Synthetic gravity and topography were generated as two non- corre-
lated fractal fields with a spectral slope of β = −3 representing the
initial surface and subsurface loads that are applied to a thin elastic
plate with known elastic parameters and density structure (Macario
et al. 1995). The elastic plate is assumed to consist of a crust of
uniform thickness and density. The subsurface load is placed at the
Moho 40 km deep, with a 500 kg m−3 density contrast at the in-
terface and a crustal density of 2670 kg m−3. The amplitudes of
the loads were scaled by imposing a constant ratio f = 1 between
surface and subsurface loads. The flexure produced by both loads
was calculated by solving the thin elastic plate equilibrium equa-
tion in the spectral domain for uniform rigidity plates and with a
finite-difference solution in the spatial domain for the case with a
varying rigidity pattern.

3.1 Uniform rigidity pattern

We first verified the robustness of the wavelet transform method
on synthetic data with spatially uniform flexural rigidity. We treat
the isotropic and anisotropic cases independently and compare the
ability of the wavelet transform and the different inversion methods
in recovering the input T e. In all examples, synthetic data were
generated on 256 × 256 grids with a sampling interval of 8 km. The
spectra were calculated on a smaller subgrid (128 × 128) to avoid
using periodic data sets.

3.1.1 Isotropic plate

We first tested the homogeneous isotropic plate. Applying the pro-
cedure outlined above, we generated 100 data sets for each isotropic
elastic plate thickness of 10, 20, 40 and 80 km. Various tests were
performed on these synthetic grids. First we compared the global
wavelet coherence with theoretical predictions to evaluate the abil-
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Figure 1. Results from synthetic data with isotropic and spatially uniform
T e for four different values of T e: (a and e) 10 km; (b and f) 20 km; (c and
g) 40 km and (d and h) 80 km. The observed global coherence is calculated
using the isotropic fan wavelet. (a–h) distributions of recovered T e from the
inversion of the coherence using the theoretical (a–d), and the deconvolution
solutions (e–h).

ity of the wavelet transform to reproduce the Fourier coherence. The
theoretical curves are calculated from eq. (10) of Pérez-Gussinyé
et al. (2004), corrected for the numerator (variable φ not squared).
We also compared the global wavelet coherence with the predicted
global wavelet coherence as described in Section 2.6. The inversion
for the best fitting elastic thickness is effectively done for each of the
100 runs and each input value of T e, a procedure that is now routinely
carried out in studies of the recovery of T e with spectral methods
(Macario et al. 1995; Swain & Kirby 2003a; Pérez-Gussinyé et al.
2004; Audet & Mareschal 2004a). In Fig. 1 the histograms show
the distributions, mean values and standard deviations for each in-
put T e for both inversion methods. The relative difference between
the observed and predicted solutions and the standard deviations in-
crease when T e is >40 km. When the observed wavelet coherence
is compared with the predicted wavelet coherence rather than the
theoretical function, the solutions are closer to the input values ex-
cept for the lowest T e, where the estimates are similar. This could be
because the theoretical solutions are as good as the deconvolution
solutions for low T e’s, where the transition wavelength is much less
than the area dimensions, as argued before.

We also calculated the local coherence at each spatial point for
a single synthetic data set. Fig. 2 shows example results with both
inversion methods for input T e = 20 km: (a–b) maps of the T e

variations; (c) observed global isotropic coherence curve and the
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Figure 2. Example results on synthetic data with uniform T e = 20 km. (a and b) maps of the T e variations calculated on a coarser grid (1/16 of total grid
points): (a) is obtained with the inversion from theoretical curves; (b) is inverted from the predicted coherences and (c) observed (filled circles), theoretical
(dotted line), and predicted (solid line) global coherence curves.

best-fitting predicted and theoretical coherence. The T e recovered
from the global wavelet coherence is 19.0 km when T e is inverted
from the theoretical curves, and the mean and standard deviations of
the local estimates on the whole grid is 19.5 ± 3.7 km; estimates for
T e are, respectively, 22.0 km for the global coherence, and 24.5 ±
4.1 km for the mean and standard deviations when T e is inverted
from the predicted coherence. The dominant wavelength in the spa-
tial variations of the recovered T e is about 500 km, similar to what
was found by Kirby & Swain (2004). With controlled synthetic data,
the spatial variations in the estimated T e are on the order of 15 per
cent the input value.

3.1.2 Anisotropic plate

Anisotropy in the flexural rigidity parameters Dx and Dy, where x and
y are two perpendicular directions in a Cartesian coordinate system,
produces a decrease in the transition wavelength in the direction
where the rigidity is lowest. The rigidities are converted to equivalent
elastic thicknesses in two perpendicular directions using constant
and isotropic Poisson’s ratio and Young’s modulus. Following Swain
& Kirby (2003b) method for the generation of synthetic gravity and
topography with homogeneous anisotropic elastic thickness, and
using the same procedure as before we generated synthetic data sets
with uniform elastic thickness pairs of (Tex, Tey, φ) = (5, 10, 0),
(20, 10, 0), (50, 10, 0) km, where φ is the weak direction calculated
anticlockwise from the x-axis.

The global wavelet anisotropic coherence inversion gives
(Tex, Tey, φ) = (5, 10, 0), (18, 10, 5), (40, 12, 0). Fig. 3 shows the
wavelet coherence at each scale and azimuth and the best fit theo-
retical coherence at a randomly chosen point on the grid. The local
coherence inversion results are sensibly the same as for the global
results and show that we can recover the direction of highest co-
herence with a good accuracy (±10◦). For large T e contrasts, the
recovered T e values are inaccurate but the coherence anisotropy is
well marked (Fig. 3c and f). We must also keep in mind that the
inversion with theoretical solutions underestimates T e, particularly
when T e > 40 km for this size of grid.

3.2 Spatially varying rigidity pattern

The motivation for choosing a wavelet method over traditional spec-
tral methods is an improved spatial resolution for recovering vari-
ations in T e. To address the issue of resolution, we calculated the
local wavelet coherence on synthetic Bouguer and topography grids
with a T e structure consisting of a circular core with diameter of

700 km and T e = 50 km, with radially decreasing values towards
the edges of the window to T e = 0 km (Pérez-Gussinyé et al. 2004).
The data were generated with a uniform load ratio f = 1, and the
depth to Moho = 40 km. The study area size is 2048 × 2048 km2,
with a sampling interval of 8 km. In this case the whole grid is re-
tained in the calculations and the zero-padding/tapering procedure
is not applied since the data are periodic in both directions.

The results in Fig. 4 show the recovered T e pattern obtained
with both inversion methods along with the input structure. Both
inversion methods show a roughly circular T e structure with values
increasing from ≈0 km at the edges to ≈50 km towards the centre.
This figure should be compared with fig. 4(a)–(h) of Pérez-Gussinyé
et al. (2004). While their coherence results show a similar pattern
when they use a 800 × 800 km2 window, the resolution is limited
to a 1200 × 1200 km2 square region at the centre of the grid. The
wavelet method, on the other hand, is able to recover the low values
at the edges with good accuracy. However this might not be the case
for different T e models as discussed in Section 2.5.

The rms errors calculated on both grids are 9.1 and 8.4, respec-
tively, for (a) and (b). The deconvolution method also produces
higher estimates of T e in the central region of the study area. The
larger rms error than in Kirby & Swain (2004) and Stark et al.
(2003) can be partly explained by the sharpness in the structure of
our model, and by the wide range of input T e values. This rather
extreme example illustrates well the limits of spectral methods in
recovering spatial variations in T e: structures with high values of T e

are well estimated only if their wavelength is longer than the transi-
tion wavelength from low to high coherence. When this condition is
not verified, the spatial variations of T e represent a weighted average
of the true distribution.

In light of these results on synthetic data, it is clear that one
must be careful when interpreting maps of T e values, since both
the processing and the inversion steps rely on a large number of
assumptions, and even with known input parameters the inversion
is flawed. The accuracy of recovered T e values strongly depends on
the size of the study area compared to the transition wavelength.

4 A P P L I C AT I O N T O T H E C A N A D I A N
S H I E L D

4.1 Previous studies

The Canadian Shield is an excellent target for the application of the
wavelet method to the study of the lateral and azimuthal variations
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Figure 3. Results of the wavelet method using the directional Morlet wavelet on synthetic data with spatially uniform and anisotropic T e. The azimuth is
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Figure 4. Recovered T e pattern from the input model shown in (c). (a) Is obtained by inverting the local coherence with theoretical curves. Estimates of (b)
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of the coherence between Bouguer gravity and topography for a
number of reasons. The eastern Shield comprises several Precam-
brian provinces around the Archean Superior craton; the different
provinces of the Shield were welded together during the Protero-
zoic during orogenic events that are expressed in the topography
and the gravity fields. The structure of the crust and mantle are well
documented only in the southern part of the Shield in the regions
where LITHOPROBE conducted active seismic studies on selected
transects (e.g. Winardhi & Mereu 1997). Seismic and electrical con-
ductivity anisotropies have been reported in some regions, but large
parts of the Shield are not explored. In the southern part of the
Shield, lower crustal and mantle temperatures are well constrained
by heat flow studies (Mareschal & Jaupart 2004). Some constraints
on mantle temperatures have been added by inversion of seismic
velocity profiles (Shapiro & Ritzwoller 2004; Shapiro et al. 2004).

Recent T e studies in the Canadian Shield have shown that it varies
over relatively short distances, but the correlation between T e and the
heat flow or geology is weak (Wang & Mareschal 1999; Flück et al.
2003; Audet & Mareschal 2004a). All those studies used the max-
imum entropy spectral estimator (MEM) to compute the isotropic
coherence because it performs well with synthetic data. Although
the results of the T e studies are consistent with each other, there
is still questions concerning the eastern part of the Shield because
the effect of anisotropy in the coherence was neglected. Audet &
Mareschal (2004b) used the multitaper method (MTM) to show
strong anisotropy in the coherence at intermediate wavelengths and
a sharp decrease of the coherence at long wavelengths which does
not correspond to the response of a thin elastic plate. This flexu-
ral anisotropy is strongly correlated with surface geology and with
seismic and electrical anisotropies in the lithospheric mantle.

4.2 Tectonic setting

The study area extends from west of Hudson Bay to the sea of
Labrador and the Atlantic Ocean to the east (Fig. 5). The area cov-
ers most of the exposed Canadian Shield with the exception of the
Archean Slave Province and the Proterozoic Wopmay Orogen to
the northwest where the gravity data are very sparse. In the eastern
Shield, the Archean (2.5 Ga) Superior (SUP) and Nain Provinces
(NA) are separated by the southeastern Churchill Province (SECP)
which consists of a core zone of reworked Archean rocks sand-
wiched between the New Quebec and the Torngat orogens (Wardle
et al. 2002). The Nain Province was part of the North Atlantic cra-
ton from which it was separated by the opening of the Labrador Sea
at 100 Ma. In the southeastern Churchill Province, the main tec-
tonic features and shear zones are NE–SW to N–S oriented. In the
northeastern part of the Superior Province, most of the faults trend
NW-SE.

South of the Superior Province, the Grenville Province (GRE)
is a major Mid Proterozoic (1.1 Ga) zone of collision extending
from northern Mexico to Labrador. It is separated by the Atlantic
ocean from its European counterpart in Scandinavia. The Grenville
Front, separating the Grenville Province from the older structural
provinces to the northwest, is a sharp northeast trending tectonic
break that is well defined on the regional gravity and magnetic maps.
The Grenville Province in Canada consists of an autochthonous, and
of several allochthonous belts that were emplaced during a series
of tectonic events culminating at 1.1 Ga. On the seismic reflection
profiles conducted by LITHOPROBE, reflectors that can be iden-
tified as the Archean basement extend far south into the Grenville
Province. The Canadian Shield disappears beneath the Appalachi-

Figure 5. Gravity map of eastern Canada with topography superposed as
shaded relief. The main geological Provinces are also shown bounded by
red lines. Provinces are: Archean: HR—Hearne and Rae; SUP—Superior;
NA—Nain; Proterozoic: THO–Trans Hudson Orogen; SECP—Southeastern
Churchill; GRV—Grenville; Palaeozoic: APP—Appalachians.

ans (APP) which were thrust over the Grenville basement during the
Palaeozoic.

To the west, the Superior Province is separated from the Archean
Hearne and Rae (HR) cratons by the Trans-Hudson Orogen (THO), a
major Proterozoic (1.8 Ga) collision belt that extends from the north-
ern tip of Quebec, across Hudson Bay and Manitoba, Saskatchewan
into the Dakotas. The THO is exposed only in northern Manitoba
and Saskatchewan. It is covered by the sediments of the Williston
basin to the south and the Hudson Bay basin to the north.

4.3 Topography and gravity data

The Bouguer gravity data were obtained from the Geological Survey
of Canada. Data points are very unevenly distributed with an average
distance between points ≈10 km. We have used the free-air gravity
data derived from satellite altimetry of Smith & Sandwell (1995) to
complete the grids over the Ungava Bay where no standard gravity
measurements are available. The spatial resolution of this data set is
≈20 km. The free-air gravity data were converted into Bouguer data
using the bathymetry and a constant rock density (2640 kg m−3). The
topography–bathymetry data come from the 2’ grid digital elevation
model of Smith & Sandwell (1997). The data set was projected on a
transverse Mercator grid with 10 km sampling distance over an area
of 3390 × 2770 km2 (Fig. 5). The wavelet coherence was calculated
at every point on the same grid with a sampling distance of 10 km.

5 R E S U LT S A N D I N T E R P R E TAT I O N

5.1 Variations in T e

In previous studies, we have determined the variations in elastic
thickness in the Canadian Shield with the maximum entropy method
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Figure 6. T e map of eastern Canada obtained with the wavelet method.

(Audet & Mareschal 2004a) and the multitaper method (Audet &
Mareschal 2004b). Fig. 6 shows the wavelet results using the de-
convolution method of Section 2.6. The density of the crust and
mantle are taken to be 2670 and 3200 kg m−3, respectively, and the
depth to the Moho is given by the LITH5.0 crustal model of Perry
et al. (2002). The results are generally consistent with those in the
previous studies. The T e values obtained with the wavelet method
ranging between 30 to 140 km are in the same range than those
obtained with the MEM (40–120 km) and show similar trends. T e is
generally high (>90 km) throughout eastern Canada. Lower values
(40–80 km) are found east of the Grenville Province, and in the east-
ern part of the Appalachians. High values are found in the Hudson
Bay and in the Hearne and Rae Provinces, consistent with the pre-
vious studies. While T e was poorly estimated by both the maxi-
mum entropy and multitaper methods in the northern Appalachians
(Audet & Mareschal 2004a,b), the wavelet method yields values
ranging from 50 to 80 km. This is consistent with high T e values
in the US Appalachians (Armstrong & Watts 2001). On a smaller
scale, there are very low T e ‘bull’s eyes’ in an otherwise very strong
lithosphere in the northern Shield, which are due to short wavelength
coherent features mapped as T e.

The region of low T e near the Great Lakes is the most major
discrepancy between this and previous studies. Other differences
include a ridge of lower T e (50–70 km) along 270E from 50–65N,
and similar values in much of northern Quebec and Newfoundland
found by the MEM and MTM, whereas the wavelet results show
values >100 km throughout this region. We note that the MEM and
MTM results are more similar to one another than to the wavelet
results. This could be due to the fact that the MEM and MTM pro-
duce a single estimate of T e within a fixed window size (1024 ×
1024 km2), which is moved over the study area with some overlap-
ping. As stated previously, T e is well estimated only if the transition
wavelength is much shorter than the size of the study area. The ridge
of low T e values in the Hudson Bay basin found with the MEM and
MTM could be underestimated because the transition wavelength
(≈1000 km) is on the order of the window size. The annular band
averaging performed in the MEM and MTM can also decrease the

maximum resolvable wavelength and bias the results for the largest
values (Swain & Kirby 2003b). Hence the MEM and MTM might
capture the shorter wavelength information of the coherence in these
regions. In the Great Lakes region the situation is reversed, and the
wavelet estimates are lower than the MEM and MTM results.

One should attach no importance on the elastic thickness values
over the ocean since our simple flexure model does not consider
the oceanic crustal structure nor does it take the load of water into
account. These oceanic T e results are also affected by the fact that
the bathymetry is derived from the free-air gravity data assuming a
certain value of T e (Smith & Sandwell 1997).

5.2 Anisotropy

Anisotropy in the coherence typically appears at different wave-
length regimes (Simons & van der Hilst 2003). The long wave-
length anisotropy reflects the deep lithospheric structure and can
be inverted to reveal the elastic thickness in two perpendicular di-
rections. Short wavelength anisotropy is more likely to be related to
isostatic adjustment along faults and involves the shallow part of the
lithosphere. The approach we have taken here allows the identifica-
tion of the short wavelength anisotropy by calculating the average
of the observed coherence for all wavelengths shorter than the tran-
sition wavelength of the best fit solution in each azimuth. However
only a few sparsely distributed points, mostly over the ocean, are sta-
tistically significant, that is, their value is within the 1σ uncertainty
apart from the azimuthal average, and we choose not to interpret
them. Also, because we invert the 2-D coherence with theoretical
solutions, we prefer to discuss the relative variations in the mag-
nitude of the anisotropic parameter, (T max − T min)/T max, and the
variations of the weak direction (Kirby & Swain 2006), subject to
an angular uncertainty of ±10◦.

Fig. 7 shows the results in eastern Canada. Anisotropy is found
almost throughout the study area and it varies in magnitude and
direction within each province or subprovince. The anisotropic
direction is consistent with the results obtained with the MTM
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Figure 7. Map of the mechanical anisotropy of the elastic lithosphere in
eastern Canada. The direction of the bars is that of the minimum strength
(i.e. maximum coherence), the length is ∝ (T max − T min)/T max. The fast
direction of seismic SKS anisotropy is also plotted as coloured bars. Red bars
are from Rondenay et al. (2000), green bars are from Eaton et al. (2004),
and purple bars are from Kay et al. (1999).
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(Audet & Mareschal 2004b) except for a few regions. In partic-
ular both studies show that the weak axis is quasi-perpendicular to
the main tectonic breaks: the Grenville Front and the main belts
of the Grenville Province, and the tectonic boundaries between the
Southeastern Churchill Province and the rest of the Shield. Both
studies show the absence of anisotropy near Hudson Bay, and weak
anisotropy in the central eastern Superior Province. There are two
important differences between this study and the one by Audet &
Mareschal (2004b): the E–W direction of the weak axis south of
Hudson Bay where the multitaper method found a N-S weak direc-
tion; and to the north of the study area where no anisotropy was
detected by the multitaper method. The wavelet anisotropy south of
Hudson Bay is inconsistent with the previous interpretation that the
weak direction is perpendicular to the main belts of the Superior
Province and to the fast seismic axis (Kay et al. 1999). It is pos-
sible that, in this region, the wavelet coherence detects anisotropy
at a longer wavelength regime than the MTM. Concerning Hudson
Bay, we must note that the elastic thickness is very high and poorly
resolved with the MTM because of the size of the window. Another
critical point is that the inversion of the elastic thickness does not
resolve differences in T e when it is >80 km. In other words, for val-
ues of T e > 80 km, the difference between T max and T min becomes
meaningless.

In the Appalachians, the direction of the weak axis suggested by
the wavelet method is fairly consistent with the cross-strike direction
obtained with the MTM. For the Appalachians, the MTM failed to
determine the elastic thickness because the coherence decreases at
long wavelengths. However, the MTM detected increased coherence
in the cross-strike direction at short wavelengths suggesting that the
weak axis is perpendicular to the strike of the Appalachians.

In the Grenville, the seismic fast directions vary from ENE to
the north of the station array to ESE to the south (Rondenay et al.
2000). The northern results are interpreted to reflect E–W regional
shear zone of Archean age, and the fast directions perpendicular to
the main belts of the Grenville to the south suggest that the mantle
fabric may have recorded the last extensional event. Our results
are more sensitive to the crustal and upper-mantle fabric and are
more consistent with the former interpretation, suggesting that the
lithosphere is weaker in the direction perpendicular to the structure
(Barruol et al. 1997).

We verified that our results do not change when the window is
moved in any direction. The wavelet method is more time consuming
than the MTM for determining the anisotropy and does not have
the same azimuthal resolution as the MTM. It has the advantage
that it yields an elastic thickness in regions where the MTM fails
(Appalachians). Clearly there are good reasons to use and compare
both methods whenever possible.

6 C O N C L U S I O N

We have tested and used a wavelet-based method to determine the
coherence between Bouguer gravity and topography and to obtain
estimates of the effective elastic thickness of the lithosphere and its
anisotropy. Tests with synthetic data show that effective elastic thick-
ness can be estimated within ±15 per cent with the wavelet coher-
ence. Tests also show that the wavelet method can detect anisotropy
and determine the directional variations in effective elastic thick-
ness.

The wavelet method was applied to study variations in elastic
thickness in the southeastern Canadian Shield and the results were
compared with those of previous studies of T e based on different

spectral estimates of the coherence. Within the relatively large errors
associated with the inversion of T e, the results of different studies
consistently show that elastic thickness is high (>90 km) over most
of the eastern Canadian Shield. The present study also confirms that
T e is high in the Appalachians. Regional trends also appear to be
largely consistent between studies.

The wavelet based method shows anisotropy almost everywhere
including Hudson Bay where the multitaper method did not detect
any anisotropy and where there is no evidence of seismic anisotropy
in the mantle. With the exception of the western Superior Province
(i.e. south of Hudson Bay), the directions of the weak axis obtained
by the wavelet method and those obtained by the multitaper method
are consistent where the MTM detected anisotropy. These directions
are perpendicular to the main tectonic breaks and to that of the fast
seismic axis.
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