Lithosphere-Asthenosphere Interaction Beneath The Western US From the Joint Inversion of Body-wave Travel Times and Surface-waves Phase Velocities

Mathias Obrebski
obrebski@berkeley.edu
Seismological Laboratory, University of California, Berkeley

Richard M Allen
rallen@berkeley.edu
Seismological Laboratory, University of California, Berkeley

Fred Pollitz
fpollitz@usgs.gov
US Geological Survey

Shu-Huei Hung
shung@ntu.edu.tw
National Taiwan University

Submitted to GJI July 10, 2010
Accepted February 15, 2011

Corresponding author: Mathias Obrebski, Email: obrebski@berkeley.edu, Seismological Laboratory, University of California, Berkeley, 215 Mc Cone Hall #4760, Berkeley CA 94720-4760
Summary
The relation between the complex geologic history of the western margin of the North American plate and the processes in the mantle is still not fully documented and understood. Several pre-USArray local seismic studies showed how the characteristics of key geologic features such as the Colorado Plateau and the Yellowstone Snake River Plains are linked to their deep mantle structure. Recent body-wave models based on the deployment of the high density, large aperture USArray have provided far more details on the mantle structure while surface-wave tomography (ballistic waves and noise correlations) informs us on the shallow structure. Here we combine constraints from these two datasets to image and study the link between the geology of the western US, the shallow structure of the Earth and the convective processes in mantle. Our multi-phase model provides new constraints on the extent of the Archean lithosphere imaged as a large, deeply rooted fast body that encompasses the stable Great Plains and a large portion of the Northern and Central Rocky Mountains. Widespread slow anomalies are found in the lower crust and upper mantle, suggesting that low density rocks isostatically sustain part of the high topography of the western US. The Yellowstone anomaly is imaged as a large slow body rising from the lower mantle, intruding the overlying lithosphere and controlling locally the seismicity and the topography. The large E-W extent of the USArray used in this study allows imaging the “slab graveyard”, a sequence of Farallon fragments aligned with the currently subducting Juan de Fuca Slab, north of the Mendocino Triple Junction. The lithospheric root of the Colorado Plateau has apparently been weakened and partly removed through dripping. The distribution of the slower regions around the Colorado Plateau and other rigid blocks follows closely the trend of Cenozoic volcanic fields and ancient lithospheric sutures, suggesting that the later exert a control on the locus of magmato-tectonic activity today.
I. Introduction

The western margin of the North American plate is marked by the active region located mainly on accreted and composite terrains west of the Rocky Mountains Front, which contrasts with the stable and autochthonous cratonic region to the east (Figure 1). The subduction of the Farallon plate that started ~150 Ma has been shaping the Pacific Northwest and modifying its crust and upper mantle. Its remnant, the Juan de Fuca-Gorda slab is still subducting beneath Cascadia. The flattening of the Farallon and its contact with the North American lithosphere (Livacarri et al. 1981; Dumitru et al. 1991; van Hunen et al. 2002; English et al. 2003; Saleeby 2003; DeCelles 2004; O’Driscoll et al. 2009) is thought to have controlled the intense phase of crustal shortening, uplift and lithosphere modification (metasomatism) during the Sevier-Laramide orogenies (140-45Ma). Post-Laramide volcano-tectonic activity is controlled by the removal of the Farallon slab and includes westward propagating arc-like volcanism (the “ignimbrite flare-up”), wide spread uplift all over the western US and gravitational collapse in the Rio Grande Rift and Basin and Range. Neogene to Quaternary volcanic activity is also marked by the outpouring of the Columbia River Basalts (CRB) ~17 Ma and the enigmatic time-progressive sequences of silicic centers in the Yellowstone-Snake River Plains (YSRP) and the High Lava Plains (HLP) (Morgan 1971; Pierce and Morgan 1992; Smith & Braile 1994; Dickinson 1997; Humphreys et al. 2000; Pierce et al. 2000; Christiansen et al. 2002; Camp & Ross 2004; Smith et al. 2009; Obrebski et al. 2010).

The scientific interest generated by the currently active and ancient volcano-tectonic features of the western margin of the North American plate has motivated numerous tomographic studies at the scale of the US (Henstock et al. 1998; van der Lee & Nolet 1997) or with a focus on key features such as the Colorado Plateau (Lee & Grand 1996; Sine et al. 2008), the Southern Sierra Nevada Drip (Zandt et al. 2004) and the Yellowstone hot-spot track (Yuan & Dueker 2005; Waite et al. 2006; Smith et al. 2009). The deployment of the Earthscope USArray network with its ~70 km station spacing has been providing high quality seismic data which has been used to illuminate with high resolution the structure of the mantle beneath the US using body-waves (Roth et al. 2008; Burdick et al. 2008; Sigloch et al. 2008; Tian et al. 2009; Obrebski et al. 2010, Schmandt & Humphreys, 2010).

Nevertheless, with typically ~70km station spacing, the USArray based body-wave models do not have sufficient vertical resolution to map the velocity anomalies located in the shallow lithosphere, which is an issue for the study of the lithosphere-asthenosphere interaction. The simultaneous inversion of constraints from body- and surface-waves allows combination of the complementary properties of these two datasets (Masters et al. 1996; Mégin & Romanowicz 2000). In particular, the addition of constraints from short period surface-waves to a body-wave model can theoretically provide resolution in the shallowest part of the joint model, where the body-waves loose resolution (West et al. 2004). Here we present our regional multiphase shear-wave velocity model for the western US obtained using an approach different to previous efforts. We jointly invert body-waves travelt ime measurements that are an updated version of the dataset used by Obrebski et al. (2010) and the surface-wave phase velocity observations used in the
model of Pollitz & Snoke (2010), to obtained a multi-phase tomographic shear-wave velocity model with good resolution from the surface down into the lower mantle. Our model illuminates the link between the surface geology, the shallow structure of the lithosphere, and the convection in the sub-lithospheric mantle.

II. Data

The station distribution that we used in this study covers all the major magmato-tectonic features of the active western US plus the westernmost part of the stable cratonic US (Figure 2). Data were recorded from January 2006 to January 2010. The resulting total area spanned by our model is bounded by the Canadian and Mexican borders, and extends from the Pacific coast to ~100°W including North and South Dakota, Nebraska, Kansas, Okaloma and Texas. The seismic data used in this study were recorded by the Earthscope Transportable Array, two Earthscope Flexible Array deployments (FACES and Mendocino), the Global Seismograph Network (IRIS/IDA and IRIS/USGS), the Canadian National Seismograph Network (CNSN), GEOSCOPE (GEO), the United States National Seismic Network (USNSN), the ANZA Regional Network (ANZA), the Berkeley Digital Seismograph Network (BDSN), the Cascade Chain Volcano Monitoring Network (CC), the Montana Regional Seismic Network (MRSN), the Northern California Seismic Network (NCSN), the Western Great Basin/Eastern Sierra Nevada Network (WGB/ESN), the Southern California Seismic Network, the University of Oregon Regional Network (UO), the University of Utah Regional Network (UURN), the Pacific Northwest Regional Seismic Network (PNSN), the Yellowstone Wyoming Seismic Network (YWSN) and the Wallowa Network.

Our body-wave dataset contains high quality shear-arrivals. Special attention was paid to select only the highest quality data. Our initial dataset consisted of events with epicentral distances greater than 30 degrees and magnitudes greater or equal to 5.5. After visual inspection, half of these events were discarded. Arrivals were picked manually as part of the waveform-by-waveform quality control and to provide a marker for the cross-correlation that followed. The resulting dataset consists of relative traveltime delays (VanDecar & Crosson 1990). Only cross-correlograms in the 0.02-0.1Hz frequency band where found to have sufficiently high signal-to-noise ratio. Only arrivals that produce a mean correlation coefficient larger or equal to 0.9 are used in the inversion, reducing the total number of data by another ~50%. Our final body-wave shear-arrival dataset includes 40,053 S-wave travel-time measurements from 162 events. Figure 3 shows a map of the events providing body wave observations and illustrates that we use a sampling that is as homogeneous as possible.

The surface wave dataset is an updated version of that used by Pollitz & Snoke (2010). We employ 63,281 seismograms generated by 167 teleseismic events of magnitude >=6.3 and depth <50 km. Complex amplitude spectra of fundamental-mode Rayleigh waves are obtained at selected periods by means of a three-step process. First, for each vertical-component seismogram, a spectrogram is constructed using a moving-window taper designed for the period being considered. Second, complex amplitude spectra are obtained at the group-velocity peaks corresponding to the fundamental mode. Third, quality criteria are applied based on the consistency of the group-velocity peaks as a
function of period, resulting in a large edited dataset. This dataset provides constraints on velocity structure from the crust down to the upper mantle. The phase velocities used in this study were measured at 13 periods (125, 100, 83, 67, 59, 50, 40, 33, 27, 25, 22, 20 and 18s). The sensitivity of the shortest period spans the crust and peaks at 20km, and the longest period has a broad sensitivity kernel roughly centered on 200km (see Figure A2 of Pollitz & Snoke 2010).

III. Method

Tomographic images of the earth’s interior are typically obtained from body-waves or surface-waves used separately. Body-waves, which have intrinsically shorter usable wavelengths than surface-waves, provide comparatively good lateral resolution. When the array used for the study has large aperture, which is the case for USArray, regional body-wave tomography also allows imaging of the velocity structure to significant depth, beyond the transition zone. The main limitation of body-wave tomography is the lack of resolution where raypaths do not cross each other, i.e. at shallow lithospheric depth. In contrast, surface-wave tomography based on fundamental mode observations is not sensitive to the structure bellow ~300km. Nevertheless, when short periods surface-waves are included in the inversion, the resulting model has good constraints on the crustal structure. These complementary properties of the body- and surface-waves in terms of depth sensitivity are combined in this study.

Surface Wave relative phase velocities

Following the methodology of Pollitz & Snoke (2010), phase velocity maps are derived by modeling the surface wavefield recorded by each event as a solution of the two-dimensional wave equation (Helmholtz equation) on a spherical membrane with laterally varying phase velocity. At a given period, this equation is valid in the presence of smooth structural perturbations (Tromp & Dahlen 1993; Friederich et al. 2000), and it is further applicable to the case of relatively rough lateral variations (those which change on the scale of one propagating wavelength) provided that the seismic network is dense enough to account for the interference of multiple plane waves arriving from different directions (Friederich et al. 2000). In an approach related to “2-plane” and multiplane wave tomography (Friederich & Wielandt 1995; Forsyth et al. 1998; Pollitz 1999; Forsyth & Li 2005; Yang & Forsyth 2006; Yang & Ritzwoller 2008), following Pollitz & Snoke (2010) we account for interfering plane waves and local phase velocity structure simultaneously by parameterizing each observed wavefield as a weighted sum of the “HG” solutions of Friederich & Wielandt (1995), which implicitly depend upon the local phase velocity. Using observations restricted essentially to a subset of TA stations about a given locality, we solve simultaneously for the sets of event-HG weighting coefficients plus the local phase velocity using a grid search. This method is simpler than conventional multiplane-wave tomography and, by taking advantage of the large number of events observed by local arrays of stations, results in robust estimates of phase velocity over the entire area spanned by the TA. Typical error in phase velocity measurements at all periods is about 0.02 to 0.05 km/sec (see Figure 8 of Pollitz & Snoke 2010). The lateral resolution is approximately equal to the Gaussian weighting distance used to restrict the observations contributing to phase velocity estimation at a given locality, which is about 50 km (equation 12 of Pollitz & Snoke 2010).
The phase velocity anomalies that are used in the inversion are obtained from the absolute phase velocities by subtracting the phase velocities calculated for a background model. The background model is the WUS reference model of Figure 17 of Pollitz (2008) with 35 km crustal thickness. To take into account the variation in the crust thickness across the station array, the crustal thickness of the background model was varied. To test the robustness of this correction, we used two different crust models, one based on \textit{P}-to-\textit{S} converted phases (Miller \& Levander 2009) and the other derived from a large number of active experiments across the western US (Chulick \& Mooney 2002). The resulting models are very similar and show only slight differences at crustal depths (Figure 4). For the remainder of this paper we will focus on and show the model that uses the crust model of Chulick \& Mooney (2002).

\textbf{Body wave relative travel-times}

In this study we invert the body-wave traveltime dataset with a tomographic technique utilizing finite frequency sensitivity kernels. The banana-doughnut-shaped kernels account for the frequency- and depth-dependent width of the region to which teleseismic body-waves are sensitive and account for wave-front healing effects. Our tomographic method uses paraxial kernel theory to calculate the forward scattering sensitivity kernels for teleseismic arrival times (Dahlen \textit{et al.} 2000; Hung \textit{et al.} 2000; Hung \textit{et al.} 2004). Sensitivity kernels are calculated for the 0.02-0.1 Hz frequency band used in the calculation of the cross-correlograms used to determine the relative shear-wave arrivals. For these teleseismic shear body-waves, the typical kernel width is \( \sim 270 \) km at 600 km depth. This approach is described in more detail in Obrebski \textit{et al.} (2010). The inversion of teleseismic shear-wave constraints using finite-frequency theory provides a tomographic model with resolution of the order of 300 km (see resolution tests in Obrebski \textit{et al.} 2010).

\textbf{Joint Inversion Scheme}

The model domain is a spherical cap centered at 39.5N 112.5W. The domain extends from 127°W to 98°W and 25°N to 54°N, and from the surface to a depth of 1250 km. There are 65 nodes in the horizontal direction and 129 in the vertical direction, yielding a grid spacing of \( \sim 40 \) km in the horizontal direction and \( \sim 10 \) km in the vertical direction. The model box is larger than the region in which we expect to have good resolution. By using relative arrival time measurements for the body-waves we assume that the sensitivities of all arrivals for a given earthquake are the same outside the model box. Using a larger model box causes any anomalies outside the model region to be accommodated in the unresolved outer region of the model space preventing pollution of the primary target region beneath the seismic network. The finiteness of the sensitivity kernels means there is no need for smoothing. Our inversion does require damping and uses LSQR to iterate to a final model.

The question of how to weight the body-wave and surface-wave datasets is crucial. The two datasets act as constraints on the same model, i.e. the distribution of velocities anomalies \( \delta v_i, i=1, \ldots, M \) at each one of the \( M \) nodes of the grid. Nevertheless, these datasets have intrinsically different properties. On the one hand, the body wave dataset is
composed of a large number of relative travel times \( \delta t_j, j=1,...,N_b \) corresponding to station-event pairs. On the other hand, the surface wave dataset is made of a smaller set of relative phase velocities \( \delta \phi_j, j=1,...,N_s \) estimated for 13 frequencies at each node of the grid inside the boundaries of the station array and from 0 to 300 km depth. In addition, the relative travel times \( \delta t_j \) and relative phase velocities \( \delta \phi_j \) have different value ranges, i.e. different variances \( \sigma_{t,i} \) and \( \sigma_{\phi,i} \), respectively. Therefore, without applying an adequate weighting scheme, one of the two datasets, having a larger number of elements, and/or a larger variance, would dominate the inversion scheme. To account for these differences, we use the following weighting scheme, following Julia et al. (2000):

\[
E = \frac{p}{N_b} \sum_{i=1}^{N_b} \left( \frac{\delta t_i - \sum_{j=1}^{M} K_{b,ij} \delta v_j}{\sigma_{t,i}} \right) + \frac{1-p}{N_s} \sum_{i=1}^{N_s} \left( \frac{\delta \phi_i - \sum_{j=1}^{M} K_{s,ij} \delta v_j}{\sigma_{\phi,i}} \right)
\]

\( K_b \) represents the sensitivity kernels of the body-waves that provide the link between the relative shear velocities \( \delta v \) at each node of the model and the associated relative travel time \( \delta t \). In a similar way, \( K_s \) are the vertical sensitivity kernels for the surface-waves that link the relative phase velocity \( \delta \phi \) for a certain period and at a given latitude-longitude point in our model, to the shear velocities \( \delta v \) at each node of the model located beneath that latitude-longitude point, from depth of 0 to 300 km. The number of relative travel times and phase velocities \( N_b \) and \( N_s \), as well as their respective variance \( \sigma_{t,i} \) and \( \sigma_{\phi,i} \), are used to weight the different datasets in an objective fashion. The parameter \( p \) ranges from 0 to 1, and allows a manual tuning of the relative contribution of each dataset. This parameter is somewhat subjective and determined mainly by visual inspection of the final model after trying different values. In this study, we chose \( p = 0.7 \) (Figure 5).

The motivation of integrating body- and surface-waves in the inversion is to compensate for the lack of resolution of body-wave tomography at shallow depth, where the teleseismic body-wave rays do not cross each other. To take into account this gradual decrease in the resolution toward the surface, we multiply the body-wave kernels \( K_b \) by a ramp function that equals 1 at 60km depth and vanishes at the surface. We chose 60 km for the lower limit of the ramp, as our tests show that the upper 50 km of the lithosphere is the region where the purely body-wave based tomographic inversion maps show short wavelength heterogeneities unique to each stations (Figure 6). This is approximately the station separation which is \(~70\) km where there are only Transportable Array stations, and smaller where other networks are also available (Figure 2). The surface wave kernels \( K_s \) are not modified. This way, the upper part of the model is not affected by the intrinsically poor resolution of the body-waves at shallow depth, instead it is dominated by the surface-wave dataset which provides good constraints. Station terms are included in the body-wave part of the inversion matrix to absorb traveltime delays common to each station, i.e. at shallow depth directly beneath the station. Event corrections are also included to account for any baseline difference between events (VanDecar & Crosson 1990).
Adjustment of inversion parameters

The inversion parameters, i.e. the damping factor, the allowed amplitude of the station corrections and the $p$ parameter that balances the relative contribution of the body- and surface-wave datasets were chosen by systematically studying their effect on the model when their values are modified independently. Trade-off curves between model norm and residual misfit were used to select the appropriate damping $d=0.04$. Several values were tried for station correction amplitudes and we choose the one that generates realistic station delay terms (Figure 7). The parameter $p$ has an influence on the final misfit of the body- and surface-wave dataset and on the normalized RMS of the model. We choose $p=0.7$ as this value minimizes the misfit for both datasets (Figure 5a). It also allows recovery of velocity RMS values very similar to the purely surface-wave tomographic model at depth shallower than 300km and to that of the purely body-wave tomographic model below 300km depth (Figure 5b). Finally, it captures the main features that appear in both the surface-wave and body-wave models (Figure 6).

Resolution

Once combined, the body- and surface-wave datasets provide a horizontal resolution from 200km to 500km and a vertical resolution from 10 to 500km, depending on depth. We have performed checkerboard resolution tests using boxes with alternating high- and low-velocity of different sizes (Figures 7 and 8). These tests show that the resolution improves with decreasing depth due to the inclusion of shorter wavelength surface waves. The vertical resolution is as good as 10 km in the upper 100km, 100 to 200 km in the upper mantle and transition zone, and 350 to 500 km in the lower mantle (Figure 8). The horizontal resolution ranges from 200 to 500km (Figure 9).

Comparison of the joint model with the body- and surface-wave models inverted independently

Figure 6 shows a vertical cross-section from the model obtained by inverting the body-wave dataset only, the surface-wave dataset only, and both of them simultaneously, with a view to illustrating how the joint model is constrained by each data set. The upper 150 km of the joint model is dominated by the surface-wave constraints and the deeper part looks very similar to the body-wave model. The body-wave model has poor resolution where the ray paths do not cross each other, namely the lithosphere. In contrast, at greater depth, the body-wave model benefits from many crossing ray-paths. For this reason, the already well-constrained deeper part of the model does not significantly change by including additional shallow constraints from the surface waves. In the body-wave only model, which has little shallow resolution, the travel time signal resulting from shallow depths is absorbed by the station terms. With the inclusion of the surface-waves, we bring constraints on the upper 150km, and less of the body-wave signal is absorbed into the station terms.

Body- and surface-wave tomography are both imperfect approaches with distinct resolution. Therefore, discrepancies may exist between the tomographic models retrieved from these datasets. Figure 6a and 6b exhibit a discrepancy between 104°W and 107°W in the upper 200km. The surface-wave model in this area is fast while and the body-wave model is slow, although both models show slow velocities below ~200km depth. The
reason for this discrepancy is likely due to the resolution limitations when using relative body-wave traveltimes as we do. Using relative times means that we can not capture a large horizontal anomaly that spans the array. At no time does USAArray span the full west-to-east width of our model, instead in only ever covers a narrower swath similar in width to this discrepancy between the two models. The addition of constraints from surface-waves allows us to resolve this feature reducing the effect of this intrinsic limitation in the body-wave constraints.

IV. Results
Figures 10 to 13 show map views and vertical cross-sections through the main features of the western margin of the North American Plate as they are observed in our joint model. As expected, the deep part of our joint model is broadly consistent with other USAArray based teleseismic P-wave [Burdick et al. 2008; Roth et al. 2008; Burdick et al. 2009, Schmandt et al. 2010] and S-wave [Tian et al. 2009; Schmandt et al. 2010] models. On the other hand, the uppermost part is well correlated with surface-wave tomographic models [Yang & Ritzwoller, 2008; Pollitz & Snoke, 2010]. The improvement achieved using the joint approach concerns mainly the upper mantle. At this depth, the joint model has better lateral resolution than the surface-wave models and better vertical resolution than the body-wave models. Another important aspect is that the good resolution obtained from the surface down to the lower mantle allows a thorough visual inspection of the features which extend across the well-resolved region of both the body-wave and the surface-wave models, and that would thus be observed only partially by using these datasets independently. Compared to previous local models [Sine et al. 2008; Waite et al. 2006], the larger aperture used here allows observation of the possible link between individual lithospheric features, the adjacent tectonic provinces and the underlying deep structure of the mantle. In this section we provide a description of the main features we observe in the western US.

Juan de Fuca-Gorda Slab and Mantle Fast features in the Pacific Northwest
The currently subducting Juan de Fuca-Gorda slab is imaged as a relatively weak and shallow fast seismic anomaly. In particular, the slab has little signature beneath Oregon (Figures 10d-e, 11d) where it is not imaged beneath 150km (Figure 11d). In contrast, beneath Washington and California, the slab anomaly is clearly observed as deep as 400 km and 600 km, respectively. The apparent absence of slab beneath northern Oregon has been hinted before using body-wave tomography (Rasmussen & Humphreys 1988; Bostock & Vandecar 1995; Roth et al. 2008; Sigloch et al. 2008; Burdick et al. 2008) and does not seem to be an artifact of the method or resolution (Burdick et al. 2009; Obrebski et al. 2010). The addition of surface-wave constraints as done here further suggests that the absence of the slab is real. Beneath Washington, the slab seems to flatten (Figure 10d and 11c) and connect to a deeper fast anomaly with similar amplitude (F1) that extends down to 800 km (Figure 11c). The wide and continuous E-W station coverage used in this study shows how further south, around 42°N, several fast features also appear east of the currently subducting slab (F2, F3, F4, Figures 10 and 11e). The nature of these features is discussed later in this paper.
**Yellowstone Region**

A slow anomaly is imaged beneath the YSRP region in the upper 200-250 km and is connected to a large slow body that extends continuously from beneath the Yellowstone Caldera region down to the bottom of our model at 1000 km. Overall, the structure is consistent with that imaged previously by Obrebski et al. (2010) using purely P- and S-wave based tomographic inversion. The real improvement of the current study concerns the upper part of the Yellowstone anomaly, from the surface down to 300 km, where the 3D geometry is better defined due to the addition of short period surface-waves. Along the YSRP, the amplitude of the slow anomaly and its depth extent increase toward northeast, i.e. toward the younger calderas (Figure 12f). Below ~80 km, the anomaly does not extend laterally beyond the physiographical boundaries of the Yellowstone-Snake River Plain (Figures 10b-c, 12g-i). Above this depth, in the uppermost mantle, the Yellowstone anomaly spreads laterally (Figures 12g-h) beneath the Moho discontinuity. Seen in map view (Figures 10a, 12a-b), the boundary of the slow anomaly has a parabola shape that is centered on the Yellowstone-Snake River Plain axis and that grows wider toward the SW, i.e. in the direction of increasing age of the calderas. In the crust, the velocity distribution exhibits a similar parabola-shaped pattern. However, at the older southwestern end of the YSRP the crust displays fast seismic velocities (Figure 12a).

**Basin and Range**

The crust of the Basin and Range is divided into two domains, with slow velocity to the north and high velocity to the south, the boundary being roughly the southern tip of the Sierra Nevada (36°N). The slowest anomalies are located at the western and eastern edge of the Great Basin (Figure 10a). Below 40 km, the Basin and Range is uniformly slow and these slow velocities are continuous with other slow regions beneath the active western US (Figure 10b,c).

**Colorado Plateau**

The lower crust of the Colorado Plateau exhibits a relatively simple structure (Figure 10a). It is dominantly fast with the exception of the Cenozoic volcanic areas (Colorado Mineral Belt, St George and Jemez Volcanic fields, Figure 1). The mantle is heterogeneous in terms of seismic velocities, with a large portion being slow (Figure 10, 12 and 13). This observation is consistent with the pre-USArray regional studies of Lee & Grand (1996) and 2D profiles of Sine et al. (2008). Only the northern part (CFN) and a rounded spot in the southeastern part (CFS) of the Colorado Plateau exhibit a distinctive fast anomaly (Figures 10b and 10c). CFN reaches 300 km (or perhaps 500 km, Figure 11f) and CFS reaches 400 km (Figure 11g). These vertically elongated features are likely not due to either anisotropy, as similar features appear in our previous P-wave model (Obrebski et al. 2010), or smearing along the ray paths, as the Colorado Plateau is located in an well resolved area of our model. The distribution of low velocities seem to reflect a shallow lithosphere-asthenosphere boundary (LAB). Receiver functions estimates of the LAB depth range from 50 to 80 km on the margin of the Colorado Plateau where we find low mantle velocities, and from 80 to 130 km where we image the fast features CFN and CFS (Figure 10b).
Rio Grande Rift and Volcanic Fields around the Colorado Plateau

From the eastern edge of the Colorado Plateau to the western edge of the Great Plains, in the crust and upper mantle, a broad slow anomaly spans the major Cenozoic volcanotectonic features. At 25km and 80km (Figures 10a-b), the model shows a N-S elongated strip of low velocities beneath the Rio Grande Rift. This anomaly overlaps with two NE-SW elongated slow “fingers” that align with the location of Colorado Mineral Belt (CMB) and the Jemez Lineament (JL) (Figure 1). To the north, very low velocities (negative anomalies lower than -2%) are found as deep as 100 km beneath the CMB (Figures 11f and 13i). To the south, very low velocities are found as deep as 150km beneath the JL (Figures 11g, 13c-d, 13k). Similar low velocities were observed in the regional P-wave model of Humphreys et al. (2003). The large array aperture used in this study allows imaging of how the slow velocities beneath the Cenozoic volcanic fields are connected to broad slow anomalies around and beneath them. The very low lithospheric anomalies beneath the CMB and JL are underlain by low velocity (negative anomaly larger than -2%) material in the asthenosphere and in part of the transition zone. The slow anomalies beneath these three volcanic fields seem to be connected to the low velocities observed beneath the Basin and Range to the west. The low velocities beneath the CMB and JL also connect with a large low velocity anomaly spanning the upper mantle and the transition zone, and located beneath the southern Rocky Mountains and the Great Plains (Figures 10d, 10e, 11f-g, 13d-e, 13i-k).

Rocky Mountains

The lithosphere-asthenosphere velocity structure of the Rocky Mountains shows three domains: the southern Rockies (south of ~42°N) and the central/northern Rockies that can be split into an eastern and a western domain. The crust and upper mantle of the southern Rockies is dominantly slow (Figures 10a-d). The crust and upper mantle of the eastern side of the central and northern Rockies are uniformly fast with high anomalies (> 2%) down to 200-300 km (Figures 10a-d, 13f-g). The structure of the western side of the central and northern Rocky Mountains is more complex. The crust and upper mantle there is dominantly very fast (> 2%) down to 200-300 km (as on the eastern side) with the exception of a strip of low velocities in the lower crust. This slow region extends from the Idaho-Washington-Oregon border southward and connects with the low velocities of the southern Rocky Mountains domain (Figure 10a, 13). The N-S velocity contrast in the mantle is well observed at 80, 150 and even 300 km depth (Figure 10b-d).

Transition zone and lower mantle

The structure of the transition zone is marked by a strong north-south contrast with fast velocities blocks (F1, F2, F3) that dominate the northern part of the model (Figure 10e) and slow material to the south. The east-west fast-to-slow boundary occurs a little south of the current location of the Mendocino Triple Junction that separates ongoing subduction beneath the Cascades from transform motion along the San Andreas Fault (Figure 1). Several localized slow spots are observed in the northern half of the model, including the region just north of the Yellowstone Caldera. To the south of the model, where the transition zone is dominantly slow, there is an elongated fast feature with a roughly NW-SE orientation just east of the Rocky Mountain Front. This feature was previously observed by Sigloch et al. (2008). Deeper in the model, e.g. 800 km (Figure
10f), the top of the lower mantle exhibits a smooth long wavelength velocity structure that is dominantly fast with the exception of a broad slow region centered beneath Yellowstone.

V. Discussion

Lateral and vertical extent of the cratonic region

The good resolution achieved from the surface down to the transition zone allows better constraints on the lateral and vertical extent of the North American Craton. In the upper mantle (Figure 10a-d), a sharp SW-NE contrast exists between the cratonic area that exhibits fast velocities deeply rooted in the upper mantle and the active western USA that is underlain by slow velocities potentially indicative of hot, shallow asthenosphere. The small-scale geometry of the cratonic margin is less obvious, as pointed out by previous tomographic studies (Lee & Grand 1996; Henstock et al. 1998; van der Lee & Nolet 1997; Humphreys et al. 2003). As expected, a broad region of fast uppermost mantle is observed beneath the stable Great Plains (Figures 10b-c). Fast anomalies >2% extend to 200-300 km depth (Figures 10, 11, 13), which is consistent with global estimates for the thickness of the cratonic continental lithosphere (Gung et al. 2003) and with the ~250 km estimate for the central U.S. craton (Grand 1994). Nevertheless, this 200-300 km thick fast region also extends westward beyond the Rocky Mountain Front, i.e. into the western active part of the US (Figure 10, 13). It is also connected to deeply rooted fast mantle beneath the northern part of the Colorado Plateau (anomaly CFN). Figure 10b illustrates the geographical correlation between the broad area where the upper 200 km of the mantle exhibits higher seismic velocities and the regions where the analysis of converted S-to-P phases observed in receiver functions suggest that the LAB is deep (Figure 10b). All these observations suggest that thick, mainly intact continental lithosphere exists not only beneath the stable Great Plains, but also farther west into the active Rocky Mountains and perhaps part of the Colorado Plateau.

Mantle Plume Beneath the Yellowstone Region

We interpret the large anomaly imaged from the surface down to the bottom of our model (1000km) beneath the Yellowstone hotspot track as a hot and buoyant whole mantle plume that feeds the volcanism in the YSRP region. The broad mantle geometry of the Yellowstone anomaly as imaged in Figure 12f is similar to that predicted by numerical models of the interaction between an impinging plume and an overriding moving plate (Lowry et al. 2000; Steinberger et al. 2004). In addition, the parabolic shape of the head (Figure 12b) is consistent with numerical model of a flattening plume beneath a moving plate (Ribe & Christensen 1994). The presence of a whole mantle plume beneath the YSRP is also suggested by geometric (time progressive sequence of silicic volcanism parallel to the absolute motion of the north American plate) and chemical (high $^3$He/$^4$He ratio) anomalies.

The detailed velocity structure of the shallowest part of the Yellowstone anomaly as observed in our joint model also highlights the correlation with the geophysical, seismotectonic and physiographic properties of the Yellowstone-Snake River Plain. The parabola-shaped anomaly observed in the crust and mantle lithosphere down to ~80km
coincides with the region of higher topography and lower Bouguer anomaly (Figure 12d). This suggests that this slow material is also less dense and provides the positive buoyancy necessary to sustain isostatically the high topography in the YSRP region. Slow velocities in the crust may result from heating due to the invasion of hot material from the plume beneath the Moho that did not lead to volcanism, dehydration, and densification, and that is thus still providing extra buoyancy and higher isostatically sustained topography. In contrast, within the YSRP, heating of the crust by the same Yellowstone plume did produce volcanism. Rock dehydration, and subsequent post-volcanism cooling may explain the fast crustal velocities in the older, southwestern part of the YSRP, where the heat flow is also lower than in northeastern end of the YSRP. These potentially denser rocks provide negative buoyancy that tend to compensate partially the positive buoyancy of the underlying broad Yellowstone plume and then account for the locally lower topography and higher Bouguer anomaly. Finally, the outer boundary of the parabola-shaped low velocity body in the upper 25 to 80 km of the crust-upper mantle correlates with the location and distribution of local seismicity. A possible interpretation is that the invasion of the Yellowstone plume generates sufficient strain and deviatoric stresses in the lithosphere on the outer rim of the topographic uplift to trigger seismicity.

**Slab Graveyard Beneath the Pacific Northwest**

The shortness of the currently subducting Juan de Fuca-Gorda plate and the presence of several fast features east of it suggest that the slab has undergone substantial fragmentation. The F1 anomaly may be the continuation of the present-day slab (Figure 11c). Alternatively, F1 could be a remnant of the Farallon slab separated from the currently subducting Juan de Fuca slab as a consequence of the accretion of the Siletzia terrane around 55 Ma and the associated westward trench jump (Schmandt & Humphreys 2011). At 45°N (Figure 11d), another large fast anomaly is imaged to a depth of ~300 km at latitudes from 118°W to 113°W, i.e. east of the currently subducting slab and west of the Yellowstone plume. The eastern part of this anomaly is located east of the 0.706 line (Figure 1), on autochthonous basement, and is separated from the fast velocities beneath the cratonic Great Plains by the Yellowstone plume. This block may therefore be North American lithosphere separated from the rest of the craton by the intrusion of Yellowstone plume material into the lithosphere. To the south, three other large features are observed in and close to the transition zone (F2, F3, F4, Figures 10 and 11c). West et al. (2009) proposed that F2 is dripping lithosphere. All these fast features are located north of an eastward extension of the current location of the Mendocino Fracture Zone that separates ongoing subduction beneath the Cascades from transform motion along the San Andreas Fault. Consequently, we rather interpret F2, and also F3 and F4 as fragments of the Farallon slab that are sitting in the transition zone adjacent to the Pacific Northwest (Figure 10e-f). Sigloch et al. (2008) image two fast features (“S1” and “S2”, their Figure 1 cross-section at 42°N) that closely coincide with the location of F2-F3 and F4, and that they also interpret as fragments of the subducted Farallon slab.

**Lithospheric Removal beneath the Colorado Plateau**

The lithospheric structure of the Colorado Plateau block is found to be heterogeneous in terms of seismic velocities, and a large portion of it is slow, suggesting a substantial amount of the former lithospheric root has been removed. The Proterozoic Colorado
Plateau contrasts with the Basin and Range to the west, the Rio Grande Rift to the east, and the Rocky Mountains to the north, as it has neither been significantly deformed during Laramide contraction and post-Laramide extension nor affected by the voluminous and widespread mid-Tertiary magmatism (23–40 Myr ago) of the “ignimbrite flare-up”. We would thus expect the lithospheric root of the Colorado Plateau to be homogeneously stronger than the tectonic provinces that surround it. The lower crust is apparently strong and intact as indicated by fast velocities (Figure 10a), the local seismicity that extends deep into the lower crust (Wong & Humphrey 1989), and the low heat flow. Nevertheless, with the exception of the fast features CFN and CFS (Figure 10c), there is little evidence for a strong, deep and intact lithospheric root. This observation contrasts with the evidence from Colorado Plateau xenoliths which suggests that at 30-20 Ma the Colorado Plateau had a cool root extending to depths of up to 140 km (Riter & Smith, 1996). Therefore, even if part of the Colorado Plateau root still persists, it seems that a large part of it has been removed.

The isolated fast features CFN and CFS could represent the remnant cold core of the lithospheric root of the Colorado Plateau resulting from the combined effects of conductive heat transfer toward the center of the Colorado Plateau (Roy et al. 2009) and edge driven convection (van Wijk et al. 2010). Nevertheless, CFN and CFS extend beyond the typical depth of continental lithosphere. Alternatively, CFN and CFS may be examples of lithospheric instabilities. Based on numeric simulation, van Wijk et al. (2010) showed that edge driven convection can trigger downwelling of the cold lithospheric root of the Colorado Plateau at locations close to where we image the fast features CFN and CFS. Peaks in the residual uplift calculated by Roy et al. (2009) correlate with the locations of CFN and CFS. This is consistent with an advance phase of dripping and the associated rebound as described by Göğüs & Pysklywec (2008). In the lithospheric dripping process, the elevation is initially reduced, but once some of the lithospheric material detaches from the drip, isostatic uplift is expected. We therefore interpret the columnar CFN and CFS high velocities as lithospheric drips from which some lithosphere has already detached generating the uplift pattern as mapped by Roy et al. (2009). In the case of CFN, the spherical high velocity anomaly directly below CFN at 300 to 500 km depth (Figure 11f) may be the detached lithosphere.

Several other possible examples of post-Laramide lithospheric drips have been documented in the western US such as the South Sierra Nevada anomaly (SSNA in Figures 10c, 10d, 11g, 13f, 13g; see Zandt et al. 2004) and the Central Nevada anomaly (F2 in Figure 11, see West et al. 2009). Lithospheric dripping may thus be a common type of instability where the North American lithosphere was modified by its Laramide contact with the cold and hydrated Farallon slab.

**High Topography of the Western US**

A large portion of the western US exhibits high topography, low Bouguer anomaly, and is apparently underlain by low velocity crust and/or mantle. These observations suggest the mantle is locally hot and buoyant enough to isostatically sustain part of the high elevations. Beneath the extending Basin and Range, the high topography is probably linked to the low velocities that are widespread below 40km. The higher topography
along the western side of the central and northern Rocky Mountains could be partially supported by the strip of low velocities we image in the lower crust. The effect of dehydration of the slab on the overlying North American Plate, in particular the generation of positive buoyancy (compositional and thermal) in the lithosphere, has been proposed before (Humphreys et al. 2003; Humphreys 2009), but prior to this study had not been imaged. South of the Cheyenne Belt, current higher topography compared to the rest of the Rocky Mountains is consistent with both the crust and the upper mantle being slow, providing more positive buoyancy than in the central and northern Rockies, and sustaining the higher topography and lower Bouguer anomaly. Further east, a large low velocity anomaly is observed in the upper mantle and in the transition zone beneath the westernmost part of the Great Plains (Figures 10d-e, 11f-g, 13d-e, 13i-k). This region has experienced uplift and tilting since the middle Miocene (Heller et al. 2003) that might be related to the presence of the low seismic velocities at mantle depth.

Role of Inherited Structures in Recent Tectonic History

Our regional model shows that in several areas of the western US, very low velocity anomalies coincide with ancient structural boundaries that have been repeatedly reactivated. Around the Colorado Plateau, the slow lithospheric velocities that coincide with the Cenozoic volcanic fields (Colorado Mineral Belt and Jemez Lineament, Figures 1 and 13) have been observed before using P-wave tomography and were interpreted as evidence of partial melting and high temperature (Humphreys et al. 2003). Our model shows how these low velocities also connect with a wide slow anomaly that spans the asthenosphere and the transition zone (Figure 13). This slow and potentially hot material may thus have been providing heat at a regional scale. Nevertheless, it is only along the Precambrian sutures that the heated lithosphere actually produced melt. This observation is in agreement with the conclusions of Karlstrom & Humphreys (1998) who proposed that the volcano-tectonic activity around the Colorado Plateau preferentially occurs along the weak and more fertile ancient structures. In the Basin and Range, the slowest anomalies in the crust (Figure 10a) are located on the eastern edge of the Great Basin, at the structural boundary with the Colorado Plateau and Rocky Mountains. The very low velocities (<-2%) observed coincide with the Saint George Volcanic trend and could be related to the reactivation of the northern boundary of the transition between the 1.8-1.6 Ga Mojave and Yavapai Provinces (Karlstrom & Humphreys 1998). Very low velocities are also observed along the western margin on the Basin and Range, on the eastern side of the Sierra Nevada and Klamath Mountains. These may be associated with the suture between the Mesozoic accreted and plutonic terranes and the Basin and Range. Alternatively, these low velocities may also reflect deeply rooted shearing along the East California Shear Zone–Walker Lane Belt (Figure 1) that accommodates roughly one quarter of the Pacific-North America relative motion (Dixon et al. 1999).

Differences in the age and composition of the Precambrian terrains that compose the North American Plate also seem linked to the current distribution of velocities and the locus of recent tectonism. In contrast with the northern and central US Rocky Mountains that appear as a westward extension of the fast, deeply rooted cratonic lithosphere, the southern Rockies and the Colorado Plateau exhibit a distinctive slow signature. This N-S velocity contrast at ~42°N) closely matches the compositional discontinuity across the
Cheyenne Belt, which separates repeatedly deformed and magmatically intruded Precambrian basement to the south from comparatively stable Archean basement to the north.

**Dynamics of the Rocky Mountains**

The lithospheric structure of the northern and central Rocky Mountains is consistent with the Laramide upper-crust orogenic shortening being accommodated by a lower crust detachment, leaving the rest of the lithosphere intact. The mantle lithosphere in this portion of the Rocky Mountains is probably strong as suggested by flexural modeling (Lowry & Smith 1994), low heat flow, and also fast velocities as imaged in our model. It may not have been deformed greatly during Laramide orogeny. Humphreys (2009) suggested that the upper crust shortening may have been accommodated by a lower crust detachment, although he do not image such a structure. Our model does show a strip of low velocity material sandwiched between the fast upper crust and the mantle lithosphere of the Rocky Mountains on their western side beneath Idaho, Wyoming and northeast Utah (Figures 10b-c, 13f-h). These low velocities could represent a weak lower crust zone hosting a detachment. In contrast, south the Cheyenne Belt, where the Rocky Mountains overlap with the Rio Grande Rift, the Colorado Mineral Belt and the Jemez Lineament, the whole lithosphere is slow (Figures 13i-k), suggesting it has been uniformly modified and deformed.

**VI. Conclusions**

Our multi-phase model with enhanced resolution at lithospheric depth allows us to image in great detail crustal, lithospheric, and sub-lithospheric mantle structures and processes beneath the western US. This provides improved resolution of the detailed contrast between the active western US and the stable eastern cratonic area. In the east, fast and generally intact lithosphere extends as deep as 200-250 km. While slow velocity anomalies are widespread beneath the western US at normal lithospheric depths and correlate with low Bouguer anomalies and high topography. These slow anomalies probably reflect hot and low-density material that provides positive buoyancy to isostatically support the high topography of a large portion of the western US.

A continuous low-velocity anomaly, rooted below the transition zone, weaves its way between high velocity bodies and intrudes the North American lithosphere in the Yellowstone region. The geometry of this slow body is consistent with a whole mantle plume feeding the Cenozoic volcanism in the region. The present-day head of the plume-like feature beneath the Snake River Plain is imaged to shallow and spread laterally with age to the southwest. It’s location and geometry is consistent with the parabola-shaped high topography and seismicity implying it is responsible for uplifting the region through its low density.

The bottom of the currently subducting Gorda-Juan de Fuca slab is surprisingly shallow and uneven. North of the Mendocino Triple Junction, the mantle contains several blocks of high velocity anomaly material aligned with the currently subducting Juan de Fuca-Gorda slab. We interpret these fast features as a sequence of remnant slab fragments from the former massive Farallon slab that currently sit in the transition zone.
Portions of the lithospheric root of the Colorado Plateau are found to be missing. Having been surrounded by shallow and hot asthenosphere since Oligocene time, the lithospheric root is apparently foundering in the form of drips that we image as two vertically elongated fast bodies. The dripping hypothesis is also consistent with the two peaks in surface elevation that are found immediately above the drips.

The composite structure of the western US that has repeatedly exerted control on the distribution of tectonism and magmatism is reflected by the velocity structure of the crust and upper mantle. In our model, the slowest anomalies and the strongest velocity contrasts correlate with old tectonic and compositional boundaries. This implies a strong influence of fossil tectonic features on new deformation processes.

Acknowledgements

We thank USArray TA for data collection and the IRIS DMC for data distribution. We also thank the GJI editor S. Goes and two anonymous reviewers for their constructive reviews. Most figures were generated using the Generic Mapping Tool (Wessel & Smith 1998). This work was supported by the National Science Foundation and a UC-National Laboratory Research program grant.

List of References


Schmandt, B. & Humphreys, E. Seismically Imaged Relict Slab from the 55 Ma Siletzia Accretion to Northwest United States, Geology, doi: 10.1130/G31558.1.


**Figure Legends**

Figure 1. Geologic-tectonic features of the western United States overlaid on topography. North from the Mendocino Triple Junction (MTJ), the Gorda and Juan de Fuca (JdF) plates are subducting beneath the North American plate with an oblique convergence rate of (on average) 41 mm/yr. The estimated depth of the top of subducting slab is shown with blue contours labeled in km (McCrory et al. 2006). The location of all M>4 earthquakes with depth ≥ 35km since 1970 are shown as blue dots. Volcanoes are shown as orange triangles. The Yellowstone Hotspot Track exhibits a series of time-progressive calderas (red outline) from McDermitt Caldera (MC) to the currently active Yellowstone Caldera (YC). The track is approximately parallel to the absolute plate motion of North America, which is estimated to be 14-26 mm/yr to the southwest. Numbers indicate the age of the calderas (in Ma). The Columbia River Flood Basalt Province was a massive outpouring of basalt from ~16.6 to ~15.0 Ma and is shown in pink. The Laramide Colorado Mineral Belt (CMB) and late Miocene to present Jemez Lineament (JL) are also shown in pink. The grey lines show major structural and compositional boundaries. The Cheyenne Belt separates Archean basement to the north from Proterozoic basement to the south. The 0.706 line is the estimated limit between autochthonous terranes to the east and accreted intraoceanic arcs based on Sr isotopic ratios. The Sevier Front is also close to the miogeoclinal hingeline. The black striped area is the slightly extended Rio Grande Rift. Other acronyms: BFZ: Blanco Fracture Zone, CCR: California Coastal Range, CR: Cascadia Range, CV: Central Valley, ECSZ-WLB: East California Shear Zone-Walker Lane Belt, HLP: High Lava Plain, KM: Klamath Mountains, SAF: San Andreas Fault, SGVT: Saint George Volcanic Trend, SN: Sierra Nevada, YSRP: Yellowstone-Snake River Plain.

Figure 2. Station distribution overlaid on topography and physiographic boundaries. We used over a thousand stations. The box represents the region with high resolution presented in this manuscript. This map also emphasizes the contrast between the flat, low topography cratonic area, and the uplifted, sharp-relief active western US.

Figure 3. Event distribution. Left and right plots show the events that provided surface-waves and teleseismic shear-wave arrivals, respectively. On the right plot, the color scale indicates the amplitude of the event correction terms.

Figure 4. Comparison of the joint tomographic models obtained after applying different crustal corrections. Map views on the left (a, b, c) show the model resolved using the crust thickness estimates of Chulick & Mooney (2002). Depth is indicated in the bottom left corner. The velocity model shown in map views on the right (d, e, f) was resolved using the crustal model from Miller & Levander (2009). Note that these models only slightly differ at 25km depth (a, d) and are almost identical at greater depths.

Figure 5. Dependence of the data variance reduction and velocity anomaly RMS as a function of the parameter \( p \). a) Evolution of the variance reduction of the teleseismic shear-wave (red) and surface wave (blue) datasets for values of \( p \) ranging from 0.5 to 1.0.
b) Normalized RMS of the velocity anomalies of the joint model at depths from 50 to 1000 km for $p=0.5$, 0.7 and 0.9. For comparison, the RMS of the velocity anomalies for the models obtained by inverting just the surface-waves constraints, and just the body-wave dataset are also shown (dashed lines).

Figure 6. Comparison of the surface-wave-only (a), body-wave-only (b), and joint model (c) using a E-W vertical cross-section at 42°N. (b) emphasizes the poor resolution provided by body-waves at depths smaller than ~150 km using the typical station spacing of USArray. In the joint model, the upper 150km are constrained mainly by the surface-wave dataset.

Figure 7. Station correction terms resolved at each station for the body-wave dataset.

Figure 8. Checkerboard resolution tests with alternating high- and low-velocity boxes. The size of the boxes is indicated at the top of each plot. The first and second numbers are the width (in both horizontal directions) and the thickness (in depth) of the boxes. The input (synthetic) velocities anomalies were $\pm 4\%$. The synthetic velocity anomalies were used to calculate synthetic traveltimes and phase velocities to which random noise was added. The applied noise was derived by selecting randomly from a Gaussian distribution with a standard deviation equal to 15% of the traveltime delay or phase velocity. The synthetic traveltimes and phase velocities were then combined and inverted exactly as we did for the real data. Vertical E-W slices at 41°N through the recovered velocity structures are shown. The lateral and vertical resolutions increase from the bottom to the top of the model. We use smaller boxes to illustrate the increasing resolution at shallow level. Only the well resolved region of the model is shown and discussed in this manuscript.

Figure 9. Same as Figure 7, except that horizontal slices through the recovered velocity structures are shown.

Figure 10. Constant depth map views of the model at 25, 80, 150, 300, 600 and 800 km depth. Note that the color-scale range used to represent velocity anomalies varies from one depth plot to another and is indicated in the lower left corner of each plot. The physiographic boundaries are shown in green and the Cheyenne Belt is plotted in pink. The dashed line on (a) is the 25 km depth contour for the Moho discontinuity (Chulick & Mooney 2002). Note that most of the region shown is crust with the exception of a few areas along the Pacific and Gulf of California coasts. Plot (b) shows the 80 km depth contour for the lithosphere-asthenosphere boundary (dashed line) from Miller & Levander (2009). Areas with lithosphere deeper than 80 km include a region centered on the southern Sierra Nevada, the Colorado Plateau, the Great Plains, a large portion of the Rocky Mountains, the Columbia River Plateau and the Washington coast. Plot (d) shows the numerous short-wavelength anomalies in the asthenosphere. Several fast features appear in the model east of the currently subducting slab in the Pacific Northwest and are labeled F1 to F4. Three other fast features are imaged beneath the Colorado Plateau (CFN and CFS, for Colorado Fast North and South) and beneath the Sierra Nevada (SSNA, South Sierra Nevada Anomaly). Plot (e) and (f) illustrate the smooth velocity structure of
the transition zone and top of the lower mantle. The position of the slab in (e) is inferred from Figure 9. A broad slow anomaly labeled Y is observed at all depths beneath the Yellowstone region.

Figure 11. E-W vertical cross-sections through the DNA10 model. Note that the color-scale range used to represent velocity anomalies varies from one depth plot to another and is indicated in the lower left corner of each plot. Plots (a) and (b) are map views of the model at 200 and 400 km depth that show the position of the cross-sections (c) through (g) at 48, 45, 42, 38 and 36°N. The maximum depth of the vertical cross-sections is 1000 km. The longitude is shown on the horizontal axes. The grey line is the Moho discontinuity. Cross-section (c) in northern Cascadia shows a somewhat continuous Juan de Fuca slab (JdF) that flattens at 300 km depth and connects to a broad fast anomaly observed down to 800 km. A fast shallow anomaly, indicative of intact lithosphere of the North American craton, is observed from the eastern edge of the model as far west as -116°W. (d) illustrates the weak signature of the slab below 150 km beneath Oregon. A fast block is sandwiched between slow velocities above and to the east of the weak slab on the west, and the Yellowstone anomaly (Y) on the east. (e) shows several fast anomalies (F2, F3, F4) aligned with the currently subducting Gorda slab and all located north from the southern edge of the presently subducting slab. This cross-section also shows the low velocities beneath the High-Lava Plain (HLP) and the Yellowstone-Snake River Plain (YSRP). Note that the YSRP extends deeper than the HLP, suggesting these two volcanic fields are structurally different. (f) and (g) show the structure of the Basin and Range (B&R), Colorado Plateau, Rocky Mountains and Great Plains. Low velocities are observed beneath the B&R in the asthenospheric window left by the removal of the Farallon slab. Low velocities are also found beneath the Colorado Mineral Belt (CMB) and Jemez Lineament (JL). The vertical geometry of the fast anomalies shown in Figure 8 beneath the southern Sierra Nevada (SSNA) and also beneath the Colorado Plateau (CFN and CFS) is shown in (f) and (g) (see also Figure 11).

Figure 12. Map views and vertical cross-sections illustrating the shape of the Yellowstone anomaly. Note that the color-scale range used to represent velocity anomalies varies from one depth plot to another and is indicated in the lower left corner of each plot. Map views (a) through (c) show that the top of the Yellowstone anomaly displays a parabola shape in the upper lithosphere (25 and 50 km depth) and then an elongated finger shape directly beneath the Yellowstone-Snake River Plain at greater depths (e.g. 100 km). The lateral extent of the parabola shows correlation with the distribution of M>3 local seismicity (black dots) and also with the topography as shown in (d). Plot (e) indicates the location of vertical slices along and across the Yellowstone-Snake River Plain shown in (f) through (i). Green dots on (f) through (i) mark where the slices cross the physiographic structural boundaries shown as green lines on (e). (f) and (i) show the Yellowstone anomaly as a slow feature that extends continuously from the surface down to the bottom of our model at 1000 km. The top of the anomaly in the upper 200-250 km underlies the Yellowstone-Snake River Plain and is elongated in the direction parallel to the absolute motion of the North American plate. It is stronger and deeper toward the younger calderas as in numeric models of plume-plate interaction (e.g. Lowry et al. 2000). The elongated shallow anomaly is connected to a more vertical low
velocity anomaly located beneath the currently active Yellowstone Caldera, suggesting that this is the source for Yellowstone volcanism, and interpreted as the Yellowstone mantle plume. The plume anomaly is not a simply vertical conduit, but weaves its path to the surface around block of high velocity material interpreted as slab fragments. Plots (g) and (h) show the present-day plume head beneath the Snake River Plain. The anomaly is restricted to the upper mantle beneath the now-inactive older calderas and exhibits a mushroom shaped. The anomaly flattens, becomes broader, shallower, and weaker with increasing age of the hotspot-track calderas at the surface (compare g and h).

Figure 13. Map views and vertical cross-section showing the crust and mantle structure in the region of the Colorado Plateau (CP) and southern Rocky Mountains (RM). Note that the color-scale range used to represent velocity anomalies varies from one depth plot to another and is indicated in the lower left corner of each plot. Plots (a) and (b) show the location of the vertical cross-sections A-A’ through Z-Z’. The physiographical boundaries are shown in green and the Cheyenne Belt (CB) in pink. The maximum depth of the vertical slices is 1000 km. Green and pink dots on (c) through (k) mark where the cross-sections intersect the structural boundaries shown in green and pink on (a) and (b). (c) shows the fast features CFN and CFS beneath the Colorado Plateau along with slow velocities beneath the Basin and Range (B&R) and Saint George Volcanic Trend (SGVT) to the N-W and the Jemez Lineament (JL) and Rio Grande Rift (RGR) to the SE. (d) and (e) are N-S vertical slices that illustrate how the slow velocities at the eastern margin of the Colorado Plateau and southern Rocky Mountains connect with deeper slow velocities beneath the Rocky Mountains and the Great Plains (GP). (f) and (g) show the fast, likely intact North American lithosphere, that extends from the Great Plains into the Rocky Mountains. Slow upper lithospheric velocities are observed in a thin layer on the west flank of the Rocky Mountains. (f) and (g) also illustrate the geometries of the South Sierra Nevada Anomaly (SSNA) that reaches a maximum depth of 450 km. (h) through (k) further emphasize the structure of the fast (CFN and CFS) and slow anomalies (CMB, Colorado Mineral Belt and JL) in the Colorado Plateau-Rocky Mountain region. These slow anomalies connect with the large slow body shown in (d) and (e) and located to the east. The lithosphere of the southern part of the Rocky Mountains is dominantly slow, in contrast with the rest of the Rocky Mountains as shown in (f) and (g).
Fig. 1
Fig. 4
Fig. 5
Fig. 6

a) 42°N
Surface Waves Only

b) 42°N
Body Waves Only

c) 42°N
Joint Model
Fig. 10
Fig. 12