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Inversion of Phase Data for a Phase Velocity Map 101

Summary for CIDER12 Non-Seismologists

1. Setting up a Linear System of Equations

This is a quick-and-dirty, not-peer reviewed summary of how a dataset of phase anomalies (or group
travel time anomalies, or any dataset for a 2-dimensional ray-path geometry) can be inverted for a phase velocity
(anomaly) map (or any 2-dimensional model) (Figure 1). In a nutshell, to describe the problem numerically, we
want to invert the linear system of equations

d = A · m (1)

where vector d is the data vector, vector m is the model vector, and matrix A is the data kernels matrix.
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d1: ray 1: s1 - r2

d2: ray 2: s2 - r3

d3: ray 3: s3 - r3

d4: ray 4: s3 - r1

d5: ray 5: s3 - r4

data vector: 

dk=phase anomaly

along ray k
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elements of matrix A: cells Akl

value of Akl for each ray k: xk-ji which is

length of segment of ray in each of j x i cells in model

model vector: 

ml=map_ji

m1=map_11

m2=map_12

m3=map_13

m4=map_14

m5=map_15

m6=map_21

m7=map_22

...

m15=map_35

Figure 1. Top: Schematic diagram of 5 rays from nMAX=3 sources to mMAX=4 receivers (not
all possibilities are plotted!) in a phase velocity map with 3 rows (latitudes) and 5 columns
(longitudes). Bottom: scheme of how the data vector and the model vectors as well as the data
kernel matrix A are set up.
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At this point, we have not yet made any assumptions on how the data relate to the model, i.e. whether we
use ray theory or a more sophisticated finite frequency approach. All that is assumed here is that the dependence
of the data on the model is linear.

1.1 Use Ray Theory

Now we apply Fermat’s Principle and assume that phase anomaly accumulates along the shortest path
between a source and a receiver. On a sphere, this path is a great circle. The phase anomaly is assumed to not be
influenced by structure away from the great circle. This assumption is valid in the infinite-frequency limit, i.e.
when the wavelength of the wave is much smaller than the wavelength of the structure through which it travels.
Since the phase accumulates as Φ = kx where k is the wave number and x the travel distance, a phase anomaly at
distance a∆ is δΦ = δk̄ · a∆ where k̄ is the path-averaged wave number anomaly along the path, a Earth radius
and ∆ the epicentral distance in radians. k̄ is related to the path-averaged phase velocity, c̄, through c = ω/k and
δk = −ω/c · δc/c. So our phase datum with index k, at frequency ω becomes

δΦk
︸︷︷︸

≃ −
ωa

c0

∆∫

0

dx

︸ ︷︷ ︸

·
δc(θ, φ)

c0
︸ ︷︷ ︸

dk =
∑

k

∑

l Akl ml

(2)

where θ and φ are geographical coordinates. We integrate over δc/c0 but the integral is rearranged to make the
connection to equation (1). The ≃ signifies that we replaced the unknown actual path-averaged phase velocity, c̄,
by a known, predicted reference phase velocity, c0 (e.g. for a known model). It is ok to do this because δc ≪ c0.
The index l for the model vector in the matrix notation relates to the cells in a map as illustrated in Figure 1.

1.2 Make Data Kernel Matrix

For illustration purposes on how we set up our inversion, we assume that our map has 3 rows and 5
column. This gives 3 × 5 = 15 model parameters. We have 5 rays, i.e. our data vector has length 5. The data
dependence on the model parameters, as traced from source, sn, to receiver, rm, is the following

d1 =a11 ·m1 + a12 ·m2 + a13 ·m3 + a14 ·m4

d2 =a26 ·m6 + a27 ·m7 + a22 ·m2 + a23 ·m3

d3 =a3(12) ·m(12) + a3(13) ·m(13) + a28 ·m8 + a33 ·m3

d4 =a4(12) ·m(12) + a47 ·m7 + a42 ·m2

d5 =a5(12) ·m(12) + a5(13) ·m(13) + a5(14) ·m(14)

(3)

A =








x1−11 x1−12 x1−13 x1−14 0 0 0 0 0 0 0 0 0 0 0
0 x2−12 x2−13 0 0 x2−21 x2−22 0 0 0 0 0 0 0 0
0 0 x3−13 0 0 0 0 x3−23 0 0 0 x3−32 x3−33 0 0
0 x4−12 0 0 0 0 x4−22 0 0 0 0 x4−32 0 0 0
0 0 0 0 0 0 0 0 0 0 0 x5−32 x5−33 x5−34 0








(4)

In a real global inversion we have many more data, e.g. 50,000 or so. Our maps are also much larger.
The model vector for a 2-degree map would be 90× 180 = 16, 000. To accommodate the fact that a 2× 2-degree
cell is much smaller near the poles than near the equator but the data resolution is not latitude-dependent, we use
an equal-area cell parameterization, i.e. cells are 2 degrees wide near the equator, but much wider near the poles.
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Consequently, we have 180 cells near the equator but only 3 at ±89◦ latitude. This gives a total of 10,312 cells in
the model, reduces the number of model parameters but providing a more evenly spaced model parameterization
at the same time. Numerically, less independent data would be required to constrain the model.

2. Setting up the Inversion

Formally, we want to determine the model m by inverting equation (1), so

m = A−1 · d.

Numerically, it is difficult to invert a rectangular matrix, and we apply a trick by multiplying equation (1) by AT

where T denotes transpose. So,
ATd = ATA · m (5)

We can do this because A has the same eigenvectors and eigenvalues as ATA. Inversion of this equation gives

m̂ = (ATA)
−1

· ATd. (6)

where
G = (ATA)−1 · AT

is called the generalized inverse. The hat signifies that because of the imperfection of the data, we will not be
able to recover the actual model but a version of the model as ”seen” (or filtered) by the data.

An inversion using (6) is a least-squares inversion, i.e. a model is retrieved that minimizes the misfit, χ2

χ2 =
∑

k

(
dk − d̂k

σk
)2

were d̂k are the predictions calculated with the new model m̂ and σk are the data errors. When χ2 = 1, the model
is said to fit the data to within their errors. If χ2 < 1, the model overfits the data and contains components that
are not required to fit the data, from a numerical point of view. If χ2 > 1 then the model does not fit the data,
either because the model parameterization is not adequate or the data are internally inconsistent (e.g. because of
noise contamination or systematic effects that are not modeled such as an erroneous earthquake event times or
locations).

2.1 Model Regularization or Damping an Inversion

As seen in equation (4), many elements of A are zero as some cells in the model remain unsampled,
resulting in a determinant for ATA that is zero. Matrix A is singular and some eigenvalues are zero which does
not allow us to retrieve the complete model vector. The matrix is ill-conditioned, with an infinite condition
number (largest eigenvalue divided by lowest; a low number signifies a well-conditioned matrix). A strategy
often used is that only the non-zero eigenvalues (or the large eigenvalues) and corresponding eigenvectors are
used to construct parts of the model. Some workers discard this approach as it leaves unwanted ”holes” in the
model though, numerically, this may be the correct approach.

An alternative is to regularize an inversion by adding something to the matrix to decrease the condition
number, e.g. our inversion may look like

m̂ = (ATA + µI)−1 · ATd. (7)
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Figure 2. Trade-off curve between model norm (x-axis) and data misfit (y-axis). Increasing µ

indices denote increasing values. The model norm chosen here is |∂m|2. Both the model norm and
the data misfit cannot be arbitrarily small at the same time. An ”optimal” model is often chosen at
the bend where both model norm and data misfit do not change much with changing regularization
parameter µ.

where

G = (ATA + µI)−1 · AT

The regularization or damping factor µ determines how much the inversion is regularized. The identity matrix I
in this equation limits the size of the model, where the model length decreases with increasing µ regardless of the
structural wavelength in the model (i.e. all elements in the model vector are penalized in the same way). This
type of inversion minimizes the weighted sum of data misfit and model norm, or the misfit function, MF ,

MF = χ2 + µ|m|2.

There exists a trade-off between misfit and model norm. A small µ produces a ”large” model but some
components may not be constrained by the data as the difference between data and predictions are much smaller
than the error bars and the misfit is far below 1. With increasing µ the size of the model decreases, but such a
model is less able to predict the data to within their errors, so the misfit increases (Figure 2).

In principle, we can impose any regularization on the model, e.g. we can impose a maximum value on
individual elements of the model vector (e.g. phase velocity anomalies must not be larger than 10%). We can
also impose constraints on gradients or curvatures in the model, in which case we replace the identity matrix in
equation (7) by the first or second derivatives:

m̂ = (ATA + µ∂T∂)
−1

· ATd (8)

and ∂ stands for either the first or second derivative and
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G = (ATA + µ∂T∂)
−1
.

The misfit function then becomes

MF = χ2 + µ|∂m|2.

The choice of the optimal model is somewhat subjective. A model a long the trade-off curve is often
chosen for which both the model norm (model norm here meaning the vector length or the length of first or second
derivatives thereof) and the data misfit both do not change much when changing the damping parameter. In
Figure 2, this would be any model near µ17. However, models in that range overfit the data and contain elements
that are not required by the data. So, some people would rather choose a model near µ23. Also, sometimes,
models near µ17 are unrealistically rough or have unrealistically large values, so a model farther up the trade-off
curve is chosen as most optimal model.

2.2 Quick Notes on Numerical Inversion Techniques and Other Approaches

On the computer, matrices can be inverted to use ”canned” computer tools. As mentioned in the
introduction, a classical way leads through finding the eigenvalues and eigenvectors through singular value
decomposition. As seen in Figure 1, many of our matrix elements are zero, so the matrix is sparse. To save
computer time, iterative sparse matrix solvers are available. Without going into too much detail, such iterative
techniques explore the misfit function by trying to find to fastest way toward the minimum. One such technique
is LSQR or least squares OR (see, e.g., van der Sluis and van der Vorst, 1987. This technique is used in the
tutorial. Here, one has to make sure to go through enough iterations so that the that the process has converged,
i.e. the model no longer changes significantly.

A completely different approach to a model is by forward modeling. Here, models are compiled using
a variety of strategies. Synthetic data are computed using these models and the misfit determined. The model
is kept if it satisfies a certain misfit criterion or discarded if it does not. This way, a group of models can be
found that may look completely different from the one obtaining through an inversion but that satisfy the data
equally well. Proponents of this approach prefer this over inversions because the latter may get caught in local
minima if the misfit function is complex. The art of forward modeling is to decide how to search the model space.
Monte Carlo approaches do this randomly. Other approaches using, e.g. genetic algorithms or evolutionary
programming, produce models that are bases on ”mutations” of models using certain rules.

3. A Few (Uncomplete) Notes on Model Evaluation

If we consider equations (1) and (8) together, we get

m̂ = G · d = G · A · m (9)

where the resolution matrix R = G · A maps the true model, m, into the version of the model, m̂, as ’”seen” by
the data through filter R:

m̂ = R · m.

Ideally, the resolution matrix should be the identity matrix. If the diagonal elements are less than 1 then
the amplitudes of the corresponding model element is not recovered completely. Any non-zero off-diagonal
elements indicate that some cross-mapping between model parameters exists. Though this strategy is somewhat
contested (see below) it is useful to evaluate the resolution matrix. For example, in ”resolution test” one model
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parameter in m is switched on, while all other elements are set to zero. The structure of the resulting m̂ then
reveals how this particular element is resolved and/or smeared into other model elements.

If the model is a cell-parameterized phase velocity map, then such a test is equivalent to a spike test. If
the model is a map expanded in surface spherical harmonics, then such a test is equivalent to a checker board
test (Figure 3). Such tests are only meaningful if the same damping and the same error bars are used in this test
as in the inversion of the real data, i.e. do the test on equation (8), not on equation (6)! The advantage of using
checkerboards as input model for resolution tests in maps is that one gets a quick geographical overview over
where in the map structure of a certain wavelength is resolved or not. In our example, good recovery is observed
for parts of the western Pacific Ocean (lots of earthquakes) and along the coast of western North America (lots
of stations). Input checker boards can have larger wavelengths (lower harmonic degree) or shorter wavelengths
(higher harmonic degree).

Opponents of checkerboard tests argue that the checkerboard tests do not tell you about the real resolution
capabilities of the data. E.g. when one uses ray theory instead of finite-frequency theory, then the checkerboard
test does not take into account that not accounting for wavefront healing effects in ray theory degrades resolution.
But this argument holds true for any input structure in tests described above, regardless whether it is a checker
board, spike or some oddly-shaped structure that looks like the structure that the data imaged (as also often seen
in the literature). One could argue that the latter is a most subjective test while a checker board gives a more
objective view.

Figure 3. Input (bottom) and output (top) of a checkerboard test for a phase velocity map as
obtained using the CIDER 12 dataset for 50-s Rayleigh waves. The map view is centered on the
Pacific Ocean. The input model is a degree-40 checker board. Note that the inversion strategy
used here was LSQR, not a classical SVD matrix inversion.
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