

Thermal State of the Earth Part I: Fixed Temperatures

Thermal State of the Earth Temperature inferences

Thermal State of the Earth Part 2:Total heat flux constraints

Conductive heat flow measured from borehole temperature gradient and conductivity

Earth's Total Surface Heat Flow Surface heat flow 46±3 TW (I) 47±2 TW (2) mW m⁻² 23 - 45 75 - 85 85 - 95 45 - 55 (1) Jaupart et al (2008) Treatise of Geophys. 95 - 150 55 - 65

65 - 75

150 - 450

(2) Davies and Davies (2010) Solid Earth

Thermal State of the Earth

~47(3) TW

Radiogenic Contribution (U,Th, K) Earth Interior Cooling

~47(3) TW

values from McDonough & Sun, Chem. Geol., 120, 223-253, 1995

Buffett 2002

~47(3) TW

~47(3) TW

Buffett 2002--Inner core formed very recently/ Early Temps were very hot!

Thermal Conductivity Definition

Heat Flux = $\kappa_{cond} \nabla T$

At core/mantle thermal boundary:

Length scale~150(±50) km

∇T ~ 500-2000 K

K_{cond} very uncertain ~10±5 W/m/K

Lay, Hernlund, Buffett, Core/mantle heat flux 2008 uncertain ~4-20 TW

Approaches to thermal conductivity of insulators I. Determine phonon behavior 2. Measure heat flow via Q=dT/dx

THERMAL DIFFUSIVITY OF MgSiO3 PEROVSKITE

Masahiro Osako

Section of Astronomy and Geophysics, National Science Museum, Tokyo

Eiji Ito

Institute for Study of the Earth's Interior, Okayama University

Abstract. Thermal diffusivity of MgSiO₃ perovskite has been measured in the temperature range of 160 K to 340 K using a sample armucaized in a uniaxial split-sphere nign-

nd reaches to 12 Wm⁻¹K⁻¹ in the

measurements and discuss the thermal conductivity under the lower mantle conditions.

mental

was converted to MgSiO₃ 570 °C for one hour, using a

perovskite increases by a factor of 4 with depth throughout untaxial split-sphere high-pressure apparatus (USSA 5000) [Ito and Yamada, 1982]. The quenched perovskite sample, weighing 9.4 mg, had a slightly-distorted cylindrical shape and was of harf transparency (Figure 1). The sample was confirmed to be a polycrystalline aggregate of MgSiO₃ nerrovekite hu a micro-focused Y-ray different mater Ear the

the lower mantle and reaches to 12 Wm⁻¹K⁻¹ in the vicinity of the mantle-core boundary. The D" layer might not be a thermal boundary layer insulating the high core-temperature, if this layer mainly consists of the perovskite.

Thermal Conductivity of Materials

mechanisms:	electrons	atoms/ molecules	photons
Governing Equations	$\kappa \rho = LT$	К~ С v ² Т _{еff}	(solutions for radiative heat flow)
Temperature dependence	Thermal Conductivity	Themal conductivity Winnik 1/T 1/T 1/T 1/T 1/T 1/T 1/T 1/T	Thermal conductivity W/m/K 1000 2000 3000 4000 Temperature (K)
Examples	lead 35	asbestos 0.2-0.8	
(W/m/K)	iron 80	granite 2-4	
	gold 310	Al ₂ O ₃ 30	
		diamond >1000	
Trivia	кmelt < кsolid	SiO ₂ qtz 9.5/6.1	goes in & out
		SiO ₂ glass 1.46	of fashion

Thermal Conductivity in Crystalline Insulators: Momentum transfer due to phonon interactions

Phonon dispersion curve of diamond Warren et al., 1967

Approaches to thermal conductivity of insulators
I. Determine phonon behavior-experiment/theory
2. Measure heat flow directly via Q=dT/dx

Approaches to thermal conductivity of insulatorsI. Determine phonon behavior-experiment/theory2. Measure heat flow directly via Q=dT/dx

Thermal conductivity of MgO shows good agreement between theory and experiment

Tang & Dong 2010 de Koker 2009

Thermal Conductivity of MgSiO₃-pv and Heat Transport in the Earth's Mantle

Xiaoli Tang (Now at: CalTech, Applied Physics) Abby Kavner (Earth & Space Science, UCLA) Jianjun Dong (Physics, Auburn University) Laurent Pilon (Mech E., UCLA) Emma Rainey (Earth & Space Science, UCLA)

Approach: Solve the Peierls-Boltzmann kinetic transport equation for phonons

Integrate over all phonon modes in three dimensions

Heat Capacity C_V $k = C_V v_g^2 \tau$

Heat capacity only varies in low-temperature range (T<θ_D).
 Heat capacity changes insignificantly with pressure.

Phonon Group Velocity Vg **k=Cv vg² r**

- Phonon frequencies increase as pressure goes up.
- Overall phonon group velocity also increases at higher pressure.
- Mode-by-mode group velocities have large variablility

Phonon Life Time T_{eff} $k=C_v v_g^2 \tau$

MgSiO₃: (3 acoustic + 57 optic) V.S MgO: (3 acoustic + 3 optic)

Typical T _{eff}	τ _{eff} (acoustic) T=300K (ps)	τ _{eff} (acoustic) T=3000K (ps)	τ _{eff} (optic) T=300K (ps)	τ _{eff} (optic) T=3000K (ps)
MgSiO ₃	1.7	0.14	0.16	0.008
MgO	8.5	3.03	0.91	0.34

Phonon lifetimes are much smaller in MgSiO3 than in MgO

Mode contributions: optic vs. acoustic

quick quiz: which is MgO? which is MgSiO3? why?

Results--Thermal conductivity MgSiO₃

Additional considerations for Earth's mantle

I. Effect of iron

- Radiative contribution to heat flow
 Composite material
 - ✓ I. Changes mass
 - ✓2. Adds impurities
 - 3. Chemical effects

for now:

- i. Fe+2 substitution for Mg+2
- ii. high spin in Pv

iii. Iow spin in MgO

Reference : Moses C. Natm, Jianjun Dong, manuscript in preparation

Thermal conductivity (Mg.85, Fe.15)SiO3

Additional considerations for Earth's mantle I. Effect of iron

2. Radiative contribution to heat flow

Temperature (K)

Competing Measurements of Absorption Coefficients

Science, 2008

Optical Absorption and Radiative Thermal Conductivity of Silicate Perovskite to 125 Gigapascals

Hans Keppler,¹* Leonid S. Dubrovinsky,¹ Olga Narygina,¹ Innokenty Kantor^{1,2}

1.4

1.2

1

0.8

0.6

0.4

0.2

0

2500

Absorbance

1500

 \mathbf{x}

2500

Nature, 2008

Thermal conductivity of lower-mantle minerals

Alexander F. Goncharov^{a,*}, Pierre Beck^a, Viktor V. Struzhkin^a, Benjamin D. Haugen^{a,b}, Steven D. Jacobsen^c

^a Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road N.W., Washington, DC 20015-1305, USA ^b Department of Geological Sciences, University of Colorado, Boulder, CO 80309, USA

^c Department of Earth and Planetary Sciences, Northwestern University, Evanston, IL 60208, USA

Competing Measurements of Absorption Coefficients

Optical Absorption and Radiative Thermal Conductivity of Silicate Perovskite to 125 Gigapascals

Hans Keppler,¹* Leonid S. Dubrovinsky,¹ Olga Narygina,¹ Innokenty Kantor^{1,2}

Alexander F. Goncharov^{a,*}, Pierre Beck^a, Viktor V. Struzhkin^a, Benjamin D. Haugen^{a,b}, Steven D. Jacobsen^c

^a Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road N.W., Washington, DC 20015-1305, U ^b Department of Geological Sciences, University of Colorado, Boulder, CO 80309, USA

^c Department of Earth and Planetary Sciences, Northwestern University, Evanston, IL 60208, USA

"pristine mantle" radiative heat flow is important

"dirty mantle" radiative heat flow is not important

step I: plot everything on same plot

step 2: Re-analyze data

radiative contribution to thermal conductivity calculated via Rosseland approximation (valid for optically thick) $=\frac{16n^2\sigma T^3}{3\beta_R}$ $k_{rad}(T)$ n: Index of refraction T: Temperature β: Rosseland mean extinction coefficient $\frac{n^2}{\beta_R} = \frac{\pi}{4\sigma T^3} \int_0^\infty \frac{n_\lambda^2}{\beta_\lambda} \frac{dI_{b,\lambda}}{dT} d\lambda.$

Lattice and radiative contributions to thermal conductivity have: Similar magnitude Opposite temperature dependence

Total thermal conductivity of perovskite

Temperature (K)

Depth-Dependent Contributions to Conductivity

Additional considerations for Earth's mantle

- I. Effect of iron
- 2. Radiative contribution to heat flow
- 3. Composite material

		Maxwell-Garnett		
	k latt	Krad	Composite	
MgSiO ₃	P,T, Fe	P,T, Fe	k _{latt} +k _{rad} MgSiO3	
MgO	P,T, Fe	P,T, Fe	€ k _{latt} +k _{rad} MgO	
	length scales: k _{latt} < 10 nm k _{rad} < 100µm grain size ~1mm			

Best Estimates Earth Mantle Thermal Conductivity

A reminder--before this study

Implications for Core/Mantle Boundary Heat flow

~47(3) TW

Tang et al., 2012, submitted

Resolution of the Goldilocks story: "Just Right" K

Lay, Hernlund, Buffett, 2008

Simple convecting mantle Thermal conductivity has *weak* pressure and temperature dependencies

Core/Mantle boundary is an insulating area

 Large temperature drop at core/mantle boundary
 Partially molten lower mantle possible
 Additional thermal boundary layer in the mantle or more radiogenic heating

Inner core timing

Relaxes constraints on timing of inner core formation (e.g. Buffett, 2009)

General Thermal Conductivity: General Boltzmann Transport Equation

I. each particle defined by: position **x** and momentum **p**

2. define a probability density function $f(\mathbf{x},\mathbf{p},\mathbf{t})$ such that: $dN = f(\mathbf{x},\mathbf{p},t) d^3\mathbf{x} d^3\mathbf{p}$

3.
$$\frac{\partial f}{\partial t} = \left(\frac{\partial f}{\partial t}\right)_{diffusion} + \left(\frac{\partial f}{\partial t}\right)_{force} + \left(\frac{\partial f}{\partial t}\right)_{collisions}$$

4a. for particles with classical statistics: $f(t_0) \sim \exp(-E/kT)$

4a. for particles with quantum statistics: $f(t_0) \sim (\exp(E/kT)-I)^{-1}$

N particles

Distribution functions are temperaturedependent

Kinetic Transport Equation

Simulation Details				
		SiO ₆ octahedra • Mg ²⁺		
	MgO (Tang & Dong, 2009, 2010)	MgSiO ₃		
	LDA, PAW, PW;	LDA, PAW, PW;		
Static Energy	2-atom unit cell;	20-atom unit cell;		
	12x12x12 Monkhorst k-grid	8x8x6 Monkhorst k-grid		
Forces	128-atom super cell; Gamma point sampling	160-atom super cell; Gamma point sampling;		
Conductivity	16X16X16 a-doint sampling:	8X8X6 a-doint sampling:		
(С _{v,} V _g , т)	5 X 9 grids in V-T domain	5 X 9 grids in V-T domain		

Current research & ongoing questions

LASER HEATING EXPERIMENTS

Current research & ongoing questions DIAMOND ANVIL CELL HEAT FLOW MODEL

 3-D numerical model solves the steady-state heat equation using a full approximation storage multi-grid solver.

 Includes flexible laser and sample geometries and temperature-dependent material properties.

 Based on previous model for heat flow in multianvil press [1].

- Large 3-D temperature gradients form during continuous laser heating in the LHDAC.
- Temperature distribution depends on laser and sample geometry, and sample thermal conductivity and absorption properties.

Current research & ongoing questions

PRELIMINARY EXPERIMENTAL DATA

UCLA

Thermal Conductivity of Perovskite

pressure-dependent phonon calcs

Temperature-dependence

