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In April 2010, fine, airborne ash from a volcanic
eruption in Iceland caused chaos throughout 
European airspace. The same month, the explo-
sion at the Deepwater Horizon drilling rig in the
Gulf of Mexico left a gushing oil well on the sea

floor that caused the largest offshore oil spill in US
history. A year later the Tohoku tsunami hit the coast
of Japan, causing great loss of life, the Fukushima
nuclear-reactor disaster, and the release of substan-
tial amounts of debris and radioactive contamina-
tion into the Pacific Ocean.

Those three globally significant events, de-
picted in  figure 1, share a common theme. In each
case, material was released into the environment
from what was essentially a point source, and pre-
dicting where that material would be transported
by the surrounding oceanic or atmospheric flow
was of paramount importance.

To predict the outcomes of such events, the
standard approach is to run numerical simulations
of the atmosphere or the sea and use the resulting
velocity-field data sets to forecast pollutant trajec-
tories. Although that approach does predict the fu-
ture of individual fluid parcels, the predictions are
highly sensitive to small changes in the time and lo-
cation of release. Attempts to address the excessive
sensitivity to initial conditions include running sev-
eral different models for the same scenario. But that
typically produces even larger distributions of ad-
vected particles—those transported by the fluid

flow—and thus hides key organizing structures of
that flow.

Furthermore, traditional trajectory analysis fo-
cuses on full trajectory histories that yield convoluted
“spaghetti plots” that are hard to interpret. Improved
understanding and forecasting therefore requires
new concepts and methods that provide more insight
into why fluid flows behave as they do.

Lagrangian coherent structures
Recently, ideas that lie at the interface between non-
linear dynamics—the mathematical discipline that
underlies chaos theory—and fluid dynamics have
given rise to the concept of Lagrangian coherent
structures (LCSs), which provides a new way of un-
derstanding transport in complex fluid flows.

Although advances have been made in the de-
tection of LCSs in fully three- dimensional flows,
this article focuses primarily on the many advances
that have been made for 2D flows. There, LCSs take
the form of material lines—continuous, smooth
curves of fluid elements advected by the flow. They
are conceptually simpler than the 2D material sur-
faces required for LCSs in 3D flows. Furthermore,
2D flows are particularly relevant for studies of 
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pollution transport on the ocean surface and on sur-
faces of constant density in the atmosphere.

Generally speaking, the LCS approach pro-
vides a means of identifying key material lines that
organize fluid-flow transport. Such material lines
account for the linear shape of the ash cloud in
 figure 1a, the structure of the oil spill in 1b, and the
tendrils in the spread of radioactive contamination
in 1c. More specifically, the LCS approach is based
on the identification of material lines that play the
dominant role in attracting and repelling neighbor-
ing fluid elements over a selected period of time.
Those key lines are the LCSs of the fluid flow. To de-
velop an understanding of them, we must first con-
sider several ideas.

Lagrange versus Euler
There are two different perspectives one can take in
describing fluid flow. The Eulerian point of view
considers the properties of a flow field at each fixed
point in space and time. The velocity field is a prime
example of an Eulerian description. It gives the in-
stantaneous velocity of fluid elements throughout
the domain under consideration. The identity and
provenance of fluid elements are not important; at
any given point and instant, the velocity field sim-
ply refers to the motion of whatever fluid element
happens to be passing.

By contrast, the Lagrangian perspective is con-
cerned with the identity of individual fluid ele-
ments. It tracks the changing velocity of individual
particles along their paths as they are advected by
the flow. It’s the natural perspective to use when

considering flow transport because patterns such as
those in  figure 1 arise from material advection.

Another driving force behind the development
of the LCS approach is the concept of objectivity, or
frame invariance. Characterizations of flow struc-
tures in terms of the properties of Eulerian fields
such as the velocity field tend not to be objective;
they don’t remain invariant under time- dependent
rotations and translations of the reference frame.
For instance, a common way to visualize flow fields
is to use streamlines, which are Eulerian entities that
follow the local direction of the velocity field at a
given instant.

Traditionally, vortices in fluid flows have been
identified as regions filled with closed streamlines.
But velocity fields, and hence their streamlines,
change when viewed from different reference
frames. So what looks like a domain full of closed
streamlines in one frame can appear completely dif-
ferent when viewed from another frame. For exam-
ple, an unsteady vortex flow may look like a steady
saddle-point flow in an appropriate rotating frame.

For unsteady flows, which are the rule rather
than the exception in nature, there is no obvious pre-
ferred frame of reference. So any conclusion about
transport-guiding dynamic structures should hold
for any choice of reference frame. With regard to an
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Figure 1. Large-scale contaminant flows. (a) A 150-km-wide view of the
ash cloud from the 2010 Icelandic volcano eruption. (b) A 300-km-wide
view of the 2010 Deepwater Horizon oil spill in the Gulf of Mexico. 
(c) A prediction of the eastward spread of radioactive contamination
into the Pacific Ocean from the 2011 Fukushima reactor disaster 
in Japan.
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oil spill, for example, interpretations of the organi-
zation of material transport cannot depend on
whether the data are processed in the reference
frame of an onshore radar observation station, a re-
connaissance plane, or an orbiting satellite. Reliable
forecasting of material transport calls for frame-
 invariant techniques.

Material lines
A detailed understanding of Lagrangian transport
already exists for time-independent flows such as
the steady  saddle-point flow in  figure 2a. Fluid
parcels approaching a saddle point along a promi-
nent line of flowing material that serves as a repul-
sive transport barrier (the so-called stable manifold)
are ultimately drawn away from it toward an or-
thogonal material line that constitutes an attractive
transport barrier (the unstable manifold) and carries
them away from the saddle point. One manifold
looks like the other with time reversed. The unstable
manifold, despite its name, acts as a core organizing
structure in the vicinity of the  saddle point, attract-
ing all nearby fluid particles, which then stretch out
to adopt its shape.

Prominent material lines are known to exist in
periodic and quasi periodic flows, where they serve
as skeletons of observed tracer patterns. An example,
shown in figure 2b, is suggested by the organized
cloud features in the wake created by steady wind
blowing past the Mexican island of Guadalupe. But
finding them is rarely that easy. The identification of
dynamical skeletons for material patterns in flows
with complex spatial and temporal structure pre -
sents an ongoing challenge.

That’s because the mathematical methods used
to identify key material lines in steady, periodic, and
quasi periodic flows rely on knowing the flow field
for all time. But the flows that most need to be un-
derstood are typically aperiodic, and the associated
velocity-field information is known only in the form
of observational or numerical-simulation data sets
for finite time intervals. As a result, even elementary

concepts such as stable and unstable manifolds and
saddle points are ill defined for aperiodic flows. 

A modern characterization of repelling and at-
tracting material lines has been emerging in fluid
dynamics to facilitate the understanding of material
transport by aperiodic, finite-time flows. The start-
ing point is a 2D flow field, 

                                 dx/dt = u(x, t),

with position vector x = (x, y) and velocity vector
u = (u,v) in the x,y plane.

Assuming that the velocity field is observed for
times t ranging over the finite interval [t0 , t1] , the
LCSs of the flow during that interval are the mate-
rial lines that repel or attract nearby fluid trajecto-
ries at the highest local rate relative to other material
lines nearby. As shown in figure 3, the attraction and
repulsion are orthogonal to the flow lines. Overall,
the repelling and attracting LCSs play similar roles
to the stable and unstable manifolds, respectively, 
of the saddle point in  figure 2a. As illustrated in
 figure 3c, the repelling LCSs direct particles to dif-
ferent domains of the attracting LCSs. 

A simple example
The relevance of the LCS approach to understand-
ing fluid transport is nicely illustrated by the so-
called  double-gyre problem,1 presented in  figure 4.
Even though, as a time-periodic flow, it’s amenable
to more traditional analysis, the double-gyre prob-
lem has become a canonical flow field for testing
LCS ideas. 

In  figure 4, a circular blob of black dye is re-
leased at time t0 in a flow comprising two oppo-
sitely swirling gyres (vortices) whose strengths
and locations vary periodically in time. The arrows
in figures 4a and 4b indicate the velocity field at t0
and later at t1.

By t1, the dye has been stretched and trans-
ported throughout the fluid. But the new dye dis-
tribution is noticeably different from the shape of
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Figure 2. Prominent lines of advected material form transport barriers near a saddle point. (a) A fluid parcel approaching
the saddle point astride one material line (the repelling stable manifold) eventually becomes drawn out and away from the
saddle point along the orthogonal material line (the attracting unstable manifold). (b) Unstable manifolds (red curve) inferred
from stretching cloud patterns in a time-periodic atmospheric flow generated by winds blowing past Guadalupe, a volcanic 
island off Mexico’s Baja California.
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the velocity field at t1. Much of it is stretched along
the outer boundaries, and two dye streaks cut
across to the right side of the domain. But there’s
no dye drawn clockwise around the left vortex,
even though that vortex is a strong feature of the
velocity field.

Recall that if the flow were viewed from, say, a
rotating reference frame, the form of the instanta-
neous velocity field would change significantly
while the shape of the dye streak would remain the
same. So the key question is, What frame-invariant
structures are responsible for organizing the shape
of the dye streak between t0 and t1?

Figure 4c presents a candidate LCS, the convo-
luted white line that cuts the initial dye patch into
two parts, shown red and blue. That line is the
strongest repelling structure at t0. Bisecting the ini-
tial dye blob, it reveals that the blob is about to be
separated by the flow field. Figure 4d reveals that
by t1, the two half-blobs have been drawn out along
opposite sides of another candidate LCS (the black
curve), the strongest attracting structure.

While the two LCS candidates are notably dis-
tinct from the features of the velocity fields, they
clearly shape the transport of the dye blob. How
does one find those LCSs? 

The finite-time Lyapunov exponent
A pioneering insight into Lagrangian features in
velocity-field data was provided 20 years ago by
Raymond Pierrehumbert and Huijin Yang at the
University of Chicago.2 They considered plots of
the so-called finite-time Lyapunov-exponent
(FTLE) field. The Lyapunov exponent is a measure
of the sensitivity of a fluid particle’s future behav-
ior to its initial position in the flow field.

To determine the FTLE field, one lets fluid par-
ticles flow under the action of the velocity field from
t0 and determines how much initially adjacent parti-
cles from a given location have separated by t1. Re-
gions of high separation have high FTLE values; they
are locally the regions of most strongly diverging
flow. Performing the same procedure in backward
time, one identifies regions with high  backward-time
FTLE values. Those regions of strongest divergence
in backward time are the regions of strongest local
convergence in ordinary forward time. 

In 2001 the complex patterns of FTLE distribu-
tions for physical flow fields were connected to LCSs
by one of us (Haller),3 who proposed that ridges of
maxima in the FTLE field are, in fact, indicators of
repelling LCSs in forward time and of attracting
LCSs in backward time. The ridges were initially be-
lieved to be almost Lagrangian—that is, the flux of
material across them was thought to be small.1

Two practical early examples of the FTLE ap-
proach were applications to pollution control off the
coasts of Florida4 and California.5 In both cases,
ocean-surface velocity fields, obtained over time
from coastal high-frequency radar stations, were
used to determine appropriate time windows for
the necessary release of pollutants from coastal
power stations. Since then, the FTLE approach has
been applied to a great variety of problems such as
blood flow in arteries, air traffic control, and flow
separation by airfoils.6

Equating LCSs with FTLE ridges provides an
attractively simple computational tool. But it raises
some fundamental mathematical questions that
were initially overlooked. In particular, FTLE
ridges can yield both false negatives and false pos-
itives in LCS detection.7 Furthermore, the ridges are
often far from being Lagrangian; the flux across
them can be large.

Strainlines
To address the shortcomings of the FTLE approach
for identifying LCSs, Haller and Mohammad Faraz-
mand have now shown that repelling LCSs are, in
fact, material lines whose initial positions are locally
the most repelling strainlines for the time window
in question.8 As described in the box on page 46,
strainlines are curves that are everywhere tangent
to the eigenvector field of the Cauchy–Green strain
tensor computed over the time window.

For 2D fluid flow, the Cauchy–Green tensor is
a 2 × 2 symmetric, positive-definite matrix calcu-
lated for each initial position in the fluid. As such,
it has positive eigenvalues (0 < λ1 < λ2), and its two
eigenvectors (ξ1 and ξ2) are orthogonal. If the fluid
is incompressible, λ2 = 1/λ1.
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Figure 3. Lagrangian coherent structures in the time interval [t0 , t1].
(a) An attracting LCS is a material line (blue) that attracts fluid onto itself
more strongly than does any nearby material line (gray). (b) Similarly, a
repelling LCS is a material line (red) that repels fluid more strongly than
any other nearby line. (c) A repelling LCS acts as the boundary between
domains of attraction for an attracting LCS. Because LCSs cannot be
crossed by material, they bound and shape the regions labeled 1–4. The
intersection between the repelling and attracting LCSs is a generalized
saddle point. 



For 2D flows, the eigenvectors give the direc-
tions, in an infinitesimal sphere released at x0 , that
will be mapped into the major and minor axes of the
ellipsoid into which the sphere has formed at time
t. The diameter of the initial sphere will be stretched
and compressed by the ratio of the eigenvalues. By
definition, strainlines are trajectories of the ξ1 field.
And the initial positions of LCSs are extracted as the
locally strongest repelling or attracting strainlines.
One gets later LCS positions by advecting the initial
positions according to the flow map (see the box). 

The LCSs thus obtained are truly Lagrangian
entities with no material flux across them. They
solve simple first-order, ordinary differential equa-
tions, and hence are smooth, parameterized curves.
By contrast, extracting ridges from FTLE calcula-
tions has proven to be a challenging image-process-
ing problem with no strict mathematical foundation.

The scenario from the Deepwater Horizon oil
spill presented in  figure 1b is a good example of the
strainline approach. The satellite image, taken on
17 May 2010, reveals a large tendril of oil that ex-
tends southeast from the body of the main spill; that
feature became known as the “tiger tail.” We have
recently applied the strainline method of LCS detec-
tion to data from a numerical simulation of the Gulf
of Mexico for that time period.

To expose the attracting LCSs responsible for
shaping the tiger tail, we calculated the Cauchy-
Green strain tensor for the  backward-time window
from 17 May to 14 May. From that information, the
ξ1 and ξ2 vector fields were determined and are
presented in figure 5a. In general, any point in the
domain is a starting point of a strainline—that is,
a trajectory of the ξ1 field.

Several such strainlines are marked in
 figure 5b. The strongest attracting strainlines (those
with the largest averaged values of λ2) are high-
lighted in red as the LCSs responsible for shaping
the tiger tail. The same procedure can be carried out
in forward time (from 14 May to 17 May) to identify

the repelling structures that played a key role in dis-
rupting the original shape of the oil spill. 

LCS-based decision making
The results shown in  figure 5, revealing the attract-
ing LCSs responsible for shaping the Gulf oil spill
between 14 May and 17 May, can be called a “hind-
cast.” They provide an explanation of something
that happened, based on data gathered beforehand.
Nonetheless, the analysis yields valuable insight be-
cause it provides a framework for explaining why
things behaved as they did. Building on that new-
found knowledge, however, one must ask whether
LCS methods can help forecast features such as the
tiger tail.

A first step toward forecasting is called “now-
casting,” the accurate determination of the present
state of the system from available information. The
ability to nowcast LCSs means that the current loca-
tion of key transport barriers in the ocean or atmos-
phere would be known, which in itself would be a
significant achievement. To accomplish that, the
way forward is to use the ever more comprehensive,
reliable, and up-to-the-minute data available
through satellite measurements and local monitor-
ing stations (for example, high-frequency radar and
ocean drifters) in combination with large-scale nu-
merical simulations.

Returning to the Deepwater Horizon spill as a
demonstration of the benefits of accurate nowcasting,
a recent analysis9 has revealed that a single LCS
pushed the oil spill toward the coast of Florida for
about two weeks in June 2010, as shown in figure 6a.
Had that information been available at the time, it
would likely have lent greater confidence to decision-
making strategies for the Gulf Coast.

The logical extension of nowcasting is the anti -
cipation that as the accuracy of numerical simulations
improves, the velocity-field data they generate can
support increasingly reliable LCS predictions. More
significant, however, is the discovery that so-called 
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Figure 4. Flow in a 
double gyre. (a) A circular
blob of black dye is 
released at time t0 in a
time- periodic flow field
with two vortices (gyres).
The velocity field at that
instant is indicated by the
magnitude and direction
of the blue arrows. 
(b) After being trans-
ported by the time-
dependent velocity field,
the dye and the field are
shown at t1. (c) A candidate
for the strongest repelling
Lagrangian coherent struc-
ture (LCS) (white line) at t0

bisects the initial dye blob.
The lightest background
shading indicates the
biggest positive finite-time Lyapunov exponents (FTLEs, described in the text). (d) A candidate for the strongest attracting 
LCS (black line) at t1 is responsible for the shape of the blob of dye at that time. The darkest background shading indicates
biggest negative FTLEs.



hyperbolic cores of LCSs can be used to forecast strong
events such as the tiger tail from nothing but informa-
tion obtained up to the present9 (see figure 6b).

A hyperbolic core of an attracting LCS is a short
segment of the LCS that has uniformly strong attrac-
tion—that is, where λ2 throughout the segment is
within the top 1% for the whole domain. If the flow
behaves in a reasonably 2D manner, then volume
conservation requires a strongly repelling LCS to
stretch significantly. Thus the region behaves like a
saddle point. The identification of a hyperbolic core
provides predictive capability because it indicates a
developing transport event, like the tiger tail, that’s
too strong to be halted by short-term future events.

Outlook 
Yielding profound insight about transport in com-
plex, time- dependent flows, the study of LCSs is now
a vibrant research field. Applications abound. In the
coming years, the LCS approach may well prove to
be crucial, for example, in the planned response to
the large quantity of debris from the Tohoku tsunami
that is approaching the US West Coast. In the longer
term, LCS methods are expected to yield improved
pollution monitoring and search-and-rescue strate-
gies along seacoasts. Ultimately, LCS applications
should also improve our understanding of transport
in industrial and biological flows.

Although the mathematical theory of attracting
and repelling LCSs is now well established, impor-
tant practical challenges remain, such as acquisition
of the requisite velocity data. For coastal regions, the
presence of high-frequency radar stations that can
provide the necessary data is becoming increasingly
common. And the fast numerical processing of such
data sets is now within reach, given the broad avail-
ability of parallel-computing platforms.

A recent advance in LCS theory provides a gen-
eral extraction tool for all key Lagrangian structures
in unsteady flows. Such structures include attracting
and repelling LCSs as well as coherent vortex-type
patterns (called elliptic LCSs) and jet-type patterns
(called shear LCSs). Via that approach, LCSs can be
unmasked by their telltale property of stretching less
than neighboring material lines do.10

A challenging computational task will be to fol-
low the evolution of LCSs as they are advected in
forward or backward time by the fluid flow. That’s
more than simply locating a repelling or attracting
LCS, respectively, at the beginning or end of a time
window. It requires the development of effective
numerical approaches to the advection of strongly
unstable material lines.

It also remains to connect LCS analysis to other
recent approaches to Lagrangian coherence such as
the set-theoretical approach of Michael Allshouse
and Jean-Luc Thiffeault11 and the probabilistic
methods of Gary Froyland and Katherine Padberg.12
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Figure 5. The developing tiger tail in the Deepwater Horizon oil spill (see figure 1b). (a) The eigenvector fields ξ1 and ξ2 for the
backwards time window 17 May to 14 May 2010 are shown, respectively, by the yellow and red arrows. (b) Several attracting
strainlines (trajectories of the ξ1 field) are plotted in black. The dominant strainlines, highlighted in red, are the attracting 
Lagrangian coherent structures responsible for shaping the tiger tail in figure 1b.

Lagrangian coherent structures (LCSs) are locally the most repelling or 
attacting strainlines in a flow field. One can obtain them by the following
computational steps:8

Step 1: Given a time-dependent velocity field u(x, t) over the time 
interval [t0 , t1], compute the flow map

the mapping that takes the initial position x0 = (x0 ,y0) of any fluid element
to its final position x1 = (x1,y1) due to the flow. 

Step 2: From derivatives of the flow map with respect to variations of
initial position, compute the deformation-gradient tensor: 

Step 3: The Cauchy–Green strain tensor is then defined as

Step 4: Strainlines are tangent to the eigenvector field ξ1 of the
Cauchy–Green tensor’s smallest eigenvalue. LCS positions at time t0 are
given by strainlines with the locally highest averaged values of the
Cauchy–Green tensor’s largest eigenvalue.
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The development of rigorous and efficient LCS
methods for 3D flows is under way. Such methods
will reveal the key 2D material surfaces that act as
transport barriers in 3D. That will yield better un-
derstanding of flow transport in a great variety of
physical systems. 
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a bFigure 6. The Deepwater Horizon
drilling rig exploded 20 April 2010
about 100 miles south of Alabama’s
Gulf coast (black triangle in both
panels). (a) A “hindcast” analysis of
the oil spill (brown) reveals the evo-
lution of an attracting Lagrangian
coherent structure (blue) that
pushed the oil eastward toward
Florida’s west coast between 9 and
19 June.9 Also shown, for reference,
are some additional strainlines (red)
on the latter date. (b) Analysis of
numerical data reveals the hyper-
bolic core (red circle; described in
the text) of an LCS close to the spill site on 15 May. The oil spill on that date is shown in green. That hyperbolic core forecasts
the later formation of the tiger tail (yellow) by 17 May.9


