

#### Seismo-acoustic signals of volcanic processes

Diana C. Roman (Carnegie Science) Robin S. Matoza (UCSB)

#### **Lecture Outline:**

- Introduction (15 minutes)
- Volcano-seismic signals I VTs
- Volcano-seismic signals II LPs, VLPs, tremor
- Acoustic signals
- Recommendations for multi-disciplinary integrated research

### Aims of Volcano Seismo-Acoustics

- Volcanology perspective understand volcanic processes from seismic/ acoustic signals and patterns
- Seismology and acoustics perspective understand seismic and acoustic source processes
- Monitoring and forecasting

### Paradigm I: Seismicity accompanies activity

 Seismicity at Augustine Volcano, Alaska, 1970-2007 Red lines = eruptions



Power et al. 2010

#### Paradigm I: Seismicity accompanies activity



After Power et al., 2019 "Failed eruption" problem - see Moran et al. 2011

### Paradigm I: Seismicity accompanies activity



Cameron et al., 2018

**Duration of Precursory Seismicity** 



Passarelli and Brodsky 2012 (GJI)

**Duration of Precursory Seismicity** 



After Passarelli and Brodsky 2012 (GJI)

**Duration of Precursory Seismicity** 



Passarelli and Brodsky 2012 (GJI)

### Paradigm II: Seismic Event Classes

- Multiple processes produce seismic signals at volcanoes. The signals are (mostly/sometimes) distinctive and ultimately reflect the nature and underlying physics of the source process
- By looking for different event types, we can identify the processes occurring in a magmatic system and thus gain information about the state of the volcano

#### Paradigm II: Seismic Event Classes

'LP' (long-period) or 'LF' (low-frequency):

#### Distinguished by frequency content and shape/length

'VT' (volcano-tectonic) or 'HF' (high-frequency):



After McNutt and Roman 2015 see Minakami 1974, Lahr et al. 1994, Miller et al. 1998 for classification scheme descriptions

#### Paradigm II: Seismic Event Classes

#### • Distinguished by frequency content and shape/length

Volcanic tremor (can be harmonic or broadband):



Explosion with ground-coupled airwave:



Rockfall signal (note cigar shape):



#### After McNutt and Roman 2015

# Utility and appropriateness of a universal event classification scheme?

- Implies the existence of clearly distinct classes rather than a spectrum of event characteristics
- Implies that event classes are uniquely linked to a particular source process
- Implies that events do not interfere/interact with each other

**Event Classification Issues** 

#### **Station-to-station variations: Mammoth 1989**



After Julian et al., 1998

#### Automated Event Detection/Classification

- Bueno et al. 2019, Seismol Res Lett https://github.com/srsudo/remos
- Malfante et al. 2018, IEEE Signal Proc Mag https://github.com/malfante/AAA
- Roman 2017, Geophys Res Lett https://github.com/dcroman/Tremometer (harmonic tremor detection)
- Wech and Creager 2008, Geophys Res Lett https://github.com/awech/AVO-alarms (broadband tremor detection)

# **Precursory Seismicity Patterns**



### **Precursory Seismicity Patterns**

#### Generic Volcanic Earthquake Swarm Model





### Precursory Seismicity Patterns: MSH 2004



Information Statement released

> alert level changes

Figure from Seth Moran

### Precursory Seismicity Patterns: MSH 2004



Moran et al., 2008

### Precursory Seismicity Patterns: Redoubt 2009



After Roman and Gardine 2013 and Roman and Cashman 2018

## Precursory (phreatic) Seismicity Patterns: Telica



Geirsson et al., 2014 Rodgers et al., 2015 Roman et al., in review

#### Volcanotectonic (VT) (aka "HF") earthquake:

- Clear high-frequency P and S waves, peak frequencies above 5 Hz, short coda
- Brittle response of host rock to processes in the magmatic system



VTs: Theory



See Toda et al., 2002; Segall et al. 2013; Coulomb 3.3: https://earthquake.usgs.gov/research/software/coulomb/

#### **Dike-induced stress regimes**



<u>Numerical models show</u> <u>two induced stress regimes:</u>

- Compression in walls of dike (perpendicular to dike strike)
- Tension above propagating dike

After Rubin and Pollard 1988

VTs: Theory



After Roman and Cashman (2006)

### Piton de la Fournaise, La Reunion - 1998



Time — — — •

Battaglia et al., 2005



Inset: Neal et al. (2018)

-155.4 -155.3 -155.2 -155.1 -155 -154.9 -154.8

Pu'u O'o

Vent

Leilani

Estates

#### Holuhraun, Iceland - 2014



After Sigmundsson et al., 2015

### Holuhraun, Iceland - 2014





#### Agustsdottir et al., 2016; Woods et al., 2019

### Mt. St. Helens, Washington - 2004



Roman and Cashman (2018)

Seismic: Moran et al. 2008; Geodesy: Dzurisin et al. 2008; Petrology: Pallister et al. 2008

### Mt. St. Helens, Washington - 2004







Lehto et al., 2010

### Mt. Spurr/Crater Peak, Alaska - 1992



MCR Precursory Eqs 'Distal' Eqs Eruption
♦ Well-constrained location ◆ Low-quality location

Roman and Cashman (2018) Seismic: Power et al. 1995; Petrology: Harbin et al. 1995 and Power et al. 2002

### Mt. Spurr/Crater Peak, Alaska - 1992



Fault-plane solution P-Axis azimuths



Roman et al. (2004)

**Distal VT Earthquakes** 



### Left: Pinatubo 1991 Below: Soufriere Hills 1995



**Distal VT Earthquakes** 

### Ruapehu, New Zealand - 1995



Hurst et al., 2018

### **Distal VT Earthquakes**

