

Maxim D. Ballmer Garrett Ito, Cecily J. Wolfe, Sean C. Solomon

DOUBLE LAYERING of **thermo-***chemical*

DIMB material can reconcile

upper_mantle

structure beneath

INTRODUCTION INTRODUCTION INTRODUCTION WOI'D VOICANIC and SEISMIC Map

all volcanism on Earth occurs on plate boundaries

INTRODUCTION INTRODUCTION INTRODUCTION WOI'D VOICANIC AND SEISMIC Map

all volcanism on Earth occurs on plate boundaries. All volcanism?

MOTIVATION MOTIVATION MOTIVATION Intraplate volcanism as probes of the maintle

MOTIVATION MOTIVATION MOTIVATION Intraplate volcanism as prodes of the maintle

INTRODUCTION PART 2 INTRODUCTION PART 2 INTROD a Wallan hous point

- Vigorous volcanism
- long-lived hotspot (>84 Myrs)
- linear age-distance relationship
- supported by large swell

=> caused by mantle plume

INTRODUCTION PART 2 INTRODUCTION PART 2 INTROD a Wallam Dous Dou

- Vigorous volcanism
- long-lived hotspot (>84 Myrs)
- linear age-distance relationship
- supported by large swell

=> by *classical* plume ???

INTRODUCTION PART 2 INTRODUCTION PART 2 INTROD Geophysical evicence vs. classical theory

INTRODUCTION PART 2 INTRODUCTION PART 2 INTROD geophysical evicence vs. classical theory

SE

NW

INTRODUCTION PART 2 INTRODUCTION PART 2 INTROD geophysical evicence vs. classical theory

CENSORED

INTRODUCTION PART 2 INTRODUCTION PART 2 INTROD VOICANIC FECORE VS. Classical theory

INTRODUCTION PART 2 INTRODUCTION PART 2 INTROD patterns of volcanism vs. classical theory

Bianco et al. (2005)

INTRODUCTION PART 2 INTRODUCTION PART 2 INTROD patterns of volcanism vs. classical theory

Bianco et al. (2005)

INTRODUCTION PART 2 INTRODUCTION PART 2 INTROD patterns of volcanism vs. classical theory

INTRODUCTION PART 2 INTRODUCTION PART 2 INTROD geochemical asymmetry vs. classical theory

INTRODUCTION PART 2 INTRODUCTION PART 2 INTROD geochemical asymmetry vs. classical theory

- 1) seismic constraints from PLUME
 - thick low-velocity body
 - overall asymmetry
- 2) volcanic flux variations
- 3) widespread secondary volcanism
- 4) geochemical asymmetry

1) seismic constraints from PLUME

- thick low-velocity body
- overall asymmetry

2) volcanic flux variations

3) widespread secondary volcanism
4) geochemical asymmetry

- 1) seismic constraints from PLUME
 - thick low-velocity body
 - overall asymmetry
- 2) volcanic flux variations
- 3) widespread secondary volcanism
- 4) geochemical asymmetry

1) seismic constraints from PLUME

- thick low-velocity body
- overall asymmetry
- 2) volcanic flux variations
- 3) widespread secondary volcanism
- 4) geochemical asymmetry

1) seismic constraints from PLUME

- thick low-velocity body
- overall asymmetry
- 2) volcanic flux variations
- 3) widespread secondary volcanism
- 4) geochemical asymmetry
- 5) asymmetry in swell geometry

INTRODUCTION PART 2 INTRODUCTION PART 2 INTROD >>> problem statement <<<

INTRODUCTION PART 2 INTRODUCTION PART 2 INTROD plumes may be thermochemical plumes

INTRODUCTION PART 2 INTRODUCTION PART 2 INTROD alternative: thermochemical plumes

Kumagai et al. (2008)

mafic lithologies such as eclogite are intrinsically dense → fat, complex plumes

Farnetani and Samuel (2005)

INTRODUCTION PART 2 INTRODUCTION PART 2. INTROD evidence for maric heterogeneity in Hawaiian lavas

INTRODUCTION PART 2 INTRODUCTION PART 2 INTROD Mafic heterogeneity in mantle upwellings

15-20%-eclogite in plume stem Sobolev et al. (2005, 2007)

INTRODUCTION PART 2 INTRODUCTION PART 2 INTROD Mafic heterogeneity in mantle upweilings

INTRODUCTION PART 2 INTRODUCTION PART 2 INTROD COCILIC Plumes in the upper mantle

hypothesis: pooling in two layers

INTRODUCTION PART 2 INTRODUCTION PART 2 INTROD COCILIC Plumes in the upper mantle

hypothesis: pooling in two layers

INTRODUCTION PART 2 INTRODUCTION PART 2 INTROD COCILIC Plumes in the upper mantle

hypothesis: pooling in two layers

RESULTS PART 2 RESULTS PART 2 RESULTS PART 2 DOOLING IN a LNICK COUDIC- aVer

RESULTS PART 2 RESULTS PART 2 RESULTS PART 2 Ceep eclogitic pool (DEP) dynamics

eclogitic core of thermochemical plume.

non-eclogitic buoyant outskirts of the plume dynamically support the "DEP"

RESULTS PART 2 RESULTS PART 2 RESULTS PART 2 Ceep eclogitic pool (DEP) dynamics

eclogitic core of thermochemical plume.

non-eclogitic buoyant outskirts of the plume dynamically support the "DEP"

eclogitic core of thermochemical plume.

non-eclogitic buoyant outskirts of the plume dynammically support the "DEP"

eclogitic core of thermochemical plume. *NOW: radius: 100 km* (*not as before: 90 km*)

non-eclogitic buoyant outskirts of the plume dynammically support the "DEP"

no eclogite

RESULTS PART 2 RESULTS PART 2 RESULTS PART 2 MOCE 0 II MOCON

interaction of a plume with small-scale convection

eclogitic core of thermochemical plume.

non-eclogitic buoyant outskirts of the plume dynammically support the "DEP"

RESULTS PART 2 RESULTS PART 2 RESULTS PART 2 MOC C 1 I MOUON

isosurfaces of temperature isosurfaces of melting rate

eclogitic core of thermochemical plume.

non-eclogitic buoyant outskirts of the plume dynammically support the "DEP"

eclogitic core of thermochemical plume. *NOW: radius: 100 km* (*not as before: 90 km*)

non-eclogitic buoyant outskirts of the plume dynammically support the "DEP"

RESULTS PART 2 RESULTS PART 2 RESULTS PART 2 MOCE 2 ... IN MOUON

RESULTS PART 2 RESULTS PART 2 RESULTS PART 2 Geochemical non-symmetry

RESULTS PART 2 RESULTS PART 2 RESULTS PART 2 NON-Symmetry of shallow structures

RESULTS PART 2 RESULTS PART 2 RESULTS PART 2 VOICANIC IUX VAILATIONS

RESULTS PART 2 RESULTS PART 2 RESULTS PART 2 S-wave mantle velocity constraints

S-wave % velocity anomaly -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

depth = 200 km

l synthetic based on thermochemical plume

-1800 2000

model

1400

1700

depth = 200 km

wave mantle velocity constraints

1400

wave mantle velocity constraints

wave mantle velocity constraints

20 Latitude

-50 -60 70

-80(900

100

1100

- 1200 - 1300 - 1400 - 1500 - 1600 1700

1800

1900 2000

RESULTS PART 2 RESULTS PART 2 RESULTS PART 2 WICES Pread Secondary Voca hism

1250 1600°C

RESULTS PART 2 RESULTS PART 2 RESULTS PART 2 Widespread secondary vocalnism

CONCLUSION CONCLUSION CONCLUSION CONCLUSION Dredictions VS. Observations: model 0

CONCLUSION CONCLUSION CONCLUSION CONCLUSION predictions vs. observations: models 1/2

Thermochemical plumes comprising ~15% eclogite ...

 \rightarrow pool in a deep eclogitic pool

- → can explain seismic velocity structure beneath the Hawaiian hotspot
- → can give rise to geochemical asymmetry of hotspot volcanism without pre-existing heterogeneity in the plume stem.
- → can account for volcanic flux variations

Thermochemical plumes comprising ~15% eclogite ...

 \rightarrow pool in a deep eclogitic pool

- → can explain seismic velocity structure beneath the Hawaiian hotspot
- → can give rise to geochemical asymmetry of hotspot volcanism without pre-existing heterogeneity in the plume stem.
- → can account for volcanic flux variations

Thermochemical plumes comprising ~15% eclogite ...

- \rightarrow pool in a deep eclogitic pool
- → can explain seismic velocity structure beneath the Hawaiian hotspot
- → can give rise to geochemical asymmetry of hotspot volcanism without pre-existing heterogeneity in the plume stem.
- → can account for volcanic flux variations

Thermochemical plumes comprising ~15% eclogite ...

- \rightarrow pool in a deep eclogitic pool
- → can explain seismic velocity structure beneath the Hawaiian hotspot
- → can give rise to geochemical asymmetry of hotspot volcanism without pre-existing heterogeneity in the plume stem.
- → can account for volcanic flux variations

CONCLUSION CONCLUSION CONCLUSION CONCLUSION TAKE-home messages

Depyright (c) 2000 Editions Albert René / Goschmy- Uderzo

RESULTS PART 2 RESULTS PART 2 RESULTS PART 2 MODEL 0

no eclogite

RESULTS PART 2 RESULTS PART 2 RESULTS PART 2

eclogitic core of thermochemical plume. *NOW: smooth transition*

non-eclogitic buoyant outskirts of the plume dynammically support the "DEP"

RESULTS PART 2 RESULTS PART 2 RESULTS PART 2 Geochemical non-symmetry

