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plume-pancake pushes up the 
lithosphere  hotspot swell 

Ribe & Christensen (1994) 
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S-Wave Tomo. P-Wave Tomo. 

Rayleigh 
Wave  
Tomo. 

(1) Asymmetric & 
Short Wavelength 
Structure 

NW                   SE 
SE 

Ribe & Christensen [1999] 
Thermal plume 

(1) Low Vs,Vp body is 
too thick (~400 km)! 

Laske et al. (2011)       Wolfe et al. (2009; 2011) 
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Enigmatic observations at Hawaii 

1) seismic constraints from PLUME 

- thick low-velocity body 

- overall asymmetry 

2) volcanic flux variations 

3) widespread secondary volcanism 

4) geochemical asymmetry 

5) asymmetry in swell geometry 
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- steady-state 

Ribe & Christensen (1994) 
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alternative: thermochemical plumes 

 
Farnetani and Samuel (2005) 

 
Kumagai et al. (2008) 

mafic lithologies 

such as eclogite 

are intrinsically 

dense 

 fat, complex plumes 
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                 Herzberg (2011) 

evidence for mafic heterogeneity 
 in Hawaiian lavas 

more mafic materials in the 

source of Loa-volcanoes 

  Sobolev et al. (2005) 



INTRODUCTION PART 2    INTRODUCTION PART 2    INTROD 

mafic heterogeneity in mantle upwellings 

15-20%-eclogite in plume stem 

  Sobolev et al. (2005, 2007) 



INTRODUCTION PART 2    INTRODUCTION PART 2    INTROD 

15-20%-eclogite in plume stem 

  Sobolev et al. (2005, 2007) 

pyroxenite 

2
5

0
~

1
5

0
 k

m
 

ECL-melting: 

ECL+PER= 

~1m to ~1km 

65% dry 
peridotite 

 

20% 
hydrous 

peridotite 
 

  15% 
eclogite 

 

~76% 
peridotite 

 

18% 
pyroxenite 

 

  6% refr.  
eclogite 

 

Ito and Mahoney (2005) 

mafic heterogeneity in mantle upwellings 
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eclogitic plumes in the upper mantle 
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Take-home messages 

I’m neither fat 
nor double-layered 

not all plumes  
are classical 



The End 
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