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Other Bodies

lo (NASA)

6/26/16




Other Contexts

Atmosphere

7 ADELIE

ﬁ_j . Agi.

Abbett et al. 2004

Wi(gzeefl%nge of outcomes are predicted by basic equations

Rahmstorf 2006




Outline

1. A brief overview of the governing equations
2. Introduction to dimensionless numbers

3. Onset of convection (elements of stability)
4. The boundary layer model

5. Scaling relations and thermal histories, and some complications

Please ask questions as issues become unclear or you have other questions

6/26/16



Conservation of mass



Some Tools

Fluid Parcel (mass M or volume V)

1. Time Derivative (e.g. acceleration a)

_dv(x,t)  Ov N ov 0x
- dt 9t ox Ot

a

6/26/16



Some Tools

Fluid Parcel (mass M or volume V)

1. Time Derivative (e.g acceleration a)

_dv(x,t)  Ov
a— e 6t+v-Vv

6/26/16



Some Tools

Fluid Parcel (mass M or volume V)

1. Time Derivative (e.g acceleration a)

_dv(x,t)_ 0 _2
a=—n - (a”'v)" Dt

/

6/26/16 material derivative



Another Tool

Fluid Parcel (mass M or volume V)

2. Reynolds Transport Theorem

d

Df
el dV = / [_

6/26/16

+f(V-v)] dV =0

10



6/26/16

Mass of parcel

An Example

M = pdV
V()

11



Conservation of Mass

Conservation of mass requires

Dp B
E‘FP(V'V)—O

Equivalent form (substitute for Dp/Dt )

0
8—§+V-Vp+p(v-v):0

Incompressible flow

V:-v=20

6/26/16

wall

12



Conservation Equations

Conservation of Momentum p= / pvdV
V()

Newton’s 2" Law

— pvdV =F
dt -/V(t) ~—

total force on parcel V(t)

6/26/16 (eg gravity, pressure, viscous drag,lgtc)



Conservation of momentum
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Conservation Equations

Conservation of Heat” H = pCpT dV
V()

d

dt V(t)

(= —kVT)

conduction across surface S(t)

15
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Conservation Equations

Conservation of Heat” H = pCpT dV
V()

4 [ porav=-— V-qu+/ RdV
dt Jy @) V) V)

(@=—kVT)

16



Conservation Equations

Conservation of Heat” H = pCpT dV
V()

DT
f (pcp— + pC,T(V - v)) dv = / (V-kVT +R) dV
V() Dt V(t)

6/26/16

17



Conservation Equations

Conservation of Heat” H = pCpT dV
V()

DT
f (pcp— + pC,T (¥ - v)) v = / (V-kVT + R) dV
V() Dt V(t)

* assurn@s Constant pandC, (q - _kVT]l



Summary for Incompressible Fluid

mass Dp

— =  — Ry —

Dy 0 V-v=0
momentum Dv _ 2

p— = —VP+ pg+nV3v

Dt

DT
heat — V2T

pC) D VT + R

Momentum equation is often called Navier-Stokes equation

| Claude George
Navier Stokes




Summary for Incompressible Fluid

mass Dp

— =  — Ry —

Dy 0 V-v=0
momentum Dv _ 2

p— = —VP+ pg+nV3v

Dt

DT
heat — V2T

pC) D VT + R

Equation of state: relate density variations to changes in temperature

10p _ |
p 0T thermal expansion

y Joseph Boussinesq
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Summary for Incompressible Fluid

mass Dp

— — D
Dto V-v=20

momentum p (2—: +v- VV) = —VP + pg +nV?v

heat pCy (%—f + v VT) = kV?T + R

+ Boundary conditions:
- free slip, v=0
- heat flow, fixed T

21



Digression on “Viscous” Force

Force f=V- -7 where 7 i1s deviatoric stress tensor

. : 1
Newtonian fluid 7 = 27€ where strain rate e = i(Vv -+ (VV)T)

= f=nV

Rheology

More generally

€ = f(T,P,T,..)T

Other variables: grain size, volatiles,
partial melt, deformation history

Mineral Physics lectures 2, 4 and tutorial 2




2. Dimensionless Numbers

Define dimensionless variables L £ £ L g =R
x’=x/R

(VERY / Vax Vimax
t'=t/zt

Ay AP R A L A AN L 4

Navier-Stokes (in Sl units) v=0 (noslip)

p(%—j—l—v-Vv) = —VP +nViv

Change variables to x’, t/, v’

Re (n/p) v

Reynolds number 24

!/
(% + v’ VV’> = —VP' + iV2V’ Re = Umactt _ Vmasf?

6/26/16



3. Convection Problem

T Dimensionless variables
X'=x/L
T,(2)
L T=T/AT
l ,? t'=t/t wheret=L%
v =v/(L/7)

Change variables to dimensionless quantities Dimensionless numbers
1. V-v =0
, Pr = Y
2. 1 al—|—V’-Vv’ = —VP' + RaT'z + V?V' &
Pr \ ot
3
T B agATL
3. 1 VI . VTI — va/ i Rl Ra = —/{,1/

ot/ 25



Convection Problem

T Dimensionless variables
X'=x/L
T,(2)
L T=T/AT
l t'=t/t wheret=L%
v =v/(L/t)

Change variables to dimensionless quantities Dimensionless numbers

1. V-v =0

1 [ov/ .
2. Pr (3—‘1;7(’ : VV’) = —VP' + RaT'z + V?V' K (mantle)

ATL3
g CIATL

oT’ )
5 TV VI =VT' + R v




Onset of Convection

When does convection begin?

To@ agATL?
KV

Consider time evolution of a small perturbation in an initially conductive state

T(x,y,2,t) =To(z) + 0T (x,y, 2) e’"

ot

v(x,y,z,t) =dv(x,y,z)e

Substitute into (linearized) equations and solve for growth rate o
6/26/16 27



Onset of Convection

4500

400 -

When does convection begin? 2800|

20001

agATL? | o -

Ra = - -_

500

Consider time evolution of a small perturbation in an initially conductive state

T(x,y,2,t) =To(z) + 0T (x,y, 2) e’"
v(z,y,2,t) = o6v(z,y, z)e”

Substitute into (linearized) equations and solve for growth rate o
6/26/16 28



Rayleigh Number Ra

buoyancy I l

Velocity of Parcel v= APQLQ/ n
@
For hot fluid |Ap| = paAT A

viscous drag l

Ratio of conduction to advection time?

. vL _ pag ATL?

Ta K K1)

(Rayleigh number)

e.g. L=2900km, AT~ 3000 K, Ra~ 108 (critical Ra,~ 103)



6/26/16

4. Boundary Layer Theory

Initial State Convecting State
T T boundary layer
TO (2)
L L T(2)
l l boundary layer
- AT —— < AT —_—

Heat is carried by advection in the interior (e.g. q,=p Cp Tv,). The vertical
velocity vanishes at the boundaries, so heat must be carried by conduction
across the boundaries (e.g. q,=-k dT/dz).

—» The boundary layers are key to understanding convection

31



Boundary Layer Theory

Heat flow across layer* — [
0
_ kAT |

Qeconv = l@ convection 6

In the initial state (before convection) \

k(AT)
Qcond =
L
Efficiency of convection Qeconv i — Nu (Nusselt number)
cond 2l9

6/26/16 * . 32
lg is average value



Boundary Layer Instabilities

t=t,
Cold boundary layer grows by conduction ()
into the convecting region N

T(z) ~ AT/2

lg ~ Kt
t=t,

Eventually the boundary layer becomes L@~ (k0)?
unstable at time t_ '

T(z) ~ AT/2
Define a local Rayleigh number

3
Ra; = ag(AT/2) 1 Instability occurs when Ra, ~ Ra_ ~ 10°

6/26/16 RV 33



Average Heat Flow

Heat flow q(t)

[o(t) ~ (xt)'?

AT AT/2
t) = -k— ~k— | N
q(t) e —

T(z) ~ AT2

Time average

le
0~ 1/ JAT/2 - EAT
tc 0 \/E f{tc

Recall that [§ = /kt. isdefined by Ra = Ra

6/26/16 34



Nu-Ra Relationship

Time average

g = kAT/1S [o®) ~ (k)"
where e 294 = azz
Ra, — A&T/2)g (%5)° _
KV
This means that
15 (2Ra.\"* Ra \'/*
ZQZ<RZ> — N“:(QRZC)

* remember that lg = 21_9 Nu-Ra relationship 35



Comparison with Experiments

Experiments (Niemela et al. 2000)

b

10°¢ 0.30940.0043
: Nu=0124Ra Boundary-layer theory

Ra 1/3
. Nu =
2 : “ <2Rac>
2
o Nu = 0.089Ra’33
101 - * 4 . using Kraichnan’s estimate
10"  10° 10" 10" 10" 10" for Ra, ~ 700
Ra

Existence of asymptotic regime? Nu ~ Ral/2
6/26/16 36



Application to Mantle Convection

1. Thickness when layer becomes unstable?

Ra, — “AT/2)g (15)*  Ra ( 5>3

KV 2

2. Time to become unstable?

3. Dependence of heat flow on layer thickness?

qg= kAT/l

6/26/16

37



5. Thermal Histories

! a=qa
Heat Budget o
c,ML _ R / \
pM s = R(t) — Q1) + Qult) i /
Convection \ \
1/3
g(t) = kTL(t)Nu(t) _ ’“TL“) (f;?) [ o
where Temperature Dependence
3 E
Ra(t) = agz;((tt))L v(T) < exp (ﬁ)

6/26/16 40



Change in Heat Flow

Heat Flow

Viscosity
7
2 3
wv [N
o] o
v ©
2 v
> T
2 2
& &
& &
0 L L L I 0 L
1300 1350 1400 1450 1500 1550 1600 1300 1350

Potential Temperature (C)

Strong temperature dependence leads to a therma

6/26/16

Ill

Il 1 1 Il
1400 1450 1500 1550 1600

Potential Temperature (C)

catastrophe” at early times

42



Thermal Evolution of Mantle

1800 — T T 150 -
" Ur(0)=0.3 i l
1700 |- F = -
F i
i 4 ] — 100 |-
1600 - 0.7,f N -
i /' ] I
4 [W—
~ 1500 |- ’ s, -
- / 3 ...‘.0“‘ o 75 .’..‘ O 50 B
1400 pat .
0‘5' 3 ] :
(a) - -
1300 1 | L | 1 I 1 0 1 I 1 | 1 | 1
0 1 2 3 4 0 1 2 3 4
Time before present (Ga) Time before present (Ga)

Korenaga (2008)

radiogenic heat 11

Urey number Ur = = 0.3

convective heat lux 36

6/26/16 43



5. Further Complications

Extensions to boundary layer theory?

1. Melting and volcanism - affects heat transport and composition (buoyancy)

2. Rheology — some mixture of elastic, viscous and plastic behavior
(more Geodynamics 2)

3. Initial conditions?

6/26/16 45



Pressure (G Pa)

Decompression Melting

Temperature (°C)
1100 1300 1500
Dl L T

. S N * .
Plagioclage™, ~1\‘ .
N w

i o

Spinel
Iherzolite

-~ LU
-
S e

B CondUC th,
900 ”’e}‘m

Garnet
Iherzolite

6/26/16

Melting

Melting forms oceanic crust (basalt)
and depleted residuum (harzburgite)
More in geochemistry lectures . ..

Densities

basalt ~ 2.9 g/cm?3

harzburgite ~ 3.2 g/cm?

lherzolite ~ 3.3 g/cm?3

46
Oxburgh & Parmentier (1977)



Buoyancy of Lithosphere

depth to base of layers Age of neutrally buoyant lithosphere
2GQQ
harzburgite .~
o o
= &l = Sl
g 150 >
~— ~ 2
c ’ ~ QL
o o I
g Sr &
45 . 50 § i
basaltic crust_ _________ 3.0 ----------
| @ T ! ! ] 1 ] | !
1300 1400 1500 1600 1700 1300 1400 1500 1600 1700
Toot (°C) Tpot (°C)
P van Hunen et al. (2008)
0.1
— 0.08/\
o
S
= o006} .
3
L 0.04f
3
T .ol average heat flux
0 . . .
1300 1350 1400 1450 1500 Sleep (2007)
6/26/16 47

Potential Temperature (°C)



Not only thermal buoyancy:

Primordial Layering?

—
.d

s j

-ICMB

6/26/16 McNamara et al. (2010)



Summary

How good is our theory of mantle convection?

Extrapolation back in time ?

heat flow?

number or size of plates?

continental configuration?

surface environment/climate?

Mantle

(S. Rost)
6/26/16 50



s wh e

Geodynamics I: Basics of Thermal Convection

Brief overview of governing equations
Dimensionless numbers
Onset of convection

Boundary layer model
Scaling relations and thermal evolution

Thermal convection, constant viscosity

R
Vo < AR
icse

Why? o

4000 5000 6000 7000 8000
x (km)

0 1000 2000 3000

* Interpret observations (surface, interior) in terms
of process and history

Bruce Buffett, UC Berkeley
6/26/16 Presented by Michael Manga, UC Berkeley
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