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[1] Conditional sequential Gaussian simulations (sGs) have been applied for the first time
to the study of soil diffuse degassing from different volcanic and nonvolcanic systems.
The application regards five data sets of soil CO2 fluxes measured with the accumulation
chamber methodology at the volcanic areas of Solfatara of Pozzuoli (Italy), Vesuvio cone
(Italy), Nisyros (Greece), and Horseshoe Lake (California) and at the nonvolcanic
degassing area of Poggio dell’Olivo (Italy). The sGs algorithm was used to generate 100
realizations of CO2 flux for each area. Probabilistic summaries of these simulations,
together with the information given by probability plots, were used (1) to draw maps of
the probability that CO2 fluxes exceed thresholds specific for a background flux, i.e., to
define the probable extension of the degassing structures, (2) to calculate the total CO2

output, and (3) to quantify the uncertainty of the estimation. The results show that the
sGs is a suitable tool to model soil diffuse degassing, producing realistic images of the
distribution of the CO2 fluxes that honor the histogram and variogram of the original data.
Moreover, the relation between the sample design and the uncertainty of estimation was
investigated leading to an empirical relation between uncertainty and the sampling density
that can be useful for the planning of future CO2 flux surveys. INDEX TERMS: 1099

Geochemistry: General or miscellaneous; 1094 Geochemistry: Instruments and techniques; 8424 Volcanology:

Hydrothermal systems (8135); 8494 Volcanology: Instruments and techniques; KEYWORDS: CO2 flux,

stochastic simulation, volcanic degassing, diffuse degassing
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1. Introduction

[2] Recently, a great interest has been addressed to the
study of CO2 Earth degassing. There are many objectives to
such studies, for example, the definition of the relations
between the flux and the tectonic structures [Etiope, 1999;
Etiope et al., 1999; Lewicki and Brantley, 2000], the
quantification of deeply derived CO2 release to the atmo-
sphere in the framework of the carbon global budget [Allard
et al., 1991; Brantley and Koepenick, 1995; Seward and
Kerrick, 1996; Kerrick et al., 1995; Marty and Tolstikhin,
1998; Williams et al., 1992], and the study of volcanic
degassing. In particular, numerous studies have been fo-
cused on the CO2 soil diffuse degassing from quiescent
active volcanoes [Brombach et al., 2001; Chiodini et al.,
2001, 1996, 1998; Hernandez et al., 1998; Gerlach et al.,
2001; Salazar et al., 2001; Farrar et al., 1995]. Most of

these studies showed that gas is not released uniformly from
the whole volcanic apparatus, but rather from relatively
restricted regions, which were named diffuse degassing
structures (DDS) [Chiodini et al., 2001]. Moreover, quan-
titative estimates of hydrothermal-volcanic gas released
from DDS highlighted the importance of gas and thermal
energy released by DDS in the mass and energetic balance
of quiescent volcanic systems [Chiodini et al., 2001].
Independently from the specific aims of investigations, the
mapping of DDS and the quantification of the amount of
released CO2 can be considered common objectives of all
these studies.
[3] Mapping of CO2 fluxes from soil was mainly per-

formed by use of interpolation algorithms, generally kriging
[e.g., Bergfeld et al., 2001; Chiodini et al., 1996, 1998,
2001; Rogie et al., 2001; Gerlach et al., 2001]. The kriging
algorithm is focused in providing the ‘‘best,’’ defined in a
minimized least squares sense, hence unique, local estimate
of a variable without specific regard to the resulting spatial
statistics of the all estimates taken together [Deutsch and
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Journel, 1998], producing a set of estimated values at the
unsampled locations whose variogram does not match that
of the original data. Moreover, kriging smoothes out the
extreme extrapolated values, with small values being over-
estimated while large values are underestimated, hiding the
pattern of high values, which is important in our applica-
tions to define degassing structures.
[4] Total CO2 releases were usually calculated either by

multiplying the arithmetic mean value of CO2 fluxes by the
surveyed areas, or by applying volume and area integration
algorithms to the grids produced to contour the CO2 flux, or
by a graphical statistical approach (GSA) independent from
any interpolation technique (described by Chiodini et al.
[1998]). Together with the quantification of total CO2

release, the definition of the related uncertainty is essential,
especially in volcanic surveillance for the recognition of
anomalous states. Kriging provides only an incomplete
measure of local accuracy, except if a Gaussian model
for errors is assumed, and no indication of the accuracy
if several points are considered together [Deutsch and
Journel, 1998]. On the contrary GSA approach allows the
definition of a confidence interval for the estimation, but
this calculation does not take into account the spatial
correlation between the data, resulting generally in an
overestimation of the uncertainty. This overestimation of
the uncertainty is particularly unsuitable for monitoring
purposes, since smaller uncertainty makes it possible to
detect smaller variations.
[5] The aim of this work is the application of stochastic

simulation algorithms to soil gas flux data. This approach is
becoming common and preferred to traditional interpolation
algorithms in the soil science, where the spatial variability
of the measured attributes has to be preserved [Goovaerts,
2000], for example, in the definition and characterization of
contaminated soils and groundwater [Goovaerts, 1997,
1999b, 2001, and references therein; Lin and Chang,
2000; Lin et al., 2001; Istok and Rautman, 1996] and for
assessment of corn yield risks connected to soil strength/
compaction [Lapen et al., 2001].
[6] The basic idea of stochastic simulation is to generate a

set of equiprobable representations (realizations) of the
spatial distribution of the attribute, all reproducing reason-
ably the global statistic and spatial features of data samples
(i.e., sample histogram and semivariogram model), instead
of producing a single representation that yields the mini-
mum error variance at each location. The ensemble of these
realizations is thus an explicit representation of the uncer-
tainty associated with our conceptual understanding of the
single, but unknown reality [Rautman and Istok, 1996].
According to Goovaerts [2001], differences among many
simulated maps have been used as a measure of the
uncertainty.

[7] In this paper a stochastic simulation algorithm is
applied to 5 data set of soil CO2 fluxes measured in different
volcanic and nonvolcanic degassing areas, with the objec-
tive of mapping the degassing areas, i.e., defining the
diffuse degassing structures, and evaluating the total emitted
CO2 with the associated uncertainty. Moreover, we try to
define a reasonable criterion for the definition of an ‘‘op-
portune’’ sampling design.

2. Materials and Methods

2.1. Experimental Data Set

[8] The CO2 flux data used in this paper were collected
during the last decade at Solfatara of Pozzuoli crater (2000,
Naples, Italy), Vesuvio cone (2000, Naples, Italy), Poggio
dell’Olivo gas manifestation (1999, Viterbo, Italy), Nisyros
caldera (1999–2001, Nisyros Island, Greece), andHorseshoe
Lake (1997, Long Valley Caldera, California). Excluding the
data of Solfatara of Pozzuoli andmost of the Nisyros data that
are unpublished, the remaining data were already treated and
interpreted with different statistical and geostatistical tools
[Brombach et al., 2001; Chiodini et al., 1999, 2001; Rogie
et al., 2001; F. Frondini et al., Diffuse degassing at Vesuvio,
Italy, submitted to Bulletin of Volcanology, 2003]. In all the
study areas the survey of diffuse CO2 flux from soil was
performed by the accumulation chamber methodology. This
methodology allows quick direct measurements of the CO2

flux from soil without drastically altering the natural flux in a
wide range of fluxes [Chiodini et al., 1996, 1998; Evans et
al., 2001;Welles et al., 2001]. The measurement is made over
a surface of about 0.03 m2 that can be considered a ‘‘point
support’’ measurement.
[9] The data sets used for the application of stochastic

simulation have been chosen for their different size, ranges
of measured CO2 flux values and for the differences in
the sampling design used in each study area (Table 1 and
Figure 1). In the case of Horseshoe Lake a subset of data has
been selected from those previously published [Rogie et al.,
2001], to obtain a regularly shaped study area without large
border areas with no data.

2.2. GSA Method

[10] In DDSs CO2 flux from soil is fed by multiple gas
sources such as biological and volcanic. This dual origin of
the gas often results in a bimodal distribution of CO2 flux
values, which plots as a curve with an inflection point on
logarithmic probability plots (see, e.g., Figures 3a, 3b, 3c,
and 3e). On a logarithmic probability plot, a curve with an
inflection point describes in fact the theoretical distribution of
two overlapping lognormal populations, while a single log-
normal population would plot as a ‘‘straight’’ line and n
overlapping lognormal populations would result on a curve
characterized by n � 1 inflection points.

Table 1. Summary of Sampling Design and CO2 Flux Statistics

Study
Area

Surveyed
Surface, m2

Number of
Measurements

Sampling
Design

Minimum and Maximum,
g m�2 d�1

Mean CO2 Flux,
g m�2 d�1

Solfatara of Pozzuoli 1.4 � 106 414 random 3.0–30987 1300.0
Vesuvio cone 3.4 � 104 110 20 m spaced grid 0.1–252 20.0
Poggio dell’Olivo 8.2 � 105 196 random 0.5–8797 489.0
Nisyros caldera 2.0 � 106 2883 20–25 m spaced grid 0.01–6175 39.7
Horseshoe Lake 1.3 � 105 313 20 m spaced grid 5.7–8670 800.0
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Figure 1. Location map of study areas and measurement point locations: (a) Solfatara of Pozzuoli;
(b) Poggio dell’Olivo, (c) Vesuvio cone, (d) Nisyros caldera, and (e) Horseshoe Lake.
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[11] GSA method [Chiodini et al., 1998] consists in the
partition of these complex distributions into different log-
normal populations and in the estimation of the proportion
( fi), the mean (Mi), and the standard deviation of each

population following the graphical procedure by Sinclair
[1974]. Since the computed statistical parameters (i.e.,
mean, standard deviation and proportion) refer to the
logarithm of values, the mean value of CO2 flux and the
central 90% confidence interval of the mean are estimated

Figure 2. Histogram plot of CO2 flux and summary of
data statistics: (a) Solfatara of Pozzuoli; (b) Vesuvio cone,
(c) Poggio dell’Olivo, (d) Nisyros caldera and (e) Horseshoe
Lake.

Figure 3. Probability plot of CO2 flux: (a) Solfatara of
Pozzuoli; (b)Vesuvio cone, (c) Poggio dell’Olivo, (d)Nisyros
caldera, and (e) Horseshoe Lake. Figure 3 shows the original
samples (dots), the theoretical partitioned populations
following the procedure of Sinclair [1974] (black line),
and the probability plots of simulated values relative to
50 realizations randomly selected for each area (shaded lines).
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by means of the Sichel’s t estimator [David, 1977]. The
estimated mean flux values are used to compute the total
CO2 output associated to each population. An evaluation of
the area covered by each population (Si) is obtained by
multiplying the study area (S ) by the corresponding
proportion of the population (i.e., Si = fiS ). The total CO2

output associated to each population is then estimated
multiplying Si by Mi. The total CO2 release from the entire
studied area can be obtained summing the contribution of
each population (i.e.,

P
SfiMi). In the same way, the central

90% confidence interval of the mean are used to calculate
the uncertainty of the total CO2 output estimation of each
population.
[12] Even if the GSA approach resulted a useful tool for

the interpretation of the diffuse degassing process [e.g.,
Chiodini et al., 1998, 2001], the results obtained by the
GSA can be affected by some arbitrary choices: (1) The
polymodal lognormal distribution of CO2 flux values is a
model convenient for the subsequent decomposition, but it
is not a fact (natural distribution of CO2 flux can be more
complex than lognormal), and (2) the partitioning procedure
does not result into a unique solution. Even to avoid these
limits, an alternative approach based on stochastic simula-
tion has been investigated.

2.3. Stochastic Simulation

[13] The simulations were performed using the sequential
Gaussian simulation algorithm (sGs) by the program sgsim
[Deutsch and Journel, 1998]. SGs operates considering an
attribute (CO2 flux from soil in this study) as the realization
of a stationary multivariate Gaussian random function. The
attribute values are simulated at locations defined by a grid
covering the area of interest. The simulation is conditional
and sequential, i.e., the variable is simulated at each
unsampled location by random sampling of a Gaussian
conditional cumulative distribution function defined on
the basis of original data and of previously simulated data
within its neighborhood.
[14] As the sGs procedure needs a multigaussian dis-

tribution, which implies first that the one-point distribu-
tion of data (i.e., histogram of data) is normal, CO2 flux
data that generally are positively skewed, have to be
transformed into a normal distribution (normal scores of
data). The transformation consists in substituting the
original values by the corresponding quantiles of a
standard normal distribution. Moreover, the normality of
two-point cumulative distribution function of normal
scores has to be checked for the application of the
multigaussian model.
[15] The transformed data are then used in the simula-

tion procedure. In practice, due to the multigaussian
assumption, mean and variance of the Gaussian conditional

cumulative distribution function can be defined at each
location as the simple kriging estimate and variance
respectively [Goovaerts, 1997; Deutsch and Journel,
1998]. Simple kriging estimate and variance are computed
according to the semivariogram model of normal scores.
Defining the cumulative distribution function at one loca-
tion means knowing the probability of any possible value
to characterize that location. A random value is drawn
from the conditional cumulative distribution as one ‘‘rea-
sonable’’ simulated value for that location [Rautman and
Istok, 1996; Castrignanò et al., 2002]. Once a value is
simulated, it is added to the data set and can be used
together with the original data to estimate the variable at
the next locations of the grid. The simulation proceeds to
the next grid location and loop until all nodes are simu-
lated. Afterward, the simulated normal scores are back
transformed in to values expressed in original data unit,
applying the inverse of the normal score transform. This
back transforming procedure needs the setting of an upper
tail and of a lower tail, which represent the maximum and
the minimum values allowable for the simulated values,
and the definition of the extrapolation model between the
original data limits and upper and lower tails. Changing
the random path of grid nodes visited, by changing the
starting point of simulation procedure (random-number
seed), N alternative simulations can be performed and N
equiprobable realizations can be drawn, each honoring the
sampled data at their locations, reproducing the data
univariate statistics (histogram) and the data bivariate
property (experimental variogram of normal scores), within
reasonable ergodic fluctuations [Deutsch and Journel,
1998].

3. Applications and Results

3.1. Treatment of the Data With the GSA Method

[16] The data histograms (Figure 2) and logarithmic
probability plots (Figure 3) show two main maximums
and curves with one inflection point respectively, for the
areas of Solfatara of Pozzuoli, Poggio dell’Olivo, Horse-
shoe Lake and Vesuvio. These distributions can be inter-
preted as the combinations of two lognormally distributed
populations of CO2 flux. The proportion, the mean, the total
CO2 output, and the relative 90% confidence interval of
each population (Table 2) were computed following the
GSA method above described. The validity of the two-
populations model was checked through calculation of ideal
combinations of partitioned populations until a satisfactory
agreement between ideal mixtures and real data was
obtained. The observed bimodal distributions reflect the
coexistence of (1) low CO2 fluxes, generally connected to
the biological activity in the soil (background population,

Table 2. Estimated Parameter of Partitioned Populations and Derived Total CO2 Output

Study Area CO2 Flux Population Mean CO2 Flux, g m�2 d�1 Proportion, % Total CO2 Output, t d
�1 90% Confidence Interval, t d�1

Solfatara of Pozzuoli background 23.92 61 23.4 20.7–27.3
hydrothermal 3621.66 39 1521.1 1107.9–2308

Vesuvio cone background 1.03 30 0.0094 0.0071–0.0174
hydrothermal 29.50 80 0.73 0.6447–1.054

Poggio dell’Olivo background 8.43 29 5.4 4.6–6.4
hydrothermal 1373.23 71 247.7 153.7–544.8

Horseshoe Lake background 46.85 62 2.3 1.6–4.2
hydrothermal 1524.46 38 122.8 94.5–172.6
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Table 2), and (2) high CO2 fluxes connected to the degass-
ing processes of deeply derived CO2 (hydrothermal popu-
lation, Table 2). The mean CO2 flux of background
populations ranges from 1 g m�2 d�1 at Vesuvio cone, where
biological activity is very low due to the absence of vegeta-
tion and of a soil rich in organic matter, to 47 g m�2 d�1 at
Horseshoe Lake, where the high background value is likely
due to the contribution of some diffusive degassing of deep
sources. The ‘‘hydrothermal’’ populations are generally
characterized by mean values of CO2 fluxes (1373–
3621 g m�2 d�1) 2 orders of magnitude higher than the
background. However, at Vesuvio the mean CO2 flux of the
‘‘hydrothermal’’ population is very low (29.5 g m�2 d�1);
in this case the anomalous population is recognizable
because of the very low value of the background.
[17] At Nisyros caldera, CO2 fluxes distribute in a wide

range from 0.01 to 6000 g m�2 d�1 suggesting also in this
case the contribution of different sources. However, in the
probability plot the log values do not fit a clear polymodal
curve and the definition of the background population based
on the partitioning of statistical populations is not possible.
The absence of a clear polymodal distribution is most
probably due to the presence of a widespread low level
degassing of deeply derived CO2 linked to the several
degassing structures active in the area, i.e., phreatic craters
and faults. Such features are absent in the south east sector
of the area. In this zone, the values of log CO2 flux
distributed in the probability plot (not shown here) along
a straight line suggesting the presence of a unique popula-
tion, characterized by a mean value of 8 g m�2 d�1, which
has been assumed as the biological background affecting the
entire Nisyros caldera.

3.2. Applications of Sequential Gaussian Simulation

[18] Because of the nonnormality each data set has been
converted in to a distribution with a mean of 0 and a unit
variance, a normal scores transform, using the program
nscore [Deutsch and Journel, 1998]. For each study area
the variogram (g) of normal scores (Figure 4) has been
computed and fitted with a standardized spherical model,
described by the following equations:

g ¼ c0 þ c 1:5
h

a

� �
� 0:5

h

a

� �3
" #

; h < a ð1Þ

g ¼ 1; h > a; ð2Þ

except for Nisyros where the best fitting results a
standardized exponential model, described by the equation

g ¼ c0 þ 1� exp
3h

a

� �� �
; ð3Þ

where c0 is the nugget effect, c is the sill, a is the range and
h is the distance between samples [e.g., Isaaks and
Srivastava, 1989]. The variogram models parameters used
for each study area are reported in Figure 4.
[19] One hundred simulations have been performed for

each data set using simulation grids of different spacing
between nodes: 10 m for Solfatara of Pozzuoli and Nisyros,

Figure 4. Omnidirectional experimental variograms (g)
of CO2 flux normal scores: (a) Solfatara of Pozzuoli;
(b) Vesuvio cone, (c) Poggio dell’Olivo, (d) Nisyros caldera,
and (e) Horseshoe Lake. Lines represent the isotropic
variogram models used in the simulation procedure. The
parameters c0 (nugget effect), c (sill) and a (range) refer to
the variogram models (equations (1), (2) and (3)).
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5 m for Horseshoe Lake and Poggio dell’Olivo and 2 m for
the Vesuvio. Even if the values are simulated over a ‘‘point
support,’’ they have been considered representatives of
square cells centered on the grid nodes and with the side
length equal to the grid spacing. The cell size was chosen,
taking into account the spacing between the data and the
dimension of the surveyed area, in order to obtain a good
resolution in the mapping and, at the same time, to avoid a
redundant number of cells limiting the CPU and memory
requirements.
[20] The basic statistics, the cumulative distribution and

the variogram of simulated values have been compared to
those of the original data to assess the performance of
simulation procedure in terms of reproduction of the fea-
tures of the original data. In the case of Solfatara of Pozzuoli
and Poggio dell’Olivo the statistics and the cumulative
distribution of original data have been computed consider-
ing the declustering weights that have been used also in the
simulation.
[21] The basic statistic (mean and standard deviation) of

data samples is well reproduced by the simulated values
(Table 3). This fitting is not obvious because there is no
guarantee that the original sample statistics are exactly those
of the broader population of all possible samples [Rautman
and Istok, 1996]. A good match is found also between the
cumulative distribution of the original data and simulated
CO2 fluxes from 50 randomly selected realizations, in
particular the bimodal distributions of CO2 flux values are
well reproduced (Figure 3). Furthermore, the undesired
smoothing effect on extreme values, produced by many
interpolation algorithms (e.g., kriging), is avoided.
[22] The results obtained by the simulations are influ-

enced by the choice of upper and lower tail and by the
extrapolation mode between the original data limits and
upper and lower tail. For each application the lower tail has
been set to 0, 0 being the natural lowest limit of soil CO2

fluxes. The upper tail has been estimated referring to the
specific probability plots and roughly extrapolating the
curves to the quantile corresponding to the maximum
number of simulated values. A linear model has been used
for the extrapolation of the data between the minimum
measured value and the lower tail, while a hyperbolic model
with w set to 1.5 (w = utpar parameter in sgsim code) has
been used for the extrapolation of the data between the
maximum measured value and the upper tail. Practice has
shown that, for positively skewed distributions, the hyper-
bolic upper tail distribution with w = 1.5 is a general-
purpose model that yields acceptable results in a wide
variety of applications [Goovaerts, 1997; Deutsch and
Journel, 1998]. The consequence of upper and lower tail
choice is that the maximum and minimum simulated values

are higher and lower, respectively, than the measured
values, as expected because there is a very low probability
that the true maximum and minimum flux values are
measured in the survey (Tables 1 and 3 and Figure 2).
[23] Figure 5 compares normal scores omnidirectional

variograms of original data with those computed for 15
randomly selected realizations of each study area. There is
a good agreement in the spatial continuity between the
sample and the realizations variograms. The variograms of
different realizations show some fluctuations (Figure 5);
these fluctuations are common and are referred to ‘‘ergodic
fluctuations’’ [Goovaerts, 1997, 1999a;Deutsch and Journel,
1998]. Ergodic fluctuations are caused by the discrepancy
between the realization statistics and the corresponding
model parameter [Deutsch and Journel, 1998], and their
magnitude is related to the relative dimension of the simulated
domain with respect to the range of the model variogram
[Goovaerts, 1999a; Rautman and Istok, 1996], i.e., tends
to decrease as the ratio between the size of the modeled
domain and the range of the variogram increases. Deutsch
and Journel [1998] suggest that ergodic fluctuations gener-
ally are minor when the size of the modeled domain is in
excess of 10 times the range of correlation.
3.2.1. Probabilistic Summary of a Set of Simulations:
Mapping of the Diffuse Degassing Structures
[24] The different level of reproduction of sample statistics

may lead one to choose the realization fitting best the
imposed statistics for mapping the CO2 flux. This choice
would be correct only if we consider the original sample
statistics exact and unquestionable, but this is not true,
hence all the realizations should be considered equiprobable
[Deutsch and Journel, 1998].
[25] One of the possible post processing of the sets of

realizations to define the extent of the diffuse degassing
structures (DDS) consists of drawing maps of the proba-
bility that the CO2 flux at any location is above a cutoff
value. The probability is computed at any location from
the proportion of all simulated values above the cutoff at
that location.
[26] Figure 6 gives the maps of the probability of ex-

ceeding a CO2 flux value, which was assumed to be a
reasonable upper limit for a background CO2 flux. Different
cutoff values have been chosen for each area from inspec-
tion of the probability plots (Figure 3) to discriminate values
belonging to the background populations from those of
the anomalous populations. More in detail, cutoff values
of 2, 50, 20 and 100 g m�2 d�1 have been selected for
Vesuvio cone, Solfatara of Pozzuoli, Poggio dell’Olivo and
Horseshoe Lake, respectively. Only 10% of background
samples and a number ranging from 90% to 98% of the
anomalous populations fall above these cutoff values. A

Table 3. Summary Statistics of Measured CO2 Flux (g m�2 d�1) and Simulated CO2 Flux

Study Area

Original Data Simulated Values (50 Realizations)

Mean Standard Deviation Mean Standard Deviation Maximum Minimum

Solfatara 1207a 3662.3a 855–1260 2774–4873 42312–147600 0.008–2.2
Vesuvio cone 20 37.6 22.12–35.72 36.2–89.0 556–993 0.009–0.11
Poggio dell’Olivo 268a 985.5a 218–315 859–1248 12836–14996 0.10–0.16
Nisyros caldera 39.7 165.9 38.4–47.1 129.7–222.4 6175–9715 0.0003–0.01
Horseshoe Lake 800 1407.7 694–895 1186–1494 8670–17672 1.2–5.7

aComputed from declustered data.
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cutoff value of 20 g m�2 d�1, i.e., 2 times higher than the
mean estimated for the background CO2 flux, has been
chosen for Nisyros caldera where the absence of a clear
bimodal distribution did not permit a more sophisticated
analysis (see section 3.1).
[27] The maps of Figure 6 represent the probability that

each location belongs to the DDS. In general the DDS are
controlled by tectonic and volcanic structures: At Solfatara
of Pozzuoli, the DDS is connected to the presence of
NW-SE regional trending faults and to ENE-WSW fractures
generated by pressure variations within the underlying
hydrothermal system [Chiodini et al., 2001], at Nisyros the
DDS match the NE-SW and NNE-SSW regional faults and
the ancient hydrothermal craters, and at Poggio dell’Olivo
the DDS develops along a NW-SE fault [Chiodini et al.,
1999]. The straight boundaries of the Horseshoe Lake DDS
suggest that in this case the degassing process is controlled
by tectonics, while the small Vesuvio anomaly is coincident
with an ancient crater rim of the volcano.
3.2.2. Quantification of Total CO2 Output
[28] The quantitative estimation of the total amount of

CO2 released from a DDS is a primary objective of our
study and in particular of researches devoted to surveillance
of active volcanoes. In this framework, it is impotant to
quantify the uncertainty of the total CO2 output quantifica-
tion, for a correct interpretation of the temporal variations.
The total CO2 output is computed for each realization by
summing the products of simulated value of each grid cell
by the cell surface. The mean and the standard deviation of
the 100 simulated values of total CO2 output, computed for
the 100 realizations, are assumed to be the characteristic
values of the CO2 release and of its uncertainty for each area
(Table 4). Total CO2 releases vary from 0.95 t d�1,
estimated for Vesuvio DDS, to 1500 t d�1 computed for
Solfatara DDS, and the uncertainties are always lower than
±12% of the total CO2 output.
[29] The variation of the total CO2 output computation is

visually appreciable in Figure 7 where a map of the
simulated ‘‘expected’’ values at any cell (E-type estimates,
obtained through a pointwise linear average of all the
realizations [Deutsch and Journel, 1998]) is shown for each
area together with two simulated maps relative to the
realization giving the highest and the lowest value of total
CO2 output.
[30] The total CO2 outputs, estimated by sGs method, do

not differ significantly from those estimated by GSA,
however there are main differences among uncertainties
estimated by the two methods. For a comparison of the
uncertainties, the 5th and 95th percentiles relative to the
100 simulated values of total CO2 output, are reported in
Table 4. These two percentile values are the limits of the
central 90% of the total CO2 output simulated values and
permit an easy comparison with the central 90% confidence

Figure 5. (opposite) Variograms of normal scores of CO2

flux: (a) Solfatara of Pozzuoli; (b) Vesuvio cone, (c) Poggio
dell’Olivo, (d) Nisyros caldera, and (e) Horseshoe Lake.
The variograms (g) of normal scores of original values
(dots) are compared to the variograms of normal scores of
simulated values (shaded lines) of 15 realization randomly
selected for each area.
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interval estimated by GSA. In any case, the uncertainties
estimated by GSA method are much higher than those
estimated by sGs method, being the 5th–95th percentile
range, computed by sGs, much lower than the 90% confi-
dence interval estimated through the GSA approach.
3.2.3. Total CO2 Output Uncertainty and Sampling
Design
[31] There are many factors influencing the magnitude of

the error of an estimate, e.g., the number of samples, their
spatial arrangement, the nature of phenomena under study,
etc. [Isaaks and Srivastava, 1989]. In this section we
approach this problem and try to derive empirical criteria
for the definition of a reasonable sampling design to obtain
an estimation of the total CO2 output with an acceptable
uncertainty. On the basis of the entire sample data, the
computed total CO2 output oscillates from ±5% to ±12% in
the different areas (Table 4).
[32] In order to investigate the relation between the

uncertainty and number of conditioning data, several sub-
sets with different number of samples were randomly
created from the original data, without giving consideration
to whether or not the sample statistics of the subsets match
those of the complete data set. For each subset, 100
simulations have been performed and the mean CO2 total
output and the standard deviation have been computed, as
described in the previous section.
[33] In all cases, the mean total CO2 output seems to be

relatively insensitive to the number of conditioning data
until that number exceeds a threshold which, in each area, is
lower then 50% of the available samples (Figure 8). Below
this limit, variable for each area, the computed total CO2

output starts to oscillate intensively. This finding (1) con-
firms that our experimental data sets can be considered
exhaustive and (2) suggests that in each area there exists a
minimum number of samples below which the conditioning

data are inadequate to describe the study field and to
provide a reliable quantitative estimation of the total CO2

output.
[34] Figure 9a shows that the standard deviation of the

mean total CO2 output is linked with a hyperbolic function
to the number of measurements. However, the correlation
between number of measurements and uncertainty is spe-
cific to each survey and can not be used as a general law to
design sampling of new areas.
[35] A more general relation can be derived considering

the number of samples falling in the area contained by a
circle with radius equal to the range of the CO2 flux
variogram (circle range area (CRA)) instead of the total
samples number (Figure 9b). In this case the same hyper-
bolic function can adequately fit the data of the five
different surveys, suggesting that a suitable sampling den-
sity can be derived from the range of correlation of the
parameter under study. Figure 9b, for example, suggests that
uncertainty lower than 10% are obtained with a sampling
density that guarantees at least 90 samples in the CRA.
[36] The empirical relation derived from Figure 9b can

be a useful tool for the design of a soil CO2 flux survey.
For example, a suitable sampling design, to obtain a
reliable estimation of the total CO2 output, can be defined

Figure 6. Probability maps of CO2 flux: (a) Vesuvio cone; (b) Solfatara of Pozzuoli, (c) Nisyros
caldera, (d) Poggio dell’Olivo, and (e) Horseshoe Lake. Color scale shows the probability of CO2 flux
exceeding specific threshold selected to discriminate background from anomalous CO2 degassing (see the
text).

Table 4. Total CO2 Output and Uncertainties Derived From 100

sGs Realizations

Study
Area

Mean,
t d�1

Standard
Deviation, t d�1

5th–95th
Percentiles, t d�1

Solfatara of Pozzuoli 1513.00 136.00 1266.4–1729.7
Vesuvio cone 0.95 0.11 0.77–1.14
Poggio dell’Olivo 233.50 27.90 191.9–274.6
Nisyros caldera 84.00 3.82 79.80–89.47
Horseshoe Lake 104.30 5.00 96.20–112.99
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Figure 7. CO2 flux maps. For each area are reported, from the left to the right, the map of mean CO2

flux obtained from a pointwise linear averaging of all 100 the realizations (E-type estimates), the map
relative to the realization giving the maximum estimate of the total CO2 output, and the map relative to
the realization giving the minimum estimate of the total CO2 output are shown.
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after a quick, preliminary survey aimed to roughly define
the range of the correlation of soil CO2 fluxes. In the
absence of any information on soil CO2 flux values, an
approximate estimate of the CRA and consequently of
the suitable sampling density can be done considering that
(1) the CRA extension is close to the spatial extent of
degassing structures (Figure 10) and (2) in many cases that
extent can be evaluated ‘‘a priori’’ on the basis of
macroscopic field evidences (e.g., bare soils, focused
emission of gas, dead vegetation, etc.).

4. Conclusions

[37] The application of the stochastic simulation method-
ology, sequential Gaussian simulation, to the diffuse CO2

from soils can constitute a valid approach to the definition
and characterization of diffuse degassing structures, DDS,
affecting active volcanoes and geothermal areas. The ap-
proach, based on the production of several equiprobable
images of the CO2 flux, permits both mapping of the DDS
and quantification of the total CO2 output from surveyed
areas. Moreover, the production of a set of equiprobable
realizations of the same phenomena allows us to quantify
the uncertainty of our representation of the reality.
[38] The method has been applied to four volcanic areas

(Solfatara of Pozzuoli, Nisyros caldera, Horseshoe Lake,
and Vesuvio) and to one nonvolcanic area (Poggio Olivo),
all of which are characterized by active CO2 degassing
processes. For each data set, 100 simulations have been
produced. The simulated values at unsampled locations
reproduce well the univariate and bivariate statistics of the
original samples, suggesting that the sGs method produces
more realistic representations than the traditional estimation
technique, kriging, which reproduces neither the univariate
(histogram) nor the bivariate (variogram) statistics of the
soil diffuse CO2 fluxes.

[39] On the basis of sGs results, different types of maps
can be chosen to highlight the DDS. In this work we show
the maps relative to the maximum and minimum CO2

output realizations and the map of the mean values
(E-type). However, a more appropriate visualization of the
DDS is obtained through probability maps. Soil CO2 fluxes
are typically characterized by polymodal density distribu-
tion, generally consisting in the combination of low CO2

fluxes, connected to the biological activity in the soil
(background population), and high CO2 flux populations
generated by degassing processes of deeply derived CO2.
On the basis of suitable threshold values, chosen from
probability plots of samples data, the probability that values
exceed this threshold can be mapped for each area. Because
the threshold values reasonably divide background from
deeply derived CO2 fluxes, these maps represent the prob-
ability of each ‘‘location’’ to belong to the DDS. The soil
CO2 flux maps of the studied areas both define the exten-
sion DDS and emphasize a strict control of tectonic-volca-
nic structures on the degassing process.
[40] The total amount of CO2 released through diffuse

degassing has been estimated from each simulated realiza-
tion attributing to the surface of each grid cell the

Figure 8. Variation of the total CO2 output estimate as a
function of the number of conditioning data reported as
percentage of the total sample number. The total CO2 outputs
computed from each subset of data are standardized to the
total CO2 output computed from the entire data set of the
corresponding area (CO2OUT(subset)/CO2OUT(100%)).

Figure 9. (a) Uncertainty of total CO2 output versus
number of conditioning data. (b) Uncertainty of total CO2

versus number of conditioning data falling in a circle with
radius equal to the range of the CO2 flux variogram (CRA)
and the best fitting function.
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corresponding simulated flux value, creating a set of equi-
probable values for the total CO2 output. The mean total
CO2 output of the 100 realizations is assumed as the
‘‘characteristic’’ value for each study area. The uncertainty
associated to this estimation is taken as the standard
deviation of all the possible values obtained from the
100 realizations. Solfatara of Pozzuoli releases through
diffuse degassing 1513 ± 136 t d�1 of CO2, Poggio
dell’Olivo releases 233 ± 28 t d�1, Nisyros caldera releases
84 ± 3.82 t d�1, Horseshoe Lake releases 104 ± 5 t d�1 and
the small degassing area on the Vesuvio cone flank releases
0.95 ± 0.11 t d�1. The characteristic values of simulated

total CO2 output from the different areas do not differ
significantly from the values previously estimated with the
GSA method, but the most interesting aspect of sGs method
is the assessment of the uncertainty.
[41] There are many factors influencing the magnitude of

the uncertainty of an estimate, most of them are not
preventable. However, to obtain a reliable estimation of
the total CO2 output through sGs we can at least adopt an
appropriate sampling design for the CO2 flux survey. The
results of this study suggest that a suitable sampling density
is related to the range of correlation of the parameter under
study. On the basis of the results on the five different areas,
an empirical relation between the expected uncertainty and
the number of the samples which fall in the CRA (an area
corresponding to the circle of radius equal to the range of
correlation of the CO2 fluxes defined by the variogram) has
been derived. This relation may represent a useful tool for
planning future CO2 flux surveys. This paper focuses the
attention of CO2 flux surveyors on the necessity of choosing
tools that allows some assessment of estimation uncertainty,
in order to efficiently use soil diffuse degassing measure-
ments in the framework of volcanic surveillance.
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