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ABSTRACT

Sinclair, A.J., 1974, Selection of threshold values in geochemical data using probability
graphs. J, Geochem. Explor., 3: 120—149.

A method of choosing threshold values between anomalous and background geo-
chemical data, based on partitioning a cumulative probability plot of the data is described.
The procedure is somewhal arbitrary but provides a fundamental grouping of data values.
Several practical examples of real data sets that range in complexity from a single popula-
tion to four populations are discussed in detail to illustrate the procedure.

The method is not restricted to the choice of thresholds hetween anomalous and back-
ground populations but is much more general in nature. It can be applied to any polymodal
distribution containing adequate values and populations with appropriate density
distribution. As a rule such distributions for geochemical data closely approach a lognormal
model, Two examples of the more general application of the method are described.

INTRODUCTION

Tennant and White (1959) were among the first to recognize the usefulness
of probability graph paper for concise visual representation of geochemical
data. Since the appearance of their publication probability paper has been
used somewhat spasmodically, but with increasing regularity for graphical
representation and analysis of many types of geochemical data. In particular,
Williams (1967) and Lepeltier (1969) have emphasized the ease with which
such plots can be used for rapid, graphical analysis of large quantities of data.
Bolviken (1971) states that probability graphs are now used routinely by the
Norwegian Geological Survey as an aid in interpreting geochemical analytical
results. Woodsworth (1972) makes extensive use of probability plots as the
basis for a thorough statistical analysis of about 2000 reconnaissance stream
sediment analyses from an exploration program in central British Columbia.
Numerous other examples could be cited. None of these papers, however,
treats in detail the problem of useful and efficient selection of thresheld
values.

Threshold is a term used throughout the mineral exploration industry to
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signify a specific value that effectively separates high and low data values of
fundamentally different character that reflect different causes. Commonly,
the term is applied to a value that distinguishes an upper or anomalous data
set from a lower or background sel. For many types of data, particularly
those of a geochemical nature, anomalous values are related to mineralized
rock. Consequently, the choice of a threshold value has considerable impox-
tance in directing exploration to specific anomalous sample sites where the
chances of discovery of an economic mineral deposit are greatly enhanced.

Thresholds in geochemical data are chosen in a variety of ways. A method
recommended in several publications involves the estimation of the mean and
standard deviation of a data set with an arbitrary choice of a threshold at a
value corresponding to the mean plus two standard deviations (see Hawkes
and Webb, 1962; Lepeltier, 1969). In some cases this procedure might be
adequate but it ignores the fact that no a priori reason exists for exactly the
upper 2%% of every data set being anomalous. Furthermore, the method does
not take into account adequately, the fact that anomalous and background
populations have fairly extensive ranges of overlap in some cases, and as they
are two populations the mean and standard deviation derived from the whole
data set really have no statistical validity and are just numbers, These failings
are recoghized by many field practitioners who rely on subjective visual
examination of histograms of data sets to choose threshold values.

A third approach is to define thresholds at points of maximum curvature
in cumulative probability plots (e.g. Woodsworth, 1972). The procedure
entails approximating segments of a probability curve by straight lines and
picking threshold values at ordinate levels that correspond to intersections of
these “linear” segments. At best, this method is approximate, at worst it can
result in a high proportion of anomalous values going unrecognized.

Obviously, a procedure is desirable for choosing threshold values that
maximizes the likelihood of recognition of anomalous values and minimizes
the number of background values included with anomalous data. Cumulative
prohbability plots provide an effective graphical means of meeting these ends.

PROBABILITY PAPER

Arithmetic probability paper is a special kind of commercially available
graph paper generally designed with an arithmetic ordinate scale and an
unusual abscissa scale of probability (or cumulative frequency percent)
arranged such that a normal (gaussian) cumulative distribution plots as a
straight line. Lognormal probability paper differs only in that the ordinate
scale is logarithmic. Arithmetic values of a single lognormal distribution
grouped in exactly the same manner as required for the construction of a
cumulative histogram, plot as a straight line on log probability paper. A
bimodal distribution consisting of two lognormal populations plots as a curve.
Examples of a single lognormal distribution and bimodal lognormal distribu-
tions are shown in Fig.1. In these examples, and throughout the remainder
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Fig.1. Examples of unimodal and bimodal real distributions plotted on logarithmic
probability paper.

of this paper, values are cumulated for plotiing by starting at the upper or
high value end (cf. Lepeltier, 1969). The probability scale is taken as the
abscissa because most commercially available probability paper in North
America is arranged in this manner.

There are numerous advantages to probability plots that are worth noting
here:

(1) The form of density distribution of a data set can be examined.

(2) Parameters of normal and lognormal populations can be estimated
rapidly and with adequate accuracy for most sets of geochemical data.

(3) Several data sets can be represented on a single graph with much greater
clarity than multiple histograms.

(4) Plots of several data sets can be compared visually for rapid recognition
of similarities or differences.

Additional advantages resulting from the ability to partition polymodal
distributions into their individual populations will become apparent in
examples presented later. Of course, there are limitations to these plotls as
well, that must be recognized: (1) data might not have normal or lognormal
distributions; (2) construction of a probability graph normally requires a
minimum of about 100 values, although techniques are available for dealing
with fewer data (see Koch and Link, 1970); (3) scatter of data on a probability
plot can be too great to permit a confident analysis of the data.

Despite these limitations a high proportion of geochemical data sets can be
analysed usefully and confidently on probability graph paper.
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PARTITIONING OF POLYMODAL DISTRIBUTIONS

Partitioning refers to methods used to extract individual populations from
a polymodal distribution consisting of a combination of two or more popula-
tions. The methods are not well described in the literature but are referred to,
or implied by various writers (e.g., Harding, 1949; Bolviken, 1971). Cassie
(1954) and Williams (1967) describe partitioning procedures briefly but their
publications are not widely available. Consider the case of a bimodal distribu-
tion: providing that populations in the data set have normal or lognormal
density distributions and are plotted on appropriate probability paper, an
estimate of their proportions is given by an inflection point or change in
direction of curvature on the probability curve (Harding, 1949). For example,
in Fig.2, an inflection point at the 20 cumulative percentile, indicated by an
arrow, shows the presence of 20% of a higher population A, and 80% of a
lower population B. The form of the curve is characteristic of two overlapping
populations, a relatively gently sloping central segment indicating considerable
overlap of the two.
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Fig.2. Two idealize hypothetical populations A and B are combined in the proportions
A/B = 20/B0 to produce the intermediate curved distribution drawn through calculated
points shown as solid dots. An inflection point is shown by the arrowhead. Arbitrary
thresholds at the 1% level of B population and the 99% level of A population correspond
to 78 and 44 ppm, respectively.

The uppermost plotted point on the curve at the 180-ppm ordinate level
represents 1% of the total data. However, it also represents (1/20 X 100) = 5
cumulative percent of population A because at this extremity of the data set
there is no effective contribution from population B. Consequently, a point
on A population is defined at 5 cumulative percent on the 180-ppm level. In
the same manner, the point plotted on the curve at the 150 ordinate level
represents (2.6/20 X 100) = 13 cumulative percent of population A and a
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second point on population A is obtained. This procedure is repeated until
sufficient points are obtained to define population A by a straight line or
until the replotted points begin to depart from a linear pattern indicating
that population B is present in significant amounts. When sufficient points
are obtained, a line is drawn through them as an estimate of population A.

Population B can be obtained in precisely the same way, providing the
probability scale is read as complementary values, e.g., 90 cumulative percent
is read as (100 — 90) = 10 cumulative percent. Calculated points for both A
and B populations are shown as open circles in Fig.2.

Validity of the two-population model can be checked by combining them
in the proportions 20% A and 80% B at various ordinate levels. In this
hypothetical example, check points are not shown because it has been con-
structed ideally. Throughout the remainder of the paper, however, check
calculations are indicated by open triangles. The checking procedure involves
the calculation of ideal combinations of the partitioned populations at various
ordinate levels using the relationship Py = f5 P5 + fpPp where Py, the
probability of the “mixture”, is to be calculated (see Bolviken, 1971); Py and
Py are cumulative probabilities of populations A and B read from the graph
at a specified ordinate level; f4 is the proportion of population A, and fg =
1 - fa is the proportion of population B. In practice, several trials might be
necessary to obtain a good fit of the ideal mixture with the real data because
of the difficulty in defining the inflection point accurately. In most cases, the
partitioning procedure is as straight forward as outlined. In other cases, a
slight modification is necessary when dealing with real data as will become
apparent in some of the examples that follow.

Partitioning of polymodal curves containing three or more populations is
somewhat more complex but is done in an analogous way, proceeding in
stages. Generally, partitioning begins with the populations represented by the
extremities of the probability curve, followed by partitioning of more centrally
located populations.

Note that in this idealized example, paramelers ol the individual partitioned
populations can be estimated. The geometric mean of each can be read at the
50 percentile and the range including 68% of the values can be determined at
the 84 and 16 cumulative percentiles. This range encompassing 2 standard
deviations is asymmetric about the geometric mean. The method of represen-
tation adopted here is to quote the geometric mean, followed in brackets by
the range that includes 68% of the values. These parameters for the partitioned
populations A and B are 100 (144, 71) and 42 (55, 33), respectively.

Estimates of the arithmetic mean and variance can be obtained from this
information as described by Krumbein and Graybill (1965), but normally are
not required.

CHOICE OF THRESHOLDS

The hypothetical example in Fig.2 illustrates a common general situation
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of high and low populations with an effective range of overlap. If no significant
overlap of values existed, the central moderately steep segment of the curve
would be nearly vertical and a single threshold could be chosen rapidly at its
mid-point. In the general case, however, choice of thresholds is more complex.

Consider 2 thresholds chosen arbitrarily at the 99 and 1 cumulative
percentiles of the partitioned populations A and B, respectively of Fig.2
(recall that A and B are present in the ratio A/B = 20/80). Thesc percentiles
divide the data into 3 groups at the 44- and 78-ppm ordinate levels. 16% of
the total data is above the upper threshold of 78 ppm. In a hypothetical
sample of 100 values, this upper group would consist approximately of 15
values from A population and 1 value from B population. The lower group
below 44 ppm contains 46% of the total data. It consists of 1% of population
A (at most, 1 value in this case) and 57% of population B (about 46 values).
The intermediate group between the two thresholds contains about 38% of
the total data consisting of 42% of the B population and 33% of the A popu-
lation. In our hypothetical sample this corresponds to about 6 or 7 A values
and 33 or 34 B values (Table I).

TABLE I
Total data A population B population
% No.# T No.* % MNo.*
Group 1 16 16 76 15.2 1 0.8
Group II as 38 23 4.6 42 33.6
Group I 46 46 1 0.2 57 45.6

100 100 100.0  20.0 100 80.0

#Sample = 100 of which 20 are A and 80 are B population.

The procedure, although arbitrary, has thus divided the data rather effec-
tively into three groups, two of which contain significant proportions of the
upper A population and a third that almost exclusively represents the lower
B population, Let us assume for the moment that A and B represent anoma-
lous and background populations, respectively. The upper group above the
upper threshold can be considered top priority for follow up examination
because practically all values are anomalous. Lower priority can be attached
to values in the intermediate group because although it contains virtually all
remaining anomalous values, an increased amount of exploration manpower
per anomalous sample is required to check them and sort them out from
background values in the same range.

There is nothing sacrosanct about the percentiles used to define thresholds.
In this case, values were chosen that corresponded with 99 and 1 cumulative
percentiles of the A and B populations, respectively. Thresholds could equally
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well have been defined by the 98 and 2 cumulative percentiles of the
appropriate partitioned populations. Whatever choice is made, it is possible

to determine estimates of the proportions of each population occurring in

the groups thus delimited. In the writer’s experience, the two sets of figures
mentioned above have proved most useful but different values could be chosen
depending on the nature of the data and the required probability that all
anomalous values be retained in the upper two groups.

Note that in this hypothetical but typical case the choice of a threshold at
the mean plus two standard deviations would have placed most of the anom-
alous values with background. The same effect would be obtained with a
common variation of this procedure, the assumption that the upper 2%2% of
values are anomalous. Were the probability curve approximated by three
linear segments, their intersections would have provided thresholds at
approximately 103 and 55 ppm. The common procedure of adopting the
upper value as threshold would result in rejection of more than 50% of the
anomalous values. Even the choice of the lower value would result in rejection
of about 5% of anomalous values.

Zn IN SOILS, TCHENTLO LAKE AREA (CENTRAL BRITISH COLUMBIA)

Fig.3 is a probability graph of 173 zinc analyses of B horizon soils taken
on a grid pattern in an area of known Mo—Cu mineralization near Tchentlo
Lake in central British Columbia. Underlying rock is a texturally and mineral-
ogically uniform, welljointed diorite. Joints are mineralized, principally with
quartz and pyrite, but in some places molybdenite is abundant and small
amounts of chalcopyrite occur. A thin layer of overburden covers the area
except for sporadic outcrop knolls.
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Fig.3. Probability plot of 173 values of Zn in B zone soils, Tchentlo Lake, B.C. Listec
parameters of the distribution were obtained from the straight line drawn through original
data points (solid dots). 95% conlidence limits are shown after Lepelticr (1969).
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The probability plot is linear if one neglects slight divergences at the
extremities, that commonly result from sampling error. Consequently, an
estimate of the distribution can be obtained by a straight line through the
plotted points. 95% confidence limits ol the population were determined
graphically (cf. Lepeltier, 1969). Woodsworth (1972) suggests that a useful
procedure for recognizing significant curvature in a probability graph is to
assume the presence of a single population and construct its 95% confidence
belt. Significant eurvature to the plot is assumed at points that plot outside
the zone of 95% confidence. None of the plotted points for Tchentlo Lake
data lie outside the band defined by the 95% confidence limit suggesting that
only a single population is present.

In this case, the range of values and the form of the probability graph
suggest that the data represent a single background population. A wise proce-
dure, however, is to assume that the few highest values are anomalous until
proven otherwise. This is a convenient safety precaution in cases where
anomalous values are present in too low proportion to define a second popu-
lation. To standardize a procedure for dealing with such data, it is convenient
to pick an arbitrary threshold at an ordinate level corresponding to the mean
plus 2 standard deviations as recommended by Hawkes and Webb (1962).
This procedure assumes that approximately the upper 2%% of values are
anomalous until shown otherwise, and should be applied only when a single
population is indicated from an examination of the probability graph. In this
example, the upper 5 zinc values were found to plot on a plan of the grid,
sporadically, but away from known mineralized areas.

Cu IN STREAM SEDIMENTS, MT. NANSEN AREA (YUKON TERRITORY)

Copper analyses for 158 stream sediment samples from the Mt. Nansen
area, Yukon Territory, are shown as a probability plot in Fig.4 (see Bianconi
and Saagar, 1971). A smooth curve through the data points has the form of a
bimodal density distribution with an inflection point at the 15 cumulative
percentile. The curve was partitioned using the method described previously
to obtain populations A and B whose estimated parameters are given in
Table II. The partitioning procedure was checked at various Cu ppm levels by
combining the two partitioned populations in the proportion of 15% A and
85% B. Check points are shown as open triangles on the Figure and are seen
to coincide with the real data curve. In this case, some high values are
associated with known Cu—Mo mineralization related to porphyritic intrusions
and it seems reasonable to interpret the two populations as anomalous (A)
and background (B).

Two arbitrary threshold values can be determined readily from the graph
at the 1.0 and 99 cumulative percentiles of the B and A populations, respec-
tively. These percentiles coincide with 70 and 37 ppm Cu, respectively. Hence,
the data are divided into 3 groups, an upper group of predominantly anomalous
values, a lower group of predominantly background values, and an intermediate
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Fig.4. Bimodal probability plot of 158 Cu’s in stream sediments, Mt, Nansen, Yukon.
Open circles arg partitioning points used to establish populations A and B. Open triangles
are check points obtained by combining A and B in the ratio 15/85.

TABLE I1

Estimated parameters of partitioned populations, Cu in stream sediments, Mt. Nansen area
(Yukon Territory)

Population Proportion Na. of Values in ppm Cu
(%) samples T RSO S
b b s, b sy,
A: anomalous 15 24 101 155 63
B: background 85 134 14,7 28.5 7.4

A+B 100 158

group containing both anomalous and background values. Of the 158 values,
about 23 are anomalous, and 135 are background. 80% or about 18 of the
anomalous values are above the 70-ppm threshold; and 5 are below it, for all
practical purposes, in the intermediate range. Of the 135 background values,
91.5% or 124 values, are below the lower threshold, the remaining 11 back-
ground values are above the lower threshold in the intermediate range.

Conseqguently, anomalous values occur in only two ppm intervals to which
priorities can be assigned for follow up exploration. Virtually all values above
70 ppm are anomalous and have top priority. Second priority is assigned to
the 16 values in the intermediate range, about 5 of which are anomalous.
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Theoretically, individual values that lie between the two thresholds cannot
be assigned to either A or B populations. Therefore, since only about 1 in 3
is anomalous in this range, about three times as much work is required to
check each anomalous sample as is required for values above 70 ppm Cu;
hence, the reason for assigning priorities to the two groups. In practice, some
of the anomalous values in this central range can be recognized with a fair
degree of certainty. For example, a number of them might be expected to
occur down stream from top priority anomalous samples. This sort of
geographic relationship stands out particularly well if samples are colour-coded
as to group, on a plan of the sampled streams. In many cases, virtually all
samples in the intermediate range can be identified in this manner with a fair
degree of certainty. A comparable procedure can be used when dealing with
soil or whole rock analyses for which two thresholds are determined. Those
intermediate range samples that group geographically with known anomalous
samples commonly can also be considered anomalous. In this way, follow-up
examination of second priority anomalies can be cut to a minimum and in
many cases avoided completely.

Ni IN SOILS, HOPE AREA (SOUTHERN BRITISH COLUMBIA)

Fig.5 is a log probability graph of 166 Ni analyses of soils obtained from a
grid superimposed on a known Cu—Ni mineralized zone. The mineral showing
is associated with ultramafic rocks enclosed in regionally metamorphosed
fine-grained clastic sedimentary rocks, near Hope in southern British Columbia.
A smooth curve drawn through the data points has the form of at least three
populations based on inflection points at 5.5 and 25 cumulative percentiles.
The A and C populations were partitioned using the method described in a
previous section. Population B was then estimated using the relationship:

Pyt = faPa + PR *fcPc

In this equation: fa =0.055, fg = 0.195, fc = 0.75 and Py, Pa, Pc can be
read from the graph for any ordinate level. Hence, Pg is the only unknown
and can be estimated for various ordinate levels, plotted, and an estimate of
population B determined by passing a straight line through the calculated
points. The three partitioned populations A, B and C were then combined
ideally in the proportion: 5.5/19.5/75 for a number of ordinate values, to
check the partitioning procedure. These check values are shown in Fig.5 as
open triangles that almost coincide with the smooth curve through the
original data.

Population A is obviously not well defined as indicated by the scatter of
points about its linear estimator. The reason is that only a small proportion
of the total data represents population A, thus its estimation by partitioning
is based on very few data points — four in this case. Populations B and C
appear well defined, principally because their ideal combination in the ratio
19.5/75.0 agrees with the real data curve. Estimated parameters of the three
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Fig.5. Probability plot of 166 Ni's in soils, Hope, B.C., with 2 inflection points (indicated
by arrowheads) suggesting it results from the combination of three lognormal populations
in the ratio 5.5/19.5/75. A, B and C are the three partitioned populations estimated by
lines through the calculated poinls (open circles). Parameters of each population are listed.
Open triangles are check points that agree well with the original data (black dots).

populations are given in Table III. On the basis of the partitioned populations,
a single threshold at 780 ppm Ni can be chosen to distinguish effectively
between populations A and B. Populations B and C overlap somewhat and
two thresholds must be chosen. These thresholds are arbitrarily taken at the

2 cumulative percentile of population C (i.e. 236 ppm Ni) and the 98 cumu-
lative percentile of population B (i.e. 170 ppm Ni).

TABLE 11

Estimated parameters of partitioned populations,Ni in soils, Hope area (southern British
Columbia)

Proportion No. of

Population Values in ppm Ni
(%) samples —
b b+s b— s,

A anomalous 5.5 49 1170 1380 880
B: background 19.5 32 3566 515 248

(ultramafic)
C: background 75 125 52 108 24.5

(metaseds)
A+B+C 100 166
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These three threshold values divide the data into 4 groups, 3 of which each
consist principally of a single population and a fourth containing values from
two populations (Table IV). The thresholds can now be used as contour
values on a plan of the grid, or can be used to code data on a plan using
colour or symbols, to aid in interpreting the significance of each population.
In this case, population A is related to Ni mineralization and is therefore
interpreted as an anomalous population. Population B corresponds to areas
underlain by ultramafic rocks, and population C occurs in areas underlain by
metasedimentary rocks.

TABLE IV

Estimated thresholds, Ni in soils, Hope area (southern British Columbia)

Threshold Principal content of group

almost exclusively population A
780

almost exclusively population B
236

combination of populations Band C
170

almost exclusively population C

The choice of thresholds is arbitrary. For example, one could equally well
have chosen the two thresholds for the B and C populations at the 1 and 99
cumulative percentile of the C and B populations respectively, or the 2.5 and
97.5 cumulative percentile and so on. . . A choice should be made with the
idea of defining a short range of overlap of the two populations, and, at the
same time, producing adjacent ranges that to all intents and purposes contain
values of a single population, with negligible or minor amounts of other
populations.

Cu IN SOILS, SMITHERS AREA (BRITISH COLUMBIA)

A probability plot of 795 soil copper analyses is shown in Fig.6.The sinuous
character of the plot is probably real because of the large number of values in
the data set. This type of data is characteristic of the sort obtained from
reconnaissance surveys where large quantities of information are obtained in
a relatively short time. The area sampled is underlain predominantly by acid
to intermediate intrusive bodies that cut a thick monotonous sequence of
volcanic rocks.

Inflection points are evident at approximately the 1, 2 and 32 cumulative
percentiles indicating the presence of at least four populations. These popula-
tions can be estimated by partitioning the curve in stages. In this case, it is
most convenient to begin with the population C for which most data points
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Fig.6. Probability plot of 795 Cu’s in B-horizon soils, Smithers area, B.C. Symbols are as
defined [or Fig.5.

are available. Once C has been defined, population D can be estimated using
C and the original data curve. These two populations can be specified reason-
ably well. The upper two populations A and B can be approximated roughly
but cannot be delineated with much precision because of the small percentage
of total data that each represents and hence the small number of points
available for partitioning. Crude estimates of populations A and B are shown
based on the limited data available,

A number of check points, shown as open triangles on the curve were
calculated for the partitioned populations A, B, C and D, combined in the
ratio 1/1/30/68. These points agree almost perfectly with the smooth curve
describing the data, suggesting that the partitioning represents a plausible
model for the data. Estimated parameters of partitioned populations are listed
in Table V. Comparison of the data with a geological map of the sampled area
suggested that populations C and D represent background Cu in soils over
volcanic and plutonic rocks, respectively. By the same means, it was concluded
that populations A and B are anomalous populations in areas underlain by
volcanic and plutonic rocks, respectively.

In choosing thresholds for distinction between anomalous and background
values there is no need to consider either population A or D. The critical part
of the graph is the range of overlap of populations B and C.

We know that about 2% of the data, or about 16 values are anomalous. Of
these, 11 are above 100 ppm Cu as is 1 value of C population. Hence, one of
12 values above 100 ppm Cu is not anomalous and 100 can be chosen as an
arbitrary upper threshold.
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TABLE V

Estimated paramelers of partitioned populations, Cu in soils, Smithers area {central
British Columbia)

Proportion No. of

Population Values in ppm Cu
(%) samples v N SFTEETI
b b+ a3 b - sy,
A 1 8 135 145 128
B 1 8 100 108 93
cC 30 239 42.8 57.2 321
D 68 540 14.8 21.8 9.6

A+B+C+D 100 795

Virtually all of the anomalous population is above 85 ppm Cu. Thus, the
range 85—100 ppm Cu contains the remaining 5 anomalous values. This range
also contains about 1.0% of the C background population, about 2 values.
Thus, two thresholds are delimited that for all practical purposes define all
anomalous values with a minimum of background values represented.

This example illustrates several important points in procedure:

(1) It is wise to carry through with a complete partitioning procedure in
examining complex distributions in order to check the realism of the inter-
pretation.

(2) Even when individual populations cannot be defined particularly
accurately, thresholds can commonly be determined with adeguate accuracy.

(3) Inflection points in a probability curve based on abundant data are
probably real and should form a basis for interpretation.

(4) An alternative approach would have been to group the data into two
subclasses based on presence of underlying volcanic or plutonic rock. This
procedure was not used here only because adequate thresholds could be
oblained without spending additional manpower in carrying out a more
detailed analysis.

(5) The bottom population, D, is reasonably well known despite the fact
its partitioning was based on only two points.

The foregoing examples show that the major advantage of probability plots
is to provide a useful grouping of data. Commaonly, this grouping is not simply
for the purpose of obtaining thresholds between anomalous and background
populations — but more generally to derive thresholds between populations
that aid in a general interpretation of the significance of the data.

pH MEASUREMENTS OF STREAMS

pH measurements are commonly an integral part of stream sediment
surveys. A probability plot of pH values from one such survey in southern
British Columbia is shown in Fig.7. The plot is on arithmetic probability
paper — a logarithmic transform being incorporated in the original data
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Fig.7. Probability plot of pH values obtained from a stream sediment survey in southern
British Columbia. Symbols are as defined for Fig.5.

because of the very nature of pH values. A smooth curve through the data has
the form of a trimodal distribution with inflection points at the 16 and 85
cumulative percentiles. The curve has been partitioned using the method
described previously to obtain populations A, B and C. Check points based on
ideal mixtures of the three populations in the proportion 16/69/15 agree
remarkably well with the real data curve.

Thresholds arbitrarily chosen at the 99 cumulative percentiles of A and B
populations, and the 1 cumulative percentiles of the B and C populations,
provide the information in Table VI.

TABLE VI

Estimated thresholds, pH values (southern British Columbia)

pH % of total data
principally population A 15
7.00
populations A + B 4.5
6.93
principally population B 64.5
6.37
6.36
6.35

principally population C 16
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Thus, the data can be divided into four groups on the basis of pH measure-
ments and prior to further analysis and interpretation. Such a grouping could
have fundamental significance in interpretation of trace element data because
of the effect of pH on metal dispersion.

WHOLE ROCK Cu, GUICHON BATHOLITH (CENTRAL BRITISH COLUMBIA)

The Guichon batholith has long been known as an important Cu-rich
pluton in central British Columbia with several large porphyry-type deposits
either producing or nearing production at the present time. An investigation
of the whole rock Cu content of unmineralized samples scattered over the
batholith was undertaken by Brabec and involved an analysis of the data using
probability graphs (Brabec and White, 1971). A probabilily plol of the total
data, some 330 analyses, could not be interpreted with confidence. However,
when data were grouped on the basis of relative age and lithology and each
such group plotted separately, a realistic interpretation became possible.

Fig.8 contains probability graphs of each of the three groups, replotted
from data of Brabec and White (1971). The general similarity of shape of the
three curves suggests that the grouping has fundamental significance. Each
curve has the form of a bimodal distribution. In each case, however, the
bottom part of the bimodal curve is partly missing due to the bar interval
chaosen for construction of the probability plots (15 ppm Cu). Assuming that
all distributions are lognormal it is possible to partition each curve using a
modification of the procedure described earlier. The upper population can be

T T T T T T

P
S GROUP T [N=98 A

[y it bt
0o} 1\%&\&\ :
L \ 1

2
a3 L
3 r G
S %%
r 2.
%
% | XN
\ AN
i AS
1 L L 1 L L L o 1 \
% 5 2 [[+] 0 50 T a0 a7

PROBABILITY (cum. %)

Fig.8. Probability plots of whole rock Cu’s for 3 rock groups of the Guichon batholith,
central British Columbia. Group I = youngest age, Group II = intermediate age and
Group III = oldest age (afller Brabec and White, 1971).
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determined in the normal manner. Points on the lower population are then
calculated using the expression:

Py =faPa + fBPB

Py is read from the data curve, fo and fg are known from the position of
the inflection point and Py is read from the partitioned population A. Py is
the only unknown and can be calculated and plotted for various ordinate
levels. A line can then be passed through these calculated points to estimate
population B.

One example is described in detail. The probability plot for group 11 rocks
is reproduced in Fig.9. Some difficulties were encountered in specifying an
inflection point precisely, because the two populations overlap to a consider-
able extent. However, a series of trial values were used until the upper popu-
lation plotted as a straight line, leading to an inflection being assigned at the
80 cumulative percentile. One additional problem with the data is a flattening

at the upper end of the curve. In fact, this flattening is present to some extent

in plots for each of the 3 groups and is a characteristic pattern obtained when
a symmetric population has been top-truncated. Brabec and White (1971)
arhitrarily rejected a small proportion of high values from their analysis to
impose this artificial top truncation on their data. Since the truncated values
account for only about 2% of the data, no effort was made to correct for
their absence. The upper ex{remities of all curves, however, were ignored
during the partitioning.
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Fig.9. Probability plot of 116 whole rock Cu’s in Group II rocks (intermediate age) of the
Guichon batholith, central British Columbia, showing partitioned populations and their
parameters, Symbols are those defined for Fig.5.
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Once the upper population A is defined, population B can be estimated
using the relationship:
Py =faPa + [PB

as described earlier. Check points of ideal mixtures of partitioned populations
A and B, shown as open triangles in Fig.9, coincide with the real data curve
except at the upper truncated end. Parameters of the partitioned population
for each of the 3 groups are given in Table VII. '

TABLE VII

Estimated parameters, whole rock Cu, Guichon batholith (central British Columbia)

Lithologic Population Proportion No. of Values in ppm Cu

group samples re T
b b+sq b - s,

I A 60 56 98 142 68
B 40 39 26.7 46.4 15.2
A+B 100 95

I A 80 93 69 139 34,5
B 20 23 10.9 20 5.9
A+B 100 116

11 A 40 28 54 85 34.5
B 60 21 10.3 20.2 5.1
A+B 100 119

For group A data thresholds can be chosen arbitrarily as the 98 and 2
cumulative of populations A and B. These percentages correspond to 16.5
and 39 ppm Cu, respectively and divide the data into 3 groups. An upper
group above 39 ppm Cu, consists of 63% of the total data and is essentially
only A population. A lower group below 16.5 ppm Cu consists of about 16%
of the data and for all practical purposes contain only B population. The
remaining 21% of the data is a mixture of A and B populations in the
range between the two thresholds. In this case, considerable overlap exists
between the two populations. Nevertheless, it is possible to identify the
population to which most of the individual values belong and this grouping
could aid considerably in interpretation of the significance of each population.

THE IMPORTANCE OF ANALYTICAL PRECISION

Thus far, an implicit assumption in the procedure for estimating thresholds
is that analytical values are known precisely. In practice, of course, recorded
values include a combined sampling and analytical error. Consequently, some
values above the threshold actually belong below it and vice versa. Normally
this confusion affects only a small proportion of the data, but hecomes mare
and more pronounced as the precision becomes poorer and poorer.
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In some cases the confusion is minimal relative to the problem on hand and
can be ignored. More generally, however, the sampling and analytical error
should be taken into account in defining thresholds. A convenient procedure
to achieve this end is to consider the threshold a range of values centred
about the single threshold obtained by assuming that values are perfectly
known. The threshold range is a confidence belt based on the precision of
the data. Average precision is normally adequate for defining such threshold
ranges. Precision, however, does vary with absolute amount of the variable
being estimated (e.g., Bolviken and Sinding-Larsen, 1978) and this can be
taken into account where adequate data are available. Such threshold ranges
define narrow bands on contour maps.

This procedure increases the number of potentially anomalous samples and
therefore involves additional time and money in checking such added samples,
These efforts can be minimized by examining the geographic positions of the
additional samples relative to known anomalous samples.

DISCUSSION

The method for choosing thresholds described here is a standardized
technique applicable to the vast quantity of geochemical data. It can be used
for any polymodal distribution if sufficient data of adequate quality are
present so that partitioning is feasible. A grouping of the data values is
obtained that can be invaluable in interpretation. For this reason, the method
is more fundamental and potentially more useful than other methods in
common use. In particular, the method outlined here stresses the concept
that both background and anomalous values represent populations that in
many cases overlap (see Bolviken, 1971).

The procedure is not restricted to the choice of thresholds between
anomalous and background populations. It is much more general in nature,
permitting grouping of many types of data with appropriate density distribu-
tions. In addition, probability graph analysis of data is simple, rapid and
amenable to use in the field (see Lepeltier, 1969).

Examples used to illustrate the selection of thresholds give ample evidence
of the general usefulness of probability plots in dealing with geochemical
data. This is true even if three or four populations are represented in the data,
although, in general, simpler interpretations result if data are first grouped on
the basis of some fundamental physical or geological criterion.

SUMMARY AND CONCLUSIONS

(1) Geochemical analyses commonly approximate lognormal density
distribution sufficiently closely that the distributions can be represented
usefully on lognormal probability paper.

(2) Providing a data set contains adequate values, normally a minimum of
about 100, a polymodal cumulative probability plot can be partitioned to
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produce estimates of the individual populations that make up the total
distribution.

(8) The partitioned populations can be used to define arbitrary but
meaningful thresholds that divide the data into groups that have fundamental
significance.

(4) In the special case of no effective overlap between anomalous and
background populations, a single threshold can be defined. In the common
simple case of two overlapping anomalous and background populations, two
thresholds are obtained that divide the data into three groups. An upper
group of predominantly anomalous values, a central group of anomalous and
background values, and a third group of background values.

(5) Polymodal distributions of geochemical data consisting of more than
two populations can commonly be treated in the same way as bimodal
distributions to obtain useful threshold values. In some cases, however, the
procedure can be simplified by grouping data on the basis of some fundamen-
tal characteristic (e.g., pH, underlying rock type) to produce simpler
probability plots that permit greater confidence in partitioning and inter-
preting.

(6) The method described for choosing thresholds is not confined to the
distinction between anomalous and background values but has general
application to any type of data, providing the individual populations approx-
imate lognormal (or normal) density distribution. Fortunately, this criterion
is met in the bulk geochemical data.
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