Geodynamics III
Mantle Convection

Quelle & Schmelling (2002)
Convection Everywhere
Convection Everywhere

Solar Convection Simulation

Abbett et al. 2004

Mixing length model
Outline

1. A brief overview of the governing equations
2. Introduction to the Rayleigh number Ra
3. Onset of convection (elements of stability)
4. The boundary layer model
5. Scaling relations and thermal histories
Conservation Equations

Fluid Parcel (mass M or volume V)

Reynolds Transport Theorem

\[
\frac{d}{dt} \int_{V(t)} f \, dV = \int_{V(t)} \left[\frac{\partial f}{\partial t} + \nabla \cdot (v f) \right] \, dV
\]
Conservation Equations

Example: Conservation of Mass

\[M = \int_{V(t)} \rho \, dV \]

\[\frac{d}{dt} \int_{V(t)} \rho \, dV = \int_{V(t)} \left[\frac{\partial \rho}{\partial t} + \nabla \cdot (\mathbf{v} \rho) \right] \, dV = 0 \]
Conservation Equations

Conservation of mass requires

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\mathbf{v} \rho) = 0$$

Other (equivalent) forms

$$\frac{\partial \rho}{\partial t} + \mathbf{v} \cdot \nabla \rho + \rho (\nabla \cdot \mathbf{v}) = 0$$

$$\frac{D\rho}{Dt} + \rho (\nabla \cdot \mathbf{v}) = 0$$

material derivative
Conservation Equations

Example: Conservation of Momentum

\[p = \int_{V(t)} \rho v \, dV \]

Newton’s 2nd Law

\[\frac{d}{dt} \int_{V(t)} \rho v \, dV = F \]

total force on parcel V

(e.g. gravity, pressure, viscous drag, etc)
Conservation Equations

Example: Conservation of Heat*

\[H = \int_{V(t)} \rho C_p T \, dV \]

\[\frac{d}{dt} \int_{V(t)} \rho C_p T \, dV = -\int_{S(t)} \mathbf{q} \cdot d\mathbf{S} + \int_{V(t)} R \, dV \]

* assumes constant \(\rho \) and \(C_p \)

conduction across surface \(S(t) \) \((\mathbf{q} = -k \nabla T) \)
Summary for Incompressible Fluid

mass
\[\frac{D\rho}{Dt} = 0 \quad \Rightarrow \quad \nabla \cdot \mathbf{v} = 0 \]

momentum
\[\rho \frac{D\mathbf{v}}{Dt} = -\nabla P + \rho \mathbf{g} + \eta \nabla^2 \mathbf{v} \]

heat
\[\rho C_p \frac{DT}{Dt} = k \nabla^2 T + R \]

Boussinesq approximation for small density variations

\[\Delta \rho = -\rho \alpha \Delta T \text{ included in buoyancy term only} \]
Modes of Heat Transport

1. Conduction

 time scale \(\tau_c = \frac{L^2}{\kappa} \)

 where \(\kappa = \frac{k}{\rho \ C_p} \) is thermal diffusivity

2. Advection

 time scale \(\tau_a = \frac{L}{v} \)

 Relative importance

 \[\frac{\tau_c}{\tau_a} = \frac{\nu L}{\kappa} \]

 e.g. \(L = 2900 \ \text{km}, \ \nu \sim 10\ \text{cm/year}, \ \kappa = 10^{-6} \ \text{m}^2/\text{s} \)
 \[\tau_c/\tau_a \sim 1000 \]
Rayleigh Number Ra

Velocity of Parcel

$v \approx \Delta \rho g L^2 / \eta$

For hot fluid

$|\Delta \rho| = \rho \alpha \Delta T$

Ratio of conduction to advection time?

$$\frac{\tau_c}{\tau_a} = \frac{vL}{\kappa} = \frac{\rho \alpha g \Delta T L^3}{\kappa \eta}$$

(Rayleigh number)

e.g. $L = 2900$ km, $\Delta T \sim 3000$ K, $Ra \sim 10^8$ (critical $Ra_c \sim 10^3$)
Onset of Convection

When does convection begin?

Consider time evolution of a small perturbation in an initially conductive state

\[T(x, y, z, t) = T_0(z) + \delta T(x, y, z) e^{\sigma t} \]

\[\mathbf{v}(x, y, z, t) = \delta \mathbf{v}(x, y, z) e^{\sigma t} \]

Substitute into (linearized) equations and solve for growth rate \(\sigma \)
Critical Rayleigh Number

Calculate growth rate

- use solutions at three times \((t_1, t_2, t_3)\)

\[
\frac{T(t_3) - T(t_1)}{T(t_2) - T(t_1)} = e^{\sigma(t_3 - t_2)}
\]

Rearrange for \(\sigma\)

\[
\sigma = \frac{1}{t_3 - t_2} \ln \left(\frac{T(t_3) - T(t_1)}{T(t_2) - T(t_1)} \right)
\]

Plot result as a function of \(Ra\)
Heat is carried by advection in the interior (e.g. $q_z = \rho \, C_p \, T \, v_z$). The vertical velocity vanishes at the boundaries, so heat must be carried by conduction across the boundaries (e.g. $q_z = -k \, dT/dz$).

→ The boundary layers are key to understanding convection
Boundary Layer Theory

Heat flow across layer

\[q_{\text{conv}} = \frac{k(\Delta T/2)}{l_\theta} \]

In the initial state (before convection)

\[q_{\text{cond}} = \frac{k(\Delta T)}{L} \]

Efficiency of convection

\[\frac{q_{\text{conv}}}{q_{\text{cond}}} = \frac{L}{2l_\theta} = Nu \]

(Nusselt number)

* \(l_\theta \) is average value
Boundary Layer Instabilities

Cold boundary layer grows by conduction into the convecting region

\[l_\theta \approx \sqrt{\kappa t} \]

Eventually the boundary layer becomes unstable at time \(t_c \)

Define a local Rayleigh number

\[Ra_l = \frac{\alpha g (\Delta T/2) l_\theta^3}{\kappa \nu} \]

Instability occurs when \(Ra_l \sim Ra_c \sim 10^3 \)
Average Heat Flow

Heat flow \(q(t) \)

\[
q(t) = -k \frac{dT}{dz} \approx k \frac{\Delta T/2}{\sqrt{\kappa t}}
\]

Time average

\[
\bar{q} \approx \frac{1}{t_c} \int_0^{t_c} k \frac{\Delta T/2}{\sqrt{\kappa t}} dt = \frac{k \Delta T}{\sqrt{\kappa t_c}}
\]

Recall that \(l_\theta^c = \sqrt{\kappa t_c} \) is defined by \(Ra_l = Ra_c \)
Nu-Ra Relationship

Time average

\[\bar{q} = \frac{k \Delta T}{l^c_\theta} \]

where

\[Ra_c = \frac{\alpha(\Delta T/2)g (l^c_\theta)^3}{\kappa \nu} = \frac{Ra}{2} \left(\frac{l^c_\theta}{L} \right)^3 \]

This means that

\[\frac{l^c_\theta}{L} = \left(\frac{2Ra_c}{Ra} \right)^{1/3} \]

\[Nu = \left(\frac{Ra}{2Ra_c} \right)^{1/3} \]

* remember that \(l^c_\theta = 2\bar{l}_\theta \)

Nu-Ra relationship
Application to Mantle Convection

1. Thickness of lithospheric plates

\[\frac{l_\theta^c}{L} = \left(\frac{2Ra_c}{Ra} \right)^{1/3} \]

for \(Ra = 10^8 \), \(Ra_c = 10^3 \), \(L = 2900 \) km we get \(l_\theta = 80 \) km

2. Velocity of lithosphere

Cooling time

\[t_c = \frac{l_\theta^2}{\kappa} \]

Velocity

\[V = \frac{L}{t_c} = \left(\frac{Ra}{2Ra_c} \right)^{2/3} \frac{\kappa}{L} \]

\(\sim 1.5 \) cm/year
Use of Energy Equations

Momentum equation

\[
\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\frac{1}{\rho} \nabla P - \alpha T \mathbf{g} + \nu \nabla^2 \mathbf{v}
\]

Kinetic energy equation

\[
\int_V \mathbf{v} \cdot \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} + \frac{1}{\rho} \nabla P + \ldots \right) dV = 0
\]

Time Average

\[
\varepsilon_v = \frac{\nu^3}{L^4} (Nu - 1) Ra Pr^{-2}
\]

where \(Pr = \frac{\nu}{\kappa} \) is the Prandtl number and \(\varepsilon_v \) is the viscous dissipation (e.g.

\[
\varepsilon_v \equiv \frac{1}{V} \int_V \nu (\nabla v)^2 dV
\]
Approximate viscous dissipation

\[\epsilon_v \equiv \frac{1}{V} \int_v \nu (\nabla v)^2 \, dV \]

\[\approx \nu \left(\frac{v}{L} \right)^2 \]

Use in Time Average

\[\epsilon_v = \frac{\nu^3}{L^4} (Nu - 1) Ra Pr^{-2} \]

\[v = \frac{\kappa}{L} (Nu - 1)^{1/2} Ra^{1/2} \]

\[v \approx 0.25 Ra^{2/3} \frac{\kappa}{L} \]

using boundary layer theory \(Nu = (Ra/2Ra_c)^{1/3} \)
Turbulent Convection

Turbulent cascade to small scales

\[\varepsilon_v \equiv \frac{1}{V} \int_V \nu (\nabla v)^2 \, dV \]

\[\approx \frac{v^2}{\tau} \approx \frac{v^3}{L} \]

Use in Time Average

\[\varepsilon_v = \frac{v^3}{L^4} (Nu - 1) Ra Pr^{-2} \]

\[v \approx \frac{\kappa}{L} (Pr Nu Ra)^{1/3} \]
Mixing Length Model

Temperature Equation

\[
\frac{\partial T}{\partial t} + \mathbf{v} \cdot \nabla T = \kappa \nabla^2 T
\]

“Thermal” Power

\[
\int_V T \left(\frac{\partial T}{\partial t} + \mathbf{v} \cdot \nabla T - \kappa \nabla^2 T \right) dV = 0
\]

Time Average

\[
\epsilon_\theta = \frac{\kappa}{L^2} \Delta T^2 \ Nu
\]

where \(\epsilon_\theta = \frac{1}{V} \int_V \kappa (\nabla T)^2 dV \)

Letting \(\epsilon_\theta = \nu \Delta T^2 / L \)

\[
Nu \approx Pr^{1/2} Ra^{1/2}
\]
Thermal Histories

Heat Budget

\[\bar{C}_p M \frac{dT}{dt} = R(t) - Q(t) \]

Convection

\[q(t) = \frac{kT(t)}{L} N_u(t) = \frac{kT(t)}{L} \left(\frac{Ra(t)}{2Ra_c} \right)^{1/3} \]

where

\[Ra(t) = \frac{\alpha g T(t) L^3}{\kappa \nu(t)} \]

Temperature Dependence

\[\nu(T) \propto \exp\left(\frac{E}{RT} \right) \]
Changes in Heat Flow

Viscosity

Heat Flow

Strong temperature dependence leads to a thermal “catastrophe” at early times

argument for high Urey ratio
How is Mantle Convection Different?

Decompression Melting

Melting forms oceanic crust (basalt) and depleted residuum (harzburgite)

Densities

- basalt $\sim 2.9 \text{ g/cm}^3$
- harzburgite $\sim 3.2 \text{ g/cm}^3$
- lherzolite $\sim 3.3 \text{ g/cm}^3$

Oxburgh & Parmentier (1977)
Buoyancy of Lithosphere

van Hunen et al. (2008)

Sleep (2007)
Rheology of Lithosphere

Melting dehydrates and strengthens the lithosphere (Korenaga, 2010)

Viscous Dissipation includes

- internal viscosity

- lithosphere “viscosity”

\[\nu(t) = \left(\frac{Ra}{2Ra_c} \right)^{1/3} \Delta \eta_L(h)^{-1/3} \]

A problem for the magnetic field?
Rheology of Lithosphere

Bending Stress

Bending Moment

Power law

\[\dot{\epsilon}_{ij} = \frac{1}{2\eta} \left(\sigma_{II}^{n-1} \right) \sigma'_{ij} \]

(Buffett & Becker, 2012)
Summary

We can make sense of mantle convection using boundary layer theory

Extrapolation back in time?

- heat flow?
- number or size of plates?
- continental configuration?
- surface environment/climate?

(S. Rost)