The Moho after 100+ Years of Research: What, Where, When, & Why Do We Care?

Wang-Ping Chen, Zhejiang University & University of Illinois, Urbana-Champaign
Chunquan Yu & Robert van der Hilst, MIT
Tai-Lin Tseng, National Taiwan University
Chi-yuen Wang, University of California, Berkeley

Where is the Moho? Is This a Big Problem?

TWTT

– P-wave reflection profile over ~1,000 km

What obvious features do you see?

Where is the Moho? Is This a Big Problem?

Where is the Moho? Is This a Big Problem?

Need a Reliable, Consistent Yardstick for Crustal Thickness

Virtual Deep Seismic Sounding (VDSS)

Wide-angle reflection from SsPmp
 – Virtual source
 – Deep-penetrating
 – Large signal
 – Physically averaged position of crust-mantle transition

Gradual, northward thinning of crust
 – Deviation from Airy isostasy starts near S. end of disrupted Moho
 – Up to ~12 km difference
 – ~2 km in residual topography

Thermal or dynamic support from the mantle

Current Configuration of Colliding Lithosphere:

T-T Tomography

Finite-frequency (“banana-doughnut”) kernels (effects of wave-front healing)

New, multi-scale expansion of model space

Data adaptive, no a priori smoothing

Mantle: Sub-horizontal, high-speed anomaly
 – Interpreted as underthrust Indian mantle lithosphere

IMF emerge early in the expansion, appearing already at level 1 (longest wavelengths)
Regional Extent of Indian Mantle Lithosphere ("Greater India")

30 – 15 Ma
- IMF advanced beneath Lhasa terrane
- IMF impinged upon S. edge of Qiangtang terrane
- Rayleigh-Taylor instability
 - Thermal Rayleigh # $Ra = g \alpha (\Delta T) h^3 / \kappa \nu$
 - Convective removal of thickened root
 - Making space for IMF

15 Ma – present
- Indian mantle lithosphere advanced N. beyond BNS
- Detached mantle lithosphere resting above the lower mantle
 - Elevation of Qiangtang terrane was only 3 km

Reconstruction of LM to -15 Ma

Best of both Views
- RF: Moho highly variable in nature
 - Sharp
 - Transitional
 - Distinct lower crust below Conrad
- VDSS: insensitive to details
 - Self-consistent way of measuring & comparing crustal thickness
 - Reliable

Source vs. Receiver-Side Scattering

New Development: Using All Sources of Illumination

- Deep eqks are the best sources
 - No interferences
 - Rich in high-frequency contents
 - Avoiding going through highly attenuative upper mantle twice
 - Limited quantity of data
 - Poor azimuthal coverage & moveout analysis (e.g., no selective detection)
- All strong sources are good
 - Particle motion analysis
 - Subsequent deconvolution
 - Synthetic seismograms validated by Hi-CLIMB data
Conclusions

• Large-scale, subhorizontal underthrusting of cratonic lithosphere hides, but not necessarily destroys, cratons
 – Current collision not recycling cratonic crust into the mantle
• Two case studies of crustal thickness based on new method
 – Large deviations from Airy isostasy
 – Contrasting tectonic settings
 • Tibet: Gradual northward thinning of crust → delicate balance between crustal isostasy and thermal buoyancy of the mantle
 • Ordos: Mafic lower crust beneath the Conrad discontinuity → Pratt isostasy → proxy of starting materials for lower crust foundering
 – Moho can be a dynamic feature (e.g., re-lamination, tectonic disturbance)
• VDSS to complement global map of crustal thickness
 – With a single, consistent & reliable yardstick
 • Improved coverage & resolution
 • Current volume of continental crust
 • Crustal isostasy
 • Dynamic topography due to mantle convection
 • Interpretation of heat flow data
 • Crustal corrections for seismic investigations of the deep interior

For (p)reprints:
ufi.box.com/pubs