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INTRODUCTION

The Mw 6.0 South Napa earthquake, which occurred at 10:20
UTC 24 August 2014 was the largest earthquake to strike the
greater San Francisco Bay area since the Mw 6.9 1989 Loma
Prieta earthquake. The rupture from this right-lateral earth-
quake propagated mostly unilaterally to the north and up-
dip, directing the strongest shaking toward the city of Napa,
where peak ground accelerations (PGAs) between 45%g and
61%g were recorded and modified Mercalli intensities (MMIs)
of VII–VIII were reported. Tectonic surface rupture with dex-
tral slip of up to 46 cm was observed on a 12.5 km long seg-
ment, some of which was along a previously mapped strand of
the West Napa fault system, although the rupture extended to
the north of the mapped Quaternary strand. Modeling of seis-
mic and geodetic data suggests an average coseismic slip of
50 cm, with a maximum slip of about 1 m at depths of
10–11 km. We observed up to 35 cm of afterslip along the
surface trace in the week following the mainshock, primarily
along the southern half of the surface rupture that experienced
relatively little coseismic offset. Relocation of the sparse after-
shock sequence suggests en echelon southwest- and northeast-
dipping fault planes, reflective of the complex fault geometry in
this region. The Napa basin and historic and late Holocene
alluvial flood deposits in downtown Napa amplified the
ground motions there. Few ground failures were mapped, re-
flecting the dry season (as well as a persistent drought that had
lowered the groundwater table) and the short duration of
strong shaking in the epicentral area.

TECTONIC SETTING OF THE SOUTH NAPA
EARTHQUAKE

The South Napa fault rupture lies within an 80 km wide set of
major north-northwest-trending faults of the San Andreas
fault system, forming the boundary between the Pacific and

North American tectonic plates (Jennings, 1994; Fig. 1).
The West Napa fault system is a relatively minor strike-slip
fault in the Contra Costa shear zone, which transfers slip be-
tween the Northern Calaveras,West Napa, and Concord faults
(Unruh and Kelson, 2002a,b; Kelson et al., 2004, 2005; Wes-
ling and Hanson, 2008; Brossy et al., 2010). Block modeling of
Global Positioning System (GPS) data estimated a slip rate of
4:0! 3:0 mm=yr on the West Napa fault (d’Alessio et al.,
2005). In the Uniform California Earthquake Rupture Fore-
cast (UCERF 3) model, the entire Contra Costa shear zone
was assigned a maximum slip rate of 1 mm=yr (Field et al.,
2013, appendix C, 18 pp). The earthquake was located near
the eastern shore of San Pablo Bay, midway between two major
active fault systems: the Hayward–Rodgers Creek fault system
12 km to the west and the Concord–Green Valley fault system
13 km to the east. The earthquake epicenter lies 1.7 km west of
the main mapped surface trace of the West Napa fault system
and close to the surface traces of the lesser known Carneros and
Franklin faults (Graymer et al., 2002). Although several faults
are mapped in the vicinity of the earthquake, only the West
Napa fault system is known to have displaced Holocene-age
sediments (Wesling and Hanson, 2008).

TheWest Napa fault system forms the western margin of a
basin that underlies much of NapaValley. The basin, filled with
Cenozoic sedimentary and volcanic deposits, is ∼2 km deep
beneath the city of Napa. The South Napa earthquake oc-
curred where the prominent east-facing gravity and magnetic
gradients associated with the main bedrock strand of theWest
Napa fault system diminish and are replaced by prominent
west-facing gravity gradients that mark the eastern margin
of the San Pablo Bay basin and the Carneros and Franklin
faults (Langenheim et al., 2006). The 2000Mw 4.9 Yountville
earthquake was attributed to the main bedrock strand of the
West Napa fault system 20 km north-northwest of the South
Napa epicenter (Langenheim et al., 2006). Modeling of poten-
tial-field data, coupled with aftershock locations, indicates a
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▴ Figure 1. Locations of the mainshock (red dot), aftershocks, surface ruptures (red lines), and locations of permanent (unfilled triangles)
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steep southwest dip for the main bedrock strand at this
location.

Historically, the Mw 7.8 1906 San Andreas fault earth-
quake and the Mw 6.3 1898 Mare Island earthquake both
caused shaking in this region sufficient to seriously damage
structures at Mare Island. The 1898 earthquake may have oc-
curred about 20 km to the northwest of Mare Island on the
southern Rodgers Creek fault (Toppozada et al., 1981; Bakun,
1999), but analysis after the South Napa earthquake locates
that earthquake closer to Mare Island (Hough, 2014). Al-
though the 2000 Mw 4.9 Yountville earthquake ruptured the
West Napa fault north of Napa, its energy was directed south
toward Napa, where it produced damage.

SHAKEALERT EARTHQUAKE EARLY WARNING
(EEW) PERFORMANCE

ShakeAlert, the prototype EEW system developed by the U.S.
Geological Survey (USGS), University of California–Berkeley
(UC Berkeley), Caltech, Eidgenössische Technische Hoch-
schule (ETH), and theUniversity of Washington, (Given et al.,
2014), successfully delivered an alert for the earthquake. The
first ShakeAlert (based on ElarmS) used data from four sta-
tions, had an estimated magnitude of 5.7, and was issued
5.1 s after the earthquake originated. The locations and mag-
nitudes of the earthquake provided by ShakeAlert were stable
and remained accurate as an ever-increasing number of stations
were included in the real-time analysis. The sending of the alert
at 5.1 s after origin time provided prototype ShakeAlert users
in Berkeley and San Francisco about 10 s of warning prior to
the onset of the strongest shaking at those locations (intensity
IV). With the available network geometry and communica-
tions, the blind zone of the ElarmS alert had a radius of about
16 km. The four stations that contributed to the first ElarmS
alert all provided 1 s data packets, but the latency in transmit-
ting data to the processing center ranged from 0.27 to 2.62 s. A
denser seismic network and/or decreasing the latency in trans-
mitting data to less than a second would have allowed alerts to
be issued in less than 3 s for this event, reducing the blind zone
to a radius of about 8 km and allowing an alert closer to the
epicenter. The first EEW alert based on the onsite algorithm
was issued 10.9 s after the earthquake origin time.

NEAR-REAL TIME EARTHQUAKE INFORMATION
PRODUCTS

The first location, magnitude, focal mechanism, and Shake-
Map (a map showing the shaking intensity; Wald, 2012), were
reported 4 min after the origin time of the earthquake. The
first ShakeCast, based on the ShakeMap and user-defined es-
timates of infrastructure fragility (Wald, 2012), was prepared
for the California Department of Transportation 11 min after
the earthquake. The first Prompt Assessment of Global Earth-
quakes for Response (PAGER) alert of probable fatalities and
economic loss based on population exposure to the shaking
(Wald, 2012) was produced 13 min after the origin time.

The ShakeMap was updated as additional strong-motion re-
cordings were retrieved and incorporated, and the PAGER
alert changed from yellow to orange to red, based on projected
direct economic losses, which are reported to be on the order of
one-half billion dollars (Earthquake Engineering Research In-
stitute [EERI], 2014). All versions of PAGER estimated be-
tween 0 and 10 fatalities; one fatality was reported. These
products are available at the USGS Event Summary page
for this earthquake (see Data and Resources). Increased net-
work density and/or faster data telemetry would have im-
proved ShakeMap, ShakeCast, and PAGER performance.

The earthquake was widely felt in the San Francisco Bay
area. The “Did You Feel It?” (DYFI) community intensity
website received more than 41,000 entries, with the highest re-
ported intensities (MMI VIII) in Napa. The earthquake was re-
ported as felt by more than one respondent 300 km to the east in
Reno, Nevada, 340 km to the north in McKinleyville, Califor-
nia, and 440 km south in Bakersfield, California. Geocoded
DYFI entries show the highest intensities were reported north
of the epicenter, which is consistent with directivity estimates
for the earthquake, although intensities of VII were also re-
ported in northern Vallejo. Because the Internet service to the
most heavily impacted areas was down for an extended time, few
DYFI reports were received from within the City of Napa.

CALIFORNIA EARTHQUAKE CLEARINGHOUSE

Within 12 hrs of the mainshock, and for the first time since the
1994 Northridge earthquake, the California Earthquake
Clearinghouse opened a physical clearinghouse in a Caltrans
facility located in Napa (EERI, 2014). The Clearinghouse is
a cooperative organization in which any agency interested
in postearthquake information is welcome to participate. In
addition to the California Geological Survey (CGS), which
serves as the permanent lead coordinating agency, the founding
and managing partners of the Clearinghouse include the Cal-
ifornia Office of Emergency Services, the California Seismic
Safety Commission, EERI, and the USGS. The California De-
partment of Transportation, Caltrans, also provided a commu-
nications van that supported high-speed Internet connections.
The Clearinghouse, which included Geographic Information
Systems staff, provided logistics support to the field crews, as-
sisted in obtaining overflights of the surface rupture, and co-
ordinated the field surveys being made of the surface rupture
and ground deformation. Morning and evening meetings were
held to debrief the field crews. The Clearinghouse closed in the
evening of 26 August.

MAINSHOCK LOCATION, MAGNITUDE, FOCAL
MECHANISM, AND FINITE-FAULT INVERSION

Initial estimates of the hypocenter of the Mw 6.0 (with a mo-
ment of 1:33 × 1018 N·m ) earthquake, which occurred on
24 August 2014 at 10:20:44 UTC (3:20:44 local time), placed
it about 8 km south-southwest of Napa at a depth of
11:3! 0:2 km. Although the relative depths have uncertain-
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ties of a few hundred meters, the absolute depth uncertainties
could be on the order of a few kilometers due to velocity model
uncertainties. (Relocation of the event, described below, yields
a revised depth of 9.4 km.) The hypocenter was located using
146 stations and 161 phases with an azimuthal gap of 29°. The
distance to the nearest station was 4.0 km (Fig. 1), resulting in
locations having reasonable depth control for the mainshock
and its aftershocks.

Focal mechanisms are consistent with right-lateral motion
along a plane striking 165°, dipping 85° to the southwest. This
plane is compatible with the observed tectonic surface rupture.
Moment tensor solutions by UC Berkeley also show right-lat-
eral motion along a plane having nearly an identical strike, 157°
or 158°, with a rake of 172°.

A preliminary slip model for the earthquake, based on seis-
mic data, shows the rupture propagated mostly north-north-
west and up-dip (Fig. 2). Slips at depth averaged about
50 cm in the elongated slip patch, with a maximum of about
1 m at depths of 10–11 km. This northward rupture propa-
gation would have directed seismic energy toward Napa and
produced the intensity distribution reported by DYFI.

Coulomb stress transfer models calculated for the earth-
quake using Coulomb 3.4 (http://usgsprojects.org/coulomb/;
last accessed February 2015) were consistent with a clear seis-
micity rate increase north of the mainshock and a modest in-
crease south of the mainshock, roughly along the West Napa
fault, where the stress is calculated to have increased by ∼0:5
bar (Parsons et al., 2014). Other small earthquakes occurred on
or near the Green Valley fault, where the Coulomb stress is
calculated to have increased by ∼0:25 bars, although this sec-
tion of the Green Valley fault is very active as recorded instru-
mentally. Coulomb stress changes of >0:5 bar are often but

not always associated with increases in the rate of earthquakes,
whereas changes of <0:1 bar are probably not important for
triggering aftershocks.

AFTERSHOCK SEQUENCE AND LOCATION

The aftershock sequence after one month (80 Mw ≥1:8 after-
shocks) was nearly four times less productive than for the 2004
Mw 6 Parkfield earthquake (320 Mw ≥1:8 aftershocks). Both
Mw 6 earthquakes, however, have b-values in the 0.7–0.8 range,
similar to other northern CaliforniaMw ∼ 6 aftershock sequen-
ces. Moreover, despite the relatively low aftershock productivity,
the sequence is well described by epidemic-type aftershock se-
quence models (Ogata, 1988). The largest aftershock to date,
an Mw 3.9 event, occurred just over two days after the main-
shock. This aftershock was among the first to rupture south of
the mainshock and triggered a cluster of its own aftershocks on
the southern end of the West Napa fault (Fig. 1).

The first week of aftershocks were relocated using the to-
moDD code (Zhang and Thurber, 2003) and the 3D seismic
velocity model and station corrections of Hardebeck et al.
(2007). Catalog P- and S-wave arrival times were used for re-
location, as well as relative arrival times from waveform cross
correlation. A matched filter approach was applied to identify
aftershocks that do not appear in the network catalog.

We relocated all catalog earthquakes, and all matched-
filter-detected events with at least eight waveform differential
times having correlation coefficient ≥0:8. We performed 20
iterations of tomoDD, the first 10 with the catalog times given
more weight, and the last 10 with the waveform differential times
given more weight. The relocated catalog consists of 375 hypo-
centers: 147 catalog aftershocks, 227 aftershocks detected by the
matched filter approach, and the mainshock hypocenter. The re-
located depth of the mainshock hypocenter is 9.4 km.

Although the surface rupture of the mainshock was well
expressed, the fault plane of the mainshock is not well defined
by the aftershocks. Most of the aftershocks occur between 8
and 11 km depth and form a diffuse ∼10 km long north-
northwest-trending feature to the north-northwest of the
mainshock hypocenter (Fig. 3). In cross section, a sharply de-
fined northeast-dipping seismicity plane is apparent north of
the hypocenter, implying significant geometric complexity. In
addition to the main aftershock zone, there are a few clusters of
aftershocks to the northwest, close to but south-southeast of
the Yountville earthquake and its aftershocks (Fig. 1), a cluster
of aftershocks to the south of the mainshock, and a cluster of
earthquakes in the Green Valley fault zone that is ∼30 km di-
rectly to the east of the main aftershock zone.

To better understand the complex geometry of the after-
shocks, the optimal anisotropic dynamic clustering (OADC)
algorithm (Ouillon et al., 2008) was used to identify the sim-
plest planar fault geometry that fits the events of the main
aftershock zone. Aftershock locations were fit to within the
uncertainty, assumed here to be 0.5 km for all events. To ac-
count for sensitivity to randomness in the OADC procedure,
we ran OADC 3000 times and use the suite of results to

▴ Figure 2. Slip model resulting from the inversion of seismic
broadband data recorded at six University of California–Berkeley
seismic network stations. The white circle provides the location of
the hypocenter.
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identify stable features and their uncertainty. The OADC algo-
rithm returns two stable planes, which occur in 84% and 73% of
the runs. No other plane occurs in more than 30% of the runs.

One of the OADC-determined planes corresponds to the
northeast-dipping seismicity structure visible in cross section.
This plane strikes 357°! 25° and dips 33°! 24° to the east.
The other plane strikes 162°! 9° and dips 72°! 19° to the
southwest. This structure is visible only as a diffuse zone of
seismicity in some cross sections. This second plane is similar
in orientation to the fault plane of the mainshock moment
tensor, so it may represent aftershocks occurring in the area
around the mainshock rupture. The occurrence of most after-
shocks to the west of the mapped surface rupture is consistent
with the southwest dip of the mainshock fault plane.

The mainshock hypocenter and many of the aftershocks
occur near the intersection of the two apparent fault planes.
The plane intersection deepens to the south-southeast, due

to the difference in strike, corresponding to a slight deepening
of the densest aftershock zone toward the south-southeast. The
aftershock geometry suggests that stress is concentrated at the
intersection of two active fault structures, encouraging nucle-
ation of the mainshock and the majority of aftershocks. If this
model is applied more broadly, it suggests that seismicity streaks
reflect the linear intersection of planar faults. In previous earth-
quakes, seismicity streaks can persist over decades at least and
are not reset by stress redistribution when a mainshock occurs
(e.g., Thurber et al., 2006), also suggesting a link to fault
geometry.

SPATIAL VARIABILITY OF STRONG-GROUND
MOTIONS

PGAs of 45%g–61%g and peak ground velocities (PGVs) of
45–90 cm=s from the Mw 6.0 South Napa earthquake were
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recorded in the Napa area, damaging many older buildings and
resulting in more than 100 red-tagged structures (Boatwright
et al., 2015). The recorded data are of engineering interest as 9
strong-motion recordings were in excess of 30%g , 3 strong-
motion recordings were made at epicentral distances less than
10 km, and 20 recordings were made at epicentral distances less
than 20 km. The highest PGA (0:995%g) was recorded at
Crockett beneath the Carquinez bridge: it is possible that
the acceleration recorded there reflects a soil–structure inter-
action or an unusual path effect.

The recorded ground motions for PGA, PGV, and pseu-
dospectral accelerations (PSA) at periods of 0.3, 1.0, and 3.0 s
were compared with five ground-motion prediction equations
(GMPEs), the four Next Generation Attenuation-West 2
GMPEs and that of Graizer and Kalkan (2015), to analyze both
relative source and attenuation properties (see also Baltay and
Boatwright, 2015). Overall, the GMPEs matched the median
level of ground motion and the general distance decay, as well
as the scatter in the data (Fig. 4). However, for most GMPEs at
most periods, the attenuation in the data is stronger than that in
the models, most obviously at the shorter periods (i.e., PGA).
The DYFI data also indicate higher than average macroseismic
intensities within 20 km of the epicenter and lower than average
values at greater distances. This observation likely indicates the
attenuation structure in the Napa and San Joaquin–Sacramento

delta region is stronger than the average attenuation in Califor-
nia, on which the GMPEs were built.

At close distances, within ∼20 km, the PGA data compare
very well with the GMPEs (Fig. 4, left); because stress drop is
most closely linked to PGA recordings at nearby stations, we
infer the South Napa earthquake was of average stress drop,
corresponding to ∼5 MPa (Baltay and Hanks, 2014).

The residual maps show positive residuals (stronger than
predicted ground motion) in the north along both the West
Napa fault and in the Sonoma basin, likely due to the northerly
rupture directivity, and along the Rodgers Creek fault, espe-
cially at the longer periods (e.g., Fig. 4, right, for PSA of
1.0 s). Particularly at 1.0 s, there also are strong positive resid-
uals at stations to the south of the earthquake, showing a linear
feature in the along-strike direction. These may align with a
Quaternary-active fault near the Franklin or Southampton
fault and continue south to the Calaveras fault. If so, they
may be indicative of a fault-guided wave, indicating that these
other structures may be thoroughgoing.

GEODETIC MODELS OF COSEISMIC SLIP AND
AFTERSLIP

Time series from 64 regional continuous GPS (cGPS) sites and
13 campaign or survey-mode GPS (SGPS) stations reoccupied
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within three days of the earthquake constrain the coseismic
displacement field at the Earth’s surface. Comparison of the
5 min kinematic solutions from the cGPS stations (providing
the most direct estimates of the coseismic offsets) with 24 hr
solutions (Fig. 5) indicates that shallow displacements grew an
additional 30%–50% during the first 24 hrs following the
earthquake. This afterslip is best illustrated by horizontal-
component time series for P261, the closest cGPS site to
the West Napa fault (Fig. 6).

Coseismic offsets of a few centimeters were estimated
from the GPS daily position time series for most of the cGPS
and SGPS stations (Fig. 7). For each station, we fit a linear
trend (interseismic motion), a coseismic step, and postearth-
quake Omori decay (with fixed time constant) using the ap-
proach of Langbein (2004), which accounts for temporally
correlated noise; for cGPS sites, we also included seasonal terms.
Using daily positions, combined with the time lag between the
earthquake and initial campaign GPS measurements, resulted
in the mapping of some postseismic displacement into the co-
seismic offset estimates. Consistent with its proximity to the
fault plane, campaign site DEAL, located 770 m west of
the trace of the surface rupture, moved about 23 cm to the
north-northwest. This observation would suggest ∼46 cm of
total slip at the surface occurred in this location.

Interferometric Synthetic Aperture Radar (InSAR) data
place additional constraint on the coseismic deformation.
The earliest repeat pass was obtained on 27 August 2014
by the COSMO–SkyMed (CSK) 2 satellite, which repeated
a pass on 26 July 2014. The unwrapped interferogram repre-
senting its range change from X-band Synthetic Aperture
Radar (SAR), shown in Figure 8a, reveals a quadrant pattern
of deformation consistent with a strike-slip rupture. Because
the satellite orbit is descending looking to the west, positive
range change is consistent with either uplift or eastward mo-
tion. As for the GPS data, this interferogram contains both
coseismic motions and early afterslip.

We inverted the GPS and InSAR data for slip distributions
using the cascading adaptive transitional metropolis in parallel
algorithm (Minson et al., 2013). The model fault follows the
western branch of the mapped surface rupture and is assumed
to extend vertically to 12 km depth. We discretized the fault
into subfaults that are ∼1 km in down-dip dimension and
1.5 km in along-strike dimension. Strike slip was given a uni-
form prior distribution, that is, truncated at −5 mm to enforce
positive (right lateral) motion. The dip-slip component was
given a Gaussian prior distribution of 0 m with a standard
deviation of 5 mm. We applied spatial averaging to the slip
distribution below 1 km depth via a moving arithmetic mean
with averaging lengths of three subfaults in the down-dip and
along-strike direction.

Figure 9a shows the results of inverting the GPS offsets
estimated from the daily position time series, along with co-
seismic surface rupture measurements (Brooks et al., 2014;
Ponti et al., 2014; Trexler et al., 2014), for the surface coseis-
mic slip distribution. The surface slip (Fig. 10) and GPS data
(Fig. 7) are fit reasonably well, and the majority of inferred slip
underlies the region experiencing near-fault postseismic dis-
placement. The slip distribution has an Mw 6.1, slightly larger
than the Mw 6.0 inferred from seismic data, reflecting the in-
clusion of afterslip into the GPS offsets.

Figure 9b shows the results of jointly inverting the GPS
and InSAR data. The fit to the data is shown in Figures 8b
and 11. In these inversions, we use the approach of Johanson
and Bürgmann (2010) to determine the relative weighting of
GPS and InSAR data. The resulting slip distribution is some-
what complementary to that based solely on the GPS and sur-
face slip data from 24 August, with slip extending deeper as
well as in both directions along-strike from the area of inferred
peak slip of 24 August. In comparison with the results in
Figure 9a, additional moment release with equivalent Mw 5.5
occurred in the three days following the mainshock. The in-
version results suggest that some afterslip may have occurred
below 1 km depth on the northwest half of the fault.

SURFACE RUPTURE AND AFTERSLIP

The South Napa earthquake was the first earthquake in the San
Francisco Bay area to produce a significant surface rupture
since the 1906 San Francisco earthquake. The mapped surface
rupture extended along and between mapped Quaternary and
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▴ Figure 5. Displacements differenced from pre-earthquake
measurements at six continuous Global Positioning System (cGPS)
sites using 5 min kinematic solutions (white vectors) and 24 hr sol-
utions (black vectors). Error ellipses show 95% confidence. The
mapped surface rupture is shown by the heavy gray curve,
and the earthquake epicenter is indicated by the black star.
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Holocene active strands of the West Napa fault (Fig. 1). The
earthquake struck in a populated region containing a large
number of well-maintained roads and vineyards, which facili-
tated mapping of the surface rupture. Field reconnaissance be-
gan within a few hours of the earthquake and included road
surveys and helicopter overflights provided by the California
Highway Patrol that were coordinated by the CGS–EERI
Earthquake Clearinghouse. The mapped surface rupture con-
sisted primarily of a zone of right-lateral fractures from less to a
meter to more than tens of meters wide. Although the rupture
varied along the fault, it was usually observed as a zone of
echelon left-stepping fractures (Fig. 12). Field mapping was
assisted by lineaments observed in SAR data, initially interfero-
grams of Agencia Spaziale Italiana’s CSK data (X-band), Na-
tional Aeronautics and Space Administration/Jet Propulsion
Laboratory’s Uninhabited Aerial Vehicle Synthetic Aperture
Radar (UAVSAR) (L-band) data, and the European Space
Agency’s (C-band) Sentinel-1-A data (Geotechnical Extreme
Events Reconnaissance [GEER], 2014).

The mapped surface rupture extended ∼12:5 km north-
northwest from the town of Cuttings Wharf in the south

to north of Alston Park in the City of Napa (Fig. 13). A com-
plex pattern of surface slip was observed along six different
subparallel fault strands. Net surface slip was highest along
fault strand A, which was also the longest fault strand that rup-
tured in the earthquake. A late Quaternary active strand of the
West Napa fault had previously been mapped along the center
section of strand A (Fig. 1). The maximum net surface slip
along strand A, about 46 cm, was measured about 10 km
north-northwest of the epicenter and is thought to be entirely
coseismic. Strand C, located east of strand A, was the second
longest surface fault rupture and had the second highest
amount of surface slip, reaching a maximum of 8 cm in
Brown’s Valley. Surface slip on the shorter strands B and
D–F is also thought to be primarily coseismic and reached
a maximum of 6 cm. Surface slip on strand F, on a Holocene
active strand of the mapped West Napa fault at the Napa
County Airport (Fig. 1), was minor. Surface slip on the other
strands of the West Napa fault east of strand A could have
resulted from either triggered slip or surface rupture (Hudnut
et al., 2014). The surface slip estimates shown on Figure 10
represent the earliest measurements made following the
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▴ Figure 6. East- and north-component kinematic time series at the Plate Boundary Observatory site P261 (see Fig. 7 for location). A slope
proportional to the pre-earthquake velocity has been subtracted. The vertical dashed line segments indicate the coseismic offset, and the
solid curves are flat pre-earthquake and follow an Omori decay postearthquake.
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earthquake. Nonetheless, some of these measurements may
include afterslip.

Within the first 24 hrs following the earthquake, afterslip
was observed from the ongoing development of surface crack-
ing on roads and other man-made features. To better quantify
the afterslip, the USGS established four alignment arrays across
the fault (Lienkaemper et al., 2014). Afterslip continues to ac-
cumulate more rapidly south of the maximum surface coseis-
mic slip locality on strand A; it also accumulates to the north of
the maximum coseismic slip location but at a much lower rate
than was observed for the first 48 hrs following the mainshock
(Hudnut et al., 2014; Lienkaemper et al., 2014). Up to 20 cm
of right-lateral afterslip was observed within 48 hrs of the
mainshock, mainly on the southern half of strand A. The on-
going analysis of imagery, repeat mobile Light Detection and
Ranging (LiDAR) data, and campaign and continuous GPS
data are expected to provide more information on the amount
and location of afterslip along the rupture zone.

Comparison with 11 other moderate California strike-slip
earthquakes since 1948 indicates that the South Napa earth-
quake coseismic surface rupture length and slip were unusually
large (Table 1). Eleven other earthquakes, having comparable
magnitudes between 5.5 and 6.15 (average Mw 5.9) and com-
parable focal depths between 5.8 and 14.8 km (average 9.4 km),
had an average coseismic surface rupture length of 4.6 km and
an average coseismic surface slip of 4.3 cm. Four of these earth-
quakes had no coseismic surface rupture, and six had coseismic
surface slips of 1 cm or less. In contrast, the South Napa earth-

quake produced a surface rupture length nearly three times
larger than the average surface rupture length and a coseismic
surface slip that is 14 times larger than the average slip. The
observed surface afterslip for the South Napa earthquake,
up to 35 cm, is also several times higher than the average
of 5.1 cm.

PAUCITY OF GROUND FAILURE

Few observations of liquefaction, landslides, or other ground
failures were identified in reconnaissance surveys following
the earthquake. Sand boils were noted in the Napa River chan-
nel in Napa at the Third Street Bridge (GEER, 2014). Some
failures of road cuts and dislodged boulders were noted to the
northwest of the epicenter (Walter Mooney, written comm.,
2014). These findings are in accord with the compilation
byYoud and Hoose (1978), which does not report ground fail-
ures in Napa Valley produced by historical earthquakes in
northern California, including the 1892 Vacaville, 1898 Mare
Island, and 1906 San Francisco earthquakes. Youd and Hoose
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▴ Figure 8. COSMO–SkyMed interferograms spanning 26 July
2014–27 August 2014. The positive line-of-sight displacement cor-
responds to uplift and eastward movement. The heavy green
curve shows the surface trace of the model fault, and the heavy
purple curve shows location of mapped eastern strand of surface
rupture.

–50 –40 –30 –20 –10 0 10 20 30 40
–40

–30

–20

–10

0

10

20

30

2 cm, 95% conf.

.

east (km)

no
rt

h 
(k

m
)

Fit to GPS offsets (24 August 2014) from estimated slip distribution

DEAL

P261
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strand of surface rupture (not included in model), and the gray
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(1978) noted that the April 1906 San Francisco earthquake
was preceded by an above average rainy season and a month
of exceptionally heavy rainfall in March, yet those authors
found no reports of ground failures in 1906 in the NapaValley.

The relative scarcity of ground failures during the 2014
South Napa earthquake may partly reflect the low groundwater
table resulting from the occurrence of the earthquake near the
end of the dry season and a three-year-long drought. The South
Napa earthquake occurred near the end of the summer dry
season, with no appreciable rain being measured in Napa
for nearly 4 months (i.e., since April 25; Napa County Uni-
versity of California Cooperative Extension, 2015). Total rain-
falls in Napa during the two rainy seasons prior to the
earthquake were 70% and 53% of average, respectively (Napa

County University of California Cooperative Extension,
2015). TheUSGS stream gage record for the Napa River shows
that in the month before and on the day of the earthquake, the
stream levels were lower than since before January 2008 and
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▴ Figure 9. Inferred slip distributions. (a) Slip on 24 August 2014,
inferred from GPS and surface offset data. The star marks the hy-
pocenter. Red dots mark subfaults, for which there are one or
more surface rupture observations. The purple curve at the top
of the fault marks the surface rupture from field mapping. (b) Slip
from 24–27 August 2014 (inclusive of coseismic slip), inferred from
GPS and Interferometric Synthetic Aperture Radar (InSAR) data.
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that stream discharge rates were at low levels (1:6 ft3=s)
(USGS, 2015).

Although we have not systematically reviewed records of
groundwater levels in NapaValley, a preliminary review of data
from several selected water wells in the Napa area (California
Department of Water Resources, 2015) indicates that the sea-
sonal variation in the depth to the top of ground water in Napa
Valley is in the 2–12 m range (6–40 ft) and that depths to the
tops of groundwater tables approach their lowest point at the
end of August. One water well, located in the center of Napa
Valley about 4.3 km north of downtown and 0.6 km west of
Napa River, shows that groundwater levels have dropped about
1.4 m since 2006; and, at the time of the South Napa earth-
quake, the water level in this well was at depth of 13.4 m. Many
practitioners consider triggering of liquefaction at depths more
than about 13–16 m to be uncommon; and, should it occur, it
is unlikely to deform the ground surface. We believe that the
low groundwater table in Napa Valley at the time of the earth-
quake reduced the saturation of the young sands and sandy
deposits and inhibited liquefaction.

We also considered the liquefaction susceptibility of
deposits in Napa Valley when saturated. Jennifer Thornburg
of the CGS (verbal comm., 2015) reviewed borehole logs from
Napa Valley on file at CGS and identified few liquefiable
deposits. She found the young deposits are typically too fine
grained to be liquefiable. We speculate that the low gradients
of streams in the center of Napa Valley and the potential
absence of suitable coarser-grained materials sourced from
the surrounding hills (volcanic bedrock in the hills tend to
weather to finer-grained material) may contribute to the
absence of deposits prone to liquefaction.

Finally, as noted by Seed et al. (1983) from a liquefaction
viewpoint, “the main difference between different magnitude

events is the number of cycles of stress which they induce.” The
South Napa earthquake produced only 2–4 stress cycles in the
strong ground motions in downtown Napa (station N016),
fewer than expected for an Mw 6 earthquake (5–6 cycles).

SITE RESPONSE

Comparison of the mapped red- and yellow-tagged structures
with the mapped surface geology in Figure 1 indicates that the
majority of these damaged buildings were built on three main
soil types (Witter et al., 2006): historic alluvial deposits from
the Napa River and Napa Creek (Qhc), Holocene alluvial de-
posits (Qha), and Holocene fan deposits (Qhf2). There is a
suggestion in Figure 1 that the boundary between Latest Pleis-
tocene and Holocene fan deposits marks the northern boun-
dary of the red- and yellow-tags in northern Napa, apart from
tags in the older fan deposits associated with mobile home
parks. Boatwright et al. (2015) notes a correlation of the lo-
cations of these damaged structures with the isocontours of the
thickness of the Napa basin. It seems likely that the deposits in
the Napa basin amplified the ground motions in the city of
Napa and contributed to the damage there.

Temporary seismic stations were deployed by the USGS in
the Napa region to record aftershocks (Fig. 1). A valley-cross-
ing, east-trending deployment of six stations was made near the
northern limit of the surface rupture. A north-trending deploy-
ment of seven stations was made along the trend of the Napa
Valley. Five sites were deployed in downtown Napa to inves-
tigate the spatial variability of the strong shaking at a finer
scale. The California State University–East Bay deployed three
stations in Napa that complemented these arrays (not shown
in Fig. 1). Finally, dense arrays of instruments were deployed
across three separate fault strands to record fault-zone-guided
waves to investigate the connectivity of the fault strands
(Catchings et al., 2014). A comparison of the aftershock re-
cordings from five stations in downtown Napa reveals little
variation in site response over a distance of a kilometer (Hud-
nut et al., 2014).

DISCUSSION

The Mw 6.0 South Napa earthquake, the largest in the San
Francisco Bay area in 25 years, occurred on the West Napa
fault system, a known but relatively minor dextral strike-slip
fault lying between the larger Rodgers Creek and Green Valley
faults. The earthquake is a reminder not only that magnitude
Mw 6.0 earthquake can occur on relatively minor fault systems
throughout the Bay area and California in general and that
often these minor fault systems have not been well character-
ized. Another lesson is that earthquakes of this magnitude can
cause substantial ground motions resulting in significant dam-
age to buildings that were not built to current building code
standards. Fortunately, the EERI field team survey reported
that buildings that had been retrofit generally fared better than
those that had not (EERI, 2014). This point is well illustrated
by the recording made by a USGS NetQuakes seismometer in

▴ Figure 12. Left-stepping en echelon fractures characteristic of
right-lateral fault displacement at the ground surface. The total
fault slip measured near this location was 40–46 cm. The photo-
graph was taken by Dan Ponti on the main rupture strand near
Buhman Road on the day following the earthquake.
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▴ Figure 13. Locations of the traces of tectonic surface faulting (yellow lines) produced by the 24 August 2014 South Napa earthquake
from Hudnut et al. (2014). Right-lateral surface displacements, measureable in the field, were observed along traces labeled A–F. Solid
lines indicate regions where surface faulting was relatively continuous. Dotted lines indicate regions where surface faulting was dis-
continuous, diffuse, or had negligible offset. Numbers show the earliest measurements of the maximum measured right-lateral offset at
selected sites, rounded to the nearest centimeter; the measurements were made within two days of the earthquake, but probably include
both coseismic slip and afterslip south of Henry Road. The red star is the location of the earthquake epicenter.
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Table 1
Comparison of Seismological and Surface-Faulting Parameters for ∼Mw 6 Strike-Slip Earthquakes in California since 1948

Event
(Year)

Magnitude
(Mw)*

Focal
Depth D
(km)†

Coseismic
Surface
Rupture
Length
(km)‡

Coseismic
Dmax at
Surface
(cm)§

Creep
Prior to
Event

Surface
Afterslip
(cm) ‖

Notes

Desert Hot
Springs
(1948)

6.0 6.0 0 0 No nr Mw and D (Felzer, 2013). Richter
et al. (1958) report no surface
rupture; 18 km aftershock zone.

Galway
Lake (1975)

5.0 ML 5.8 6.8 1.5 No nr ML and D (Felzer, 2013). Surface
offset data from Hill and
Beeby (1977).

Parkfield
(1966)

6.0 8.6 0 (SA)
10 (SWFZ)

0 (SA)
6.6 (SWFZ)

Yes 31 (SA) Mw and D (Ellsworth, 1990).
San Andreas creeping at
28 mm= yr. Afterslip along 44 km
of main San Andreas (SA)
Coseismic slip on southwest
fracture zone (SWFZ). Surface
offset data from Lienkaemper
and Prescott (1989).

Homestead
Valley (1979)

4.8 ML

5.5
4.5 ML

4.8 ML

8.3
9.3
8.9
2.0

3.25 (HV)
1.5 (JV)

11
1

No nr Mw, ML and D (Felzer, 2013).
Earthquake swarm with rupture
along Homestead Valley (HV)
and Johnson Valley (JV) faults;
both reruptured during 1992
Mw 7.2 Landers event. Surface
offset data from Hill et al. (1980).

Coyote
Lake (1979)

5.9 8.95 0 0 Yes 0.5 Mw and D (Oppenheimer
et al., 1990); 14 km rupture length
at depth. Discontinuous surface
cracking for 14.4 km is likely
afterslip. Surface observations
from Armstrong (1979).

Greenville
(1980)

5.8 14.8 4–6 ≥1 Yes ≥1 Mw and D (Ellsworth, 1990).
Pre-event creep at 1–2 mm= yr
(Lienkaemper et al., 2013).
Total surface slip (coseismic +
afterslip) was 2.5 cm
(Bonilla et al., 1980). Concurrent
rupture of conjugate Las Positias
fault.

Morgan
Hill (1984)

6.2 8.4 0 0 Yes nr Mw and D (Oppenheimer
et al., 1990). 25 km rupture length
at depth (between 4 and 10 km).
No unequivocal coseismic
surface rupture (Harms
et al., 1987).

*Magnitudes are Mw unless noted as ML. Data are from the Uniform California Earthquake Rupture Forecast
Version 3 (UCERF 3) seismicity catalog (Felzer, 2013) unless otherwise noted.
†Focal depth D (km) source is UCERF 3 seismicity catalog (Felzer, 2013) unless otherwise noted.
‡Coseismic surface rupture length (km) is the reported length of rupture at the surface at time of event and is distinct

from afterslip. Where multiple fault traces occurred, the length listed is for the longest trace.
§Coseismic Dmax is the reported maximum coseismic surface displacement and does not include afterslip.
‖nr, not reported.
(Continued next page.)
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Table 1 (continued)
Comparison of Seismological and Surface-Faulting Parameters for ∼Mw 6 Strike-Slip Earthquakes in California since 1948

Event
(Year)

Magnitude
(Mw)*

Focal
Depth D
(km)†

Coseismic
Surface
Rupture
Length
(km)‡

Coseismic
Dmax at
Surface
(cm)§

Creep
Prior to
Event

Surface
Afterslip
(cm) ‖

Notes

North Palm
Springs
(1986)

6.02 10.4 9 < 0:1 No nr Mw and D (Felzer, 2013).
Discontinuous, en echelon,
left-stepping fractures for 9 km
along surface trace Banning
strand of SA. Offset data from
Sharp et al. (1986), who refer to
these as trace fractures and
interpret them as incipient
faulting.

Elmore
Ranch
(1987)

6.04 10.8 10 20 No nr Mw and D (Felzer, 2013). Slip
distributed on six traces across
8.5 km wide zone. Longest is
10 km (Elmore Ranch fault).
Cumulative surface Dmax for all
traces is 20 cm, average ∼10 cm
surface offset data from Hudnut
et al. (1989).

Joshua
Tree (1992)

6.15 12.3 0 0 No nr Mw and D (Felzer, 2013). 1.5 km
discontinuous, triggered slip on
East Wide Canyon fault
(Rymer, 2000).

Parkfield
(2004)

6.0 7.9 0 (SA)
8 (SWFZ)

< 0:2 (SA)
6.6 (SWFZ)

Yes 13–36 SA Mw and D (USGS). No measurable
coseismic rupture on main
San Andreas (SA) but followed
by 32 km of discontinuous
afterslip varying from 13 to
36 cm. Coseismic rupture on
southwest fracture zone (SWFZ).
Offset data from Langbein
et al. (2006) and Lienkaemper
et al. (2006).

South Napa
(2014)

6.0 10.7 ≥12:5 ≥60 No ≥35 Mw and D (USGS). Rupture
involved five fault traces; some
may be triggered. Longest
(western) is a minimum of
12.5 km. Afterslip on west trace,
primarily along southern
8.5 km; value listed is after
60 days with afterslip ongoing.
Coseismic Dmax combines strands
A (46 cm), C (8 cm), and
E (6 cm) traces.

*Magnitudes are Mw unless noted as ML. Data are from the Uniform California Earthquake Rupture Forecast
Version 3 (UCERF 3) seismicity catalog (Felzer, 2013) unless otherwise noted.
†Focal depth D (km) source is UCERF 3 seismicity catalog (Felzer, 2013) unless otherwise noted.
‡Coseismic surface rupture length (km) is the reported length of rupture at the surface at time of event and is distinct

from afterslip. Where multiple fault traces occurred, the length listed is for the longest trace.
§Coseismic Dmax is the reported maximum coseismic surface displacement and does not include afterslip.
‖nr, not reported.
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downtown Napa of PGA of 61%g at the foundation level of a
masonry building that had been retrofit and suffered essentially
no damage (Erol Kalkan, written comm., 2014).

The earthquake produced an unusual amount of surface
rupture, triggered slip, and afterslip for its magnitude. Although
using UAVSAR and other SAR imagery to guide the field map-
ping of surface rupture and deformation was not novel, the field
mapping and imagery were unusually well integrated for this
earthquake. The monitoring of afterslip with repeat photogra-
phy, alignment arrays, mobile LiDAR, repeat SAR imagery, and
GPS is ongoing but represents a standard of practice that should
be used following future surface-rupturing earthquakes.

The focal mechanism and mapping of the surface rupture
helped to document the southwest-dipping fault plane of the
mainshock. The aftershocks also appear to define a northeast-
dipping fault plane, of more moderate dip, that intersects the
mainshock fault plane at a depth of about 9–10 km. The in-
tersection of these faults causes a well-resolved south-dipping
streak of seismicity and may give clues for the origin of other
linear seismicity streaks observed elsewhere.

Finally, we note the South Napa earthquake was well re-
corded by seismometers and accelerometers and produced a useful
set of strong-motion data in the near-field that have engineering
implications. These recordings are a testament to the steady in-
vestment in upgrading seismic instrumentation and the benefits
that are derived from this investment, including EEW.

DATA AND RESOURCES

Data from ShakeMap are available for download at http://
earthquake.usgs.gov/earthquakes/eventpage/nc72282711#shakemap
(last accessed February 2015). VS30 values at each station are
taken from the Next Generation Attenuation-West 2 (NGA-
West 2) database (http://peer.berkeley.edu/assets/NGA_West2_
supporting_data_for_flatfile.zip; last accessed February 2015)
or, if the station is not in the NGA-West 2 database, from
the grid.xml file available with the ShakeMap (http://comcat.
cr.usgs.gov/product/shakemap/nc72282711/nc/1411172037430/
download/grid.xml; last accessed February 2015). Recorded
strong-motion data are available at the Center for Engineering
Strong-Motion Data (http://strongmotioncenter.org/cgi-bin/
CESMD/iqr_dist_DM2.pl?iqrID=SouthNapa_24Aug2014_72282711&
SFlag=0&Flag=2; last accessed February 2015). The moment ten-
sor solution is from http://www.ncedc.org/mt/nc72282711_MT.
html (last accessed February 2015). Global Positioning System
data are available from http://earthquake.usgs.gov/monitoring/
gps/SFBayArea/ (last accessed February 2015).
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