Taka'aki Taira
Research Seismologist
Office:219 McCone Hall
taira@berkeley.edu
2018 | JSPS Bridge Award, Japan Society for the Promotion of Science Washington & San Francisco Offices
2016 | Young Scientists' Prize, The Commendation for Science and Technology by the Minister of Education, Culture, Sports, Science and Technology (MEXT)
2013 | Best Young Scientist Poster Award, International Continental Scientific Drilling Program
2013 | Visiting Research Fellowship, Earthquake Research Institute, University of Tokyo
2011 | Young Scientist Award, Seismological Society of Japan
2004 | C.V. Starr Fellowship, Carnegie Institution for Science
57. Mayeda, K., D. Bindi, J. Roman-Nieves, P. Morasca, D. Dreger, C. Ji, T. Taira, R. Archuleta, W. R. Walter, and J. Barno (2024), Source-scaling comparison and validation for Ridgecrest, California: Radiated energy, apparent stress, and Mw Using the Coda Calibration Tool (2.6 < Mw < 7.1), Bull. Seis. Soc. Am., doi: 10.1785/0120240143. (Link to article)
56. Reed M., A. Barth, T. Taira, J. Farrell, and M. Manga (2024), A shake and a surge: Assessing the possibility of an earthquake-triggered eruption at Steamboat Geyser, Volcanica, doi: 10.30909/vol.07.02.733748. (Link to article)
55. Svennevig, K. et al (68 authors) (2024), A rockslide-generated tsunami in a Greenland fjord rang Earth for 9 days, Science, doi:10.1126/science.adm9247. (Link to article)
54. Baltay, A., R. Abercrombie, S. Chu, and T. Taira (2024), The SCEC/USGS community stress drop validation study using the 2019 Ridgecrest earthquake sequence, Seismica, doi:https://doi.org/10.26443/seismica.v3i1.1009. (Link to article)
53. Pandey, K., T. Taira, G. Dresen, T. H. Goebel (2023), Inferring damage state and evolution with increasing stress using direct and coda wave velocity measurements in faulted and intact granite samples, Geophysical Journal International, ggad390, doi:10.1093/gji/ggad390. (Link to article)
52. Romanowicz, B., R. Allen, K. Brekke, L.‐W. Chen, Y. Gou, I. Henson, J. Marty, D. Neuhauser, B. Pardini, T. Taira, S. Thompson, J. Zhang, and S. Zuzlewski (2023), SeaFOAM: A year‐long DAS deployment in Monterey Bay, California, Seismol. Res. Lett., doi:10.1785/0220230047. (Link to article)
51. Cheng, Y., R. M. Allen, and T. Taira (2023), A new focal mechanism calculation algorithm (REFOC) using inter-event relative radiation patterns: Application to the earthquakes in the Parkfield area, J. Geophys. Res., 128, e2022JB025006, doi:10.1029/2022JB025006. (Link to article)
50. Wang, K., D. S. Dreger, R. Bürgmann, and T. Taira (2023), Finite-source model of the 8 July 2021 M 6.0 Antelope Valley, California, earthquake, Seismol. Res. Lett., doi:10.1785/0220220262. (Link to article)
49. Li, Y., R. Bürgmann, and T. Taira (2023), Spatiotemporal variations of surface deformation, shallow creep rate, and slip partitioning between the San Andreas and Southern Calaveras Fault, J. Geophys. Res., 128, e2022JB025363, doi:10.1029/2022JB025363. (Link to article)
48. Sheng, Y., A. Mordret, F. Brenguier, P. Boué, F. Vernon, T. Takeda, Y. Aoki, T. Taira, and Y. Ben-Zion (2023), Seeking repeating anthropogenic seismic sources: Implications for seismic velocity monitoring at fault zones, J. Geophys. Res., 128, e2022JB024725, doi:10.1029/2022JB024725. (Link to article)
47. Ringler, A. T., R. E. Anthony, R. C. Aster, T. Taira, B. R. Shiro, D. C. Wilson, S. De Angelis, C. Ebeling, M. Haney, R. S. Matoza, and H. D. Ortiz (2022), The global seismographic network reveals atmospherically coupled normal modes excited by the 2022 Hunga Tonga eruption, Geophysical Journal International, ggac284, 10.1093/gji/ggac284. (Link to article)
46. Dominguez L. A., T. Taira, V. M. Cruz-Atienza, A. Iglesias, C. Villafuerte, D. Legrand, X. Pérez-Campos, and M. Raggi (2022), Interplate slip rate variation between closely spaced earthquakes in southern Mexico: The 2012 Ometepec and 2018 Pinotepa Nacional thrust events, J. Geophys. Res., 127, e2022JB024292, doi:10.1029/2022JB024292. (Link to article)
45. Taira, T., D. S. Dreger, and A. A. Allam (2022), Nodal seismic experiment at the Berkeley section of the Hayward fault, Seismol. Res. Lett., doi.org/10.1785/0220210372. (Link to article)
44. Hopp, C., T. Taira, M. Robertson, J. J. Farrugia, C. Layland-Bachmann, and E. Majer (2022), Low‐noise optical accelerometers: Bridging the gaps among geophones, accelerometers, and broadbands in a deep borehole, Seismol. Res. Lett., doi.org/10.1785/0220210340. (Link to article)
43. Tsuchiyama, A., T. Taira, J. Nakajima, and R. Bürgmann (2022), Emergence of low‐frequency aftershocks of the 2019 Ridgecrest earthquake sequence, Bull. Seis. Soc. Am., doi:10.1785/0120210206. (Link to article)
42. Plata-Martinez, R., S. Ide, M. Shinohara, E. S. Garcia, N. Mizuno, L. A. Dominguez, T. Taira, Y. Yamashita, A. Toh, T. Yamada, J. Real, A. Husker, V. M. Cruz-Atienza, and Y. Ito (2021), Shallow slow earthquakes to decipher future catastrophic earthquakes in the Guerrero seismic gap, Nat. Commun., doi:10.1038/s41467-021-24210-9. (Link to article)
41. Lecocq, T. et al (76 authors) (2020), Global quieting of high-frequency seismic noise due to COVID-19 pandemic lockdown measures, Science, doi:10.1126/science.abd2438. (Link to article)
40. Wang, K., D. S. Dreger, E. Tinti, R. Bürgmann, and T. Taira (2020), Rupture process of the 2019 Ridgecrest, California Mw 6.4 foreshock and Mw 7.1 earthquake constrained by seismic and geodetic data, Bull. Seis. Soc. Am., doi:10.1785/0120200108. (Link to article)
• Taira, T., and A. Bent (2020), Preface to the Seismological Research Letters Data Mine Focus Section on the 2019 Ridgecrest Earthquake Sequence, Seismol. Res. Lett., 91, 1940–1942, doi:10.1785/0220200155. (Link to article)
39. Flinders, A. F., C. Caudron, I. A. Johanson, T. Taira, B. Shiro, and M. Haney (2020), Seismic velocity variations associated with the 2018 lower East Rift Zone eruption of Kīlauea, Hawaiʻi, Bulletin of Volcanology, 82, 47, doi:10.1007/s00445-020-01380-w. (Link to article)
38. Yoshida, K, T. Taira, Y. Matsumoto, T. Saito, K. Emoto, and T. Matsuzawa (2020), Stress release process along an intraplate fault analogous to the plate boundary: A case study of the 2017 M5.2 Akita-Daisen earthquake, NE Japan, J. Geophys. Res., 125, doi:10.1029/2020JB019527. (Link to article)
• Aagaard, B. T., R. W. Graymer, C. H. Thurber, A. J. Rodgers, T. Taira, R. D. Catchings, C. A. Goulet, and A. Plesch, (2020), Science plan for improving three-dimensional seismic velocity models in the San Francisco Bay region, 2019–24: U.S. Geological Survey Open-File Report 2020–1019, 37 p., doi:10.3133/ofr20201019. (Link to article)
37. Fukushima, Y., M. Hashimoto, M. Miyazawa, N. Uchida, and T. Taira (2019), Surface creep rate distribution along the Philippine fault, Leyte Island, and possible repeating of Mw ~ 6.5 earthquakes on an isolated locked patch, Earth, Planets and Space, 71: 118, doi:10.1186/s40623-019-1096-5. (Link to article)
36. Maurya, S., T. Taira, and B. Romanowicz (2019), Location of seismic "hum" sources following storms in the north Pacific ocean, Geochemistry, Geophysics, Geosystems, 20, 1454–1467, doi:10.1029/2018GC008112. (Link to article)
35. Yang, C., F. Niu, T. M. Daley, and T. Taira (2019), Continuous measurement of stress-induced traveltime variations at SAFOD, Seismol. Res. Lett., 90, 212–218, doi:10.1785/0220180080. (Link to article)
34. Prudencio, J., M. Manga, and T. Taira (2018), Subsurface structure of Long Valley caldera imaged with seismic scattering and intrinsic attenuation, J. Geophys. Res., 123, 5978–5999, doi:10.1029/2017JB014986. (Link to article)
33. Smit, P. B., T. T. Janssen, T. H. C. Herbers, T. Taira, and B. A. Romanowicz (2018), Infragravity wave radiation across the shelf break, J. Geophys. Res. Oceans, 122, 4483–4490, doi:10.1029/2018JC013986. (Link to article)
32. Xue, L., R. Bürgmann, D. R. Shelly, C. W. Johnson, and T. Taira (2018), Kinematics of the 2015 San Ramon, California earthquake swarm: Implications for fault zone structure and driving mechanisms, Earth Planet. Sci. Lett., 489, 135–144, doi:10.1016/j.epsl.2018.02.018. (Link to article)
31. Materna, K., T. Taira, and R. Bürgmann (2018), Aseismic transform fault slip at the Mendocino Triple Junction from characteristically repeating earthquakes, Geophys. Res. Lett., 45, 699–707, doi:10.1002/2017GL075899. (Link to article)
30. Taira, T., A. Nayak, F. Brenguier, and M. Manga (2018), Monitoring reservoir response to earthquakes and fluid extraction, Salton Sea geothermal field, California, Sci. Adv., 4, e1701536, doi:10.1126/sciadv.1701536. (Link to article)
29. Nayak, A., T. Taira, D. S. Dreger, and R. Gritto (2018), Empirical Green's tensor retrieved from ambient noise cross-correlations at the Geysers Geothermal Field, northern California, Geophys. J. Int., 213, 340–369, doi:10.1093/gji/ggx534. (Link to article)
28. Chen, C.-W., H.-F. Huang, S. Hautmann, I. S. Sacks, A. T. Linde, and T. Taira (2018), Resonance oscillations of the Soufriére Hills Volcano (Montserrat, W.I.) magmatic system induced by forced magma flow from the reservoir into the upper plumbing dike, J. Volcano. Geotherm. Res., 350, 7–17, doi:10.1016/j.jvolgeores.2017.11.020. (Link to article)
27. Prudencio, J., T. Taira, Y. Aoki, H. Aoyama, and S. Onizawa (2017), Intrinsic and scattering attenuation images of Usu volcano, Japan, Bulletin of Volcanology, 79, 29, doi:10.1007/s00445-017-1117-9. (Link to article)
26. Dominguez, L. A., T. Taira, and M. A. Santoyo (2016), Spatio-temporal variations of characteristic repeating earthquakes sequence along the Middle America Trench in Mexico, J. Geophys. Res., 121, 8855–8870, doi:10.1002/2016JB013242. (Link to article)
25. Taira, T., and F. Brenguier (2016), Response of hydrothermal system to stress transients at Lassen Volcanic Center, California inferred from seismic interferometry with ambient noise, Earth, Planets and Space, 68: 162, doi:10.1186/s40623-016-0538-6. (invited manuscript) (Link to article)
24. Kim, W., T.-K. Hong, J. Lee, and T. Taira (2016), Seismicity and fault geometry of the San Andreas fault around Parkfield, California and their implications, Tectonophysics, 677-678, 34–44, doi:10.1016/j.tecto.2016.03.038. (Link to article)
23. Kim, A., D. S. Dreger, T. Taira, and R. M. Nadeau (2016), Changes in repeating earthquake slip behavior following the 2004 Parkfield mainshock from waveform empirical Green's functions finite-source inversion, J. Geophys. Res., 121, 1910–1926, doi:10.1002/2015JB012562. (Link to article)
22. Chaussard, E., R. Bürgmann, H. Fattahi, C. W. Johnson, R. M. Nadeau, T. Taira, and I. Johanson (2015), Interseismic coupling and refined earthquake potential on the Hayward-Calaveras fault zone, J. Geophys. Res., 120, 8570–8590, doi:10.1002/2015JB012230. (Link to article)
21. Taira, T., F. Brenguier, and Q. Kong (2015), Ambient noise-based monitoring of seismic velocity changes associated with the 2014 Mw 6.0 South Napa earthquake, Geophys. Res. Lett., 42, 6997–7004, doi:10.1002/2015GL065308. (Link to article)
20. Shelly, D. R., T. Taira, S. G. Prejean, D. P. Hill, and D. S. Dreger (2015), Fluid-faulting interactions: Fracture-mesh and fault-valve behavior in the February 2014 Mammoth Mountain, California earthquake swarm, Geophys. Res. Lett., 42, 5803–5812, doi:10.1002/2015GL064325. (Link to article)
19. Taira, T., D. S. Dreger, and R. M. Nadeau (2015), Rupture process for micro-earthquakes inferred from borehole seismic recordings, International Journal of Earth Sciences, 104, 1499–1510, doi:10.1007/s00531-015-1217-8. (Link to article)
18. Chaussard, E., R. Bürgmann, H. Fattahi, R. M. Nadeau, T. Taira, C. W. Johnson, and I. Johanson (2015), Potential for larger earthquakes in the East San Francisco Bay Area due to the direct connection between the Hayward and Calaveras Faults, Geophys. Res. Lett., 42, 2734–2741, doi:10.1002/2015GL063575. (Link to article)
17. Dreger D. S., M.-H. Huang, A. Rodgers, T. Taira, and K. Wooddell (2015), Kinematic finite-source model for the August 24, 2014 South Napa, CA earthquake from joint inversion of seismic, GPS and InSAR Data, Seismological Research Letters, 86, 327–334, doi:10.1785/0220140244. (Link to article)
16. Taira, T., R. Bürgmann, R. M. Nadeau, and D. S. Dreger (2014), Variability of fault slip behavior along the San Andreas Fault in the San Juan Bautista region, J. Geophys. Res., 119, 8827–8844, doi:10.1002/2014JB011427. (Link to article)
15. Taira, T., Z. Zheng, and B. Romanowicz (2014), On the systematic long period noise reduction on ocean floor broadband seismic sensors collocated with differential pressure gauges, Bull. Seis. Soc. Am., 104, 247–259, doi:10.1785/0120130015. (Download pdf reprint)
14. Shelly, D. R., D. P. Hill, F. Massin, J. Farrell, R. B. Smith, and T. Taira (2013), A fluid-driven earthquake swarm on the margin of the Yellowstone caldera, J. Geophys. Res., 118, 4872–4886, doi:10.1002/jgrb.50362. (Link to article).
13. Shirzaei, M., R. Bürgmann, T. Taira (2013), Implications of recent asperity failures and aseismic creep for time-dependent earthquake hazard on the Hayward fault, Earth Planet. Sci. Lett., 371–372, 59–66, doi:10.1016/j.epsl.2013.1004.1024. (Link to article).
12. Farrell, J., R. B. Smith, T. Taira, W.-L. Chang, and C. M. Puskas (2010), Dynamics and rapid migration of the energetic 2008-2009 Yellowstone Lake earthquake swarm, Geophys. Res. Lett., 37, L19305, doi:10.1029/2010GL044605. (Link to article).
11. Taira, T., R. B. Smith, and W.-L. Chang (2010), Seismic evidence for dilatational source deformations accompanying the 2004-2008 Yellowstone accelerated uplift episode, J. Geophys. Res., 115, B02301, doi:10.1029/2008JB006281. (Link to article)
10. Taira, T., P. G. Silver, F. Niu, and R. M. Nadeau (2009), Remote triggering of fault-strength changes on the San Andreas fault at Parkfield, Nature, 461, 636–639, doi:10.1038/nature08395. (Link to article)
9. Taira, T., P. G. Silver, F. Niu, and R. M. Nadeau (2008), Detecting seismogenic stress evolution and constraining fault zone rheology in the San Andreas Fault following the 2004 Parkfield earthquake, J. Geophys. Res., 113, B03303, doi:10.1029/2007JB005151. (Download pdf reprint)
8. Taira, T., K. Yomogida, Y. Kuwahara, K. Imanishi, and H. Ito (2007), Imaging of crustal heterogeneous structures using a slowness-weighted back-projection with effects of scattering modes II: Application to the Nagamachi-Rifu fault, Japan, area, J. Geophys. Res., 112, B06312, doi:10.1029/2006JB004382. (Download pdf reprint)
7. Taira, T., and K. Yomogida (2007), Imaging of crustal heterogeneous structures using a slowness-weighted back-projection with effects of scattering modes I: Theory, J. Geophys. Res., 112, B06311, doi:10.1029/2006JB004381. (Download pdf reprint)
6. Onizawa, S., H. Oshima, H. Aoyama, H. Y. Mori, T. Maekawa, A. Suzuki, T. Tsutsui, N. Matsuwo, J. Oikawa, T. Ohminato, K. Yamamoto, T. Mori, T. Taira, H. Miyamachi, and H. Okada (2007), P-wave velocity structure of Usu volcano: Implication of structural controls on magma movements and eruption locations, J. Volcano. Geotherm. Res., 160, 175–194, doi:10.1016/j.jvolgeores.2006.10.005. (Link to article)
5. Iwasaki, T., K. Adachi, T. Moriya, H. Miyamachi, T. Matsushima, K. Miyashita, T. Takeda, T. Taira, T. Yamada, and K. Ohtake (2004), Upper and middle crustal deformation of an arc–arc collision across Hokkaido, Japan, inferred from seismic refraction/wide-angle reflection experiments, Tectonophysics, 388, 59–73, doi:10.1016/j.tecto.2004.03.025. (Link to article)
4. Taira, T., and K. Yomogida (2004), Imaging of three-dimensional small-scale heterogeneities in the Hidaka, Japan region: Coda spectral analysis, Geophys. J. Int., 158(3), 998–1008, doi:10.1111/j.1365-246X.2004.02333.x. (Download pdf reprint)
3. Taira, T., and K. Yomogida (2003), Characteristics of small-scale heterogeneities in the Hidaka, Japan, region estimated by coda envelope level, Bull. Seis. Soc. Am., 93, 1531–1541, doi:10.1785/0120020073. (Download pdf reprint)
2. Taira, T., T. Moriya, H. Miyamachi, N. Wada, S. Hirano, K. Otsuka, W. Matsubara, and Y. Maruyama (2002), Seismic refraction experiment in the northeastern part of Hokkaido, Japan (in Japanese with English abstract), Bull. Earthq. Res. Inst. Univ. Tokyo, 77, 225–230. (Download pdf reprint)
1. Taira, T., and K. Tsumura (2001), The identification and removal of artificial events from the JMA and Tohoku University earthquake catalogs (in Japanese), Journal of the Seismological Society of Japan (Zisin), 53, 255–258. (Download pdf reprint)
29. Determination of Shallow Crustal Structure in Northern California and Community Model Validation Using Ambient-noise-derived Rayleigh Wave Ellipticity and Receiver Functions, SCEC, $7,500, 02/01/2023-01/31/2024 (PIs: F. Lin at University of Utah and T. Taira at UC Berkeley)
28. Improving the USGS 3D Seismic Velocity Model for the San Francisco Region with Joint Body and Surface Wave Tomography: Collaborative Research between University of Wisconsin Madison and University of California Berkeley, USGS, G24AP00092, $57,260, 03/01/2024-02/28/2025 (PIs: T. Taira at UC Berkeley and C. Thurber at University of Wisconsin Madison).
27. Temporal and Spatial Creep Variability: Detecting Decadal Changes in Fault Behavior in Northern California, USGS, G24AP00049, $70,026, 01/01/2024-12/31/2024 (PI: R. Bürgmann, Co-PI: T. Taira).
26. Year 3 of a Technical Activity Group for the Community Stress Drop Validation Study using the 2019 Ridgecrest Earthquake Dataset, SCEC, $10,405, 02/01/2022-01/31/2023 (PIs: A. Baltay, S. Chu at USGS, R. Abercrombie at Boston University, P. Shearer at UC San Diego, and T. Taira at UC Berkeley)
25. Improving the USGS 3D Seismic Velocity Model for the San Francisco Region with Joint Body and Surface Wave Tomography: Collaborative Research between University of Wisconsin Madison and University of California Berkeley, USGS, G22AP00248, $70,026, 07/01/2022-06/30/2023 (PIs: T. Taira at UC Berkeley and C. Thurber at University of Wisconsin Madison).
24. Coda-based Moment Magnitude and Stress Drop Measurements for the 2019 Ridgecrest Earthquake Sequence, SCEC, $31,442, 02/01/2022-01/31/2023 (PI: T. Taira, Co-PI: D. S. Dreger).
23. Continuation of a Technical Activity Group for the Community Stress Drop Validation Study using the 2019 Ridgecrest Earthquake Dataset, SCEC, $10,405, 02/01/2022-01/31/2023 (PIs: A. Baltay at USGS, R. Abercrombie at Boston University, C. Ruhl at University of Tulsa, X. Chen at University of Oklahoma, and T. Taira at UC Berkeley).
22. Towards the Understanding of Deep Crustal Faulting and Fluid Movement through the Analysis of Long Period Earthquakes at Clearlake, CA, NSF Geophysics, $139,000, 05/01/2021-04/30/2022 (PI: D. S. Dreger, Co-PI: T. Taira).
21. Toward Integrating Template Matched-Filter Analysis with Machine Learning for Improved Seismic Monitoring and Repeating Earthquake Search in Northern California, USGS, G21AP10152, $73,535, 04/01/2021-03/31/2022 (PIs: T. Taira at UC Berkeley and Q. Kong at LLNL).
20. A Technical Activity Group for the Community Stress Drop Validation Study, SCEC, $13,427, 02/01/2021-01/31/2022 (PIs: A. Baltay at USGS, R. Abercrombie at Boston University, C. Yoon at USGS, W. Ellsworth at Stanford University, C. Ruhl at University of Tulsa, and T. Taira at UC Berkeley).
19. Finite-Source Based Stress Drop Estimates for the 2019 Ridgecrest, CA Sequence, SCEC, $31,000, 02/01/2021-01/31/2022 (PI: D. S. Dreger, Co-PIs: T. Taira ).
18. Experimental Constraints on Preparatory Processes and Seismic Velocity Changes before Induced Slip: Collaborative Research between the University of Memphis and University of California Berkeley, USGS, G21AP10032, $59,555, 01/01/2021-12/31/2021 (PIs: T. Taira at UC Berkeley and T. Goebel at University of Memphis).
17. Aftershocks of the Ridgecrest Earthquake Sequence and Their Relationship to Mainshock Slip and Scaling of Source Parameters, SCEC, $34,980, 02/01/2020-01/31/2021 (PI: T. Taira, Co-PIs: S. Boyd and D. S. Dreger).
16. Seismic Imaging of Hayward Fault Zone with a Dense Nodal Seismic Array for Refined Ground Motion Estimation: Collaborative Research with University of California Berkeley and University of Utah, USGS, G20AP00043, $87,716, 03/01/2020-02/28/2021 (PIs: T. Taira , Co-PI: D. S. Dreger at UC Berkeley and A. Allam at University of Utah).
15. Evaluating and Improving the USGS 3D Seismic Velocity Model in the San Francisco East Bay by Integrating Earthquake Ground-Motion Simulations and Noise-Derived Empirical Green's Functions, USGS, G18AP00005, $59,961, 12/01/2017-11/30/2018 (PIs: T. Taira at UC Berkeley and A. J. Rodgers at LLNL).
14. Collaborative Research: Evaluating Fault Creep in California using Geodetic and Seismic Observations, NSF EarthScope, $79,748, 08/01/2017-07/31/2020 (PIs: M. Shirzaei at Arizona State University, M. Thomas at University of Oxford, T. Taira at UC Berkeley).
13. Collaborative Research: Characterizing Sources of Infragravity Waves and the Earth's Hum using Data from the Cascadia Amphibious Array, NSF Marine Geology and Geophysics, $227,583, 08/15/2015-07/31/2017 (PIs: B. Romanowicz at UC Berkeley, T. H. C. Herbers at NorthWest Research Associates, Co-PI: T. Taira at UC Berkeley).
12. Non-Volcanic Tremor in the Northern San Andreas Fault System, NSF EarthScope, $432,102, 07/01/2015-06/30/2018 (PI: R. M Nadeau, Co-PI: D. S. Dreger and T. Taira).
11. Exploring Temporal Variability in Seismic Velocity at the Salton Sea Geothermal Field and its Implication for Induced Seismicity, SCEC, $25,000, 02/01/2015-01/31/2016 (PI: T. Taira).
10. Collaborative Research: Imaging Stress Transients and Fault Zone Processes with Continuous Cross-Well Active Source Seismic Measurements at SAFOD, NSF EarthScope, $101,789, 09/01/2014-08/31/2017 (PIs: F. Niu at Rice University, T. Daley at LBNL, T. Taira at UC Berkeley).
9. Spatiotemporal Variability of Slip Budget in Subduction of the Cocos Plate Beneath Central Mexico Inferred from Repeating Earthquake Activity: Implication for Time Dependent Earthquake Hazard Assessment, UC MEXUS-CONACYT Grant, $17,550, 07/01/2014-12/31/2015 (PIs: T. Taira at UC Berkeley and L. A. Dominguez Ramirez, V. Hjorleifsdottir at UNAM).
8. Time-Lapse Monitoring of Stress-Induced Changes in the Seismogenic Crust, France Berkeley Fund, $10,000, 08/01/2014-07/31/2015 (PIs: T. Taira at UC Berkeley and F. Brenguier at ISTerre Grenoble).
7. Finite-Source Modeling and Stress Drop Estimate of Anza Microearthquakes: Implication for Fault Strength and Earthquake Nucleation, SCEC, 13030, $18,000, 02/01/2013-01/31/2015 (PI: T. Taira).
6. Transient Slip on the Hayward Fault from SBAS-InSAR, GPS and Seismicity Data, USGS, G12AP20096, $64,487, 06/01/2012-05/31/2013 (PI: I. A. Johanson, Co-PIs: R. Bürgmann and T. Taira).
5. Source Characterization of Mendocino Offshore Earthquakes for Improvements in Monitoring Active Deformation and Estimates of Earthquake Potential in the Mendocino Triple Junction Region, USGS, G11AP20168, $48,480, 07/01/2011-06/30/2012 (PI: T. Taira, Co-PI: R. M. Nadeau).
4. Time-Lapse Monitoring for Detection of Transient Stress Changes in Geysers Geothermal Field, NSF, EAR-1053211, $217,399, 07/01/2011-06/30/2013 (PI: T. Taira, Co-PIs: R. M. Nadeau, D. S. Dreger, and I. A. Johanson).
3. TremorScope, Gordon and Betty Moore Foundation.
2. Faulting Process from Top to Bottom Along the San Andreas Fault in the San Juan Bautista Region, NSF, EAR-0951430, $381,752, 07/15/2010-06/30/2013 (PI: R. Bürgmann, Co-PIs: R. M. Nadeau, I. A. Johanson, P. Audet, and T. Taira).
1. An Investigation into Time-Dependent Fault Zone Properties at Seismogenic Depth on the San Andreas Fault near Parkfield, NSF, EAR-0910322, $210,474, 08/15/2009-07/31/2011 (PI: T. Taira, Co-PIs: R. M. Nadeau and D. S. Dreger).