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Abstract.

Experiments by Zhang and Karato [1995] have shown that in simple shear

dislocation creep of olivine at low strains, an asymmetric texture develops with a [100]
maximum rotated away from the shear direction against the sense of shear. At large strain
where recrystallization is pervasive, the texture pattern is symmetrical, and [100] is parallel
to the shear direction. The deformation texture can be adequately modeled with a
viscoplastic self-consistent polycrystal plasticity theory. This model can be expanded to
include recrystallization, treating the process as a balance of boundary migration (growth
of relatively underformed grains at the expense of highly deformed grains) and nucleation
(strain-free nuclei replacing highly deformed grains). If nucleation dominates over growth,
the model predicts a change from the asymmetric to the symmetric texture as
recrystallization proceeds and stabilization in the “easy slip” orientation for the dominant
(010)[100] slip system. This result is in accordance with the experiments and suggests that
the most highly deformed orientation components dominate the recrystallization texture.
The empirical model will be useful to simulate more adequately the development of
anisotropy in the mantle where olivine is largely recrystallized.

1. Introduction

Simple shear experiments of rock-forming minerals and an-
alogs deformed by dislocation creep reveal some puzzling fea-
tures. After moderate strains, the deformed original grains
develop a characteristically asymmetric preferred orientation
pattern with a monoclinic symmetry, including a mirror plane
perpendicular to the shear plane and containing the shear
direction. These experimental simple shear deformation tex-
tures (in this paper the term texture is used synonymous with
lattice preferred orientation), such as those for quartz
[Dell’Angelo and Tullis, 1989], calcite [Kunze et al., 1998], and
olivine [Zhang and Karato, 1995], can be predicted with poly-
crystal plasticity theory (for example, for calcite, Wenk et al.
[1987], for quartz, Wenk et al. [1989], and for olivine Wenk et al.
[1991]). However, in simple shear experiments at higher strains
the larger original grains are replaced by fine, dynamically
recrystallized grains. The texture that develops is very strong
and consists of one or several symmetry-related orientation
components. The observed texture reaches a steady state in
terms of strength as well as pattern and does not change ap-
preciably with increasing strain [e.g., Pieri and Olgaard, 1997].
Pole figures display a nearly orthorhombic symmetry that is not
expected for simple shear deformation; they have additional
mirror planes perpendicular to the shear direction and parallel
to the shear plane. Examples include quartz [Dell’Angelo and
Tullis, 1989], olivine [Zhang and Karato, 1995], norcamphor, a
quartz analog [Herwegh and Handy, 1996], ice [Duval, 1981;
Bouchez and Duval, 1982; Burg et al., 1986], and calcite [Pieri
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and Olgaard, 1997; Kunze et al., 1998], all materials with low
crystal symmetry.

These orthorhombic textures cannot be predicted with poly-
crystal plasticity theory for deformation by dislocation glide
such as Taylor, Sachs, or self-consistent models. Authors have
referred to the textures as “easy slip” orientations [e.g., Schmid
and Casey, 1986], implying that a microscopic slip plane of an
active slip system is parallel to the macroscopic shear plane and
a microscopic slip direction is parallel to the shear direction,
and therefore deformation on such a slip system in simple
shear is “easy.” So far, there has been no explanation to how
crystals rotate and remain within those orientations. Herwegh
and Handy [1996] suggest a “rigid body rotation” into the easy
slip orientation and an unexplained cessation of rotation once
those special orientations are reached.

Experimental textures that display this easy slip component
have been produced in a simple shear geometry, and the cor-
responding microstructures are indicative of complete dynamic
recrystallization and grain size reduction. Similar textures have
been observed in naturally deformed rocks from the Earth’s
crust and mantle, where recrystallization is prevalent. In order
to simulate the deformation in the Earth it is therefore neces-
sary to have a reliable model that considers not only deforma-
tion but also recrystallization. Jessell [1988] proposed a model
for fabric development during dynamic recrystallization using
the Taylor theory. In this study we refine a deformation-based
recrystallization model [Wenk et al., 1997] that relies on the
viscoplastic self-consistent theory and apply it to the problem
of simple shear deformation of olivine. The model is not in-
tended to explain detailed mechanisms of recrystallization, but
rather it uses general concepts about dynamic recrystallization
to explain the evolution of texture and anisotropy.

Olivine is of great geophysical importance because it is the
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Figure 1.

Pole figures of experimentally deformed olivine from Zhang and Karato [1995] (a) Specimen

PI-148 with a deformation microstructure of original grains without recrystallization, ¢ = 17%, 1473 K. (b)
Specimen PI-150 with dynamic recrystallization by boundary migration, e = 150%, 1573 K. U-stage data have
been entered into orientation distribution function (ODF) and were then smoothed with 15° Gaussians.
Double arrows in this and the following figures indicate the shear direction and the sense of shear. Projections
are equal-area; logarithmic contours are 0.5, 0.7, 1.0, 1.4, 2 multiples of a random distribution (mrd), etc.; dot

pattern is below 1 mrd.

major constituent of the Earth’s upper mantle. Olivine rocks
such as peridotite deform and develop preferred orientation
during convection, and the resulting crystal alignment is the
cause of seismic anisotropy [e.g., Silver, 1996]. Most of the
upper mantle peridotites that are collected on the Earth’s
surface show microstructures indicative of recrystallization
[Ben Ismail and Mainprice, 1998; Mercier, 1985; Nicolas et al.,
1971; Nicolas et al., 1973; Skrotzki et al., 1990]. Therefore re-
crystallization processes of olivine have received a lot of atten-
tion [Avé Lallemant and Carter, 1970; Karato, 1988; Karato et
al., 1980; Toriumi and Karato, 1985]. In order to be able to
model the development of anisotropy during mantle convec-
tion realistically, it is important to develop a better understand-
ing of how dynamic recrystallization modifies the lattice pre-
ferred orientation of olivine. Good comparisons for a
simulation study are provided by simple shear experiments of
Zhang and Karato [1995] that show a transition from deformed
original grains to recrystallized grains. During deformation,
original grains develop an asymmetric concentration of [100]
axes, displaced about 30° from the shear direction against the
sense of shear (component A) [Zhang and Karato, 1995] (Fig-
ure la). At larger strains, with greater degree of recrystalliza-
tion, component A disappears and is replaced by component B
with [100] in the shear direction and poles to (010) parallel to
the shear plane normal (Figure 1b).

We will first discuss deformation models, then introduce the
features of a deformation-based model for dynamic recrystal-
lization, and apply this model to predict texture and micro-
structure development of olivine deformed in simple shear to
large strains where dynamic recrystallization is complete.

2. Model

Several models based on polycrystal plasticity theory have
been developed to predict the deformation behavior of a poly-

crystal by mechanisms such as dislocation glide, mechanical
twinning, and, more recently, dynamic recrystallization [e.g.,
Lebensohn et al., 1998]. Each of these models captures some
important features of a material and particular deformation
mechanisms, but none is universal, and a model may be more
or less suitable for a specific system. As with all models, rea-
sonable judgement needs to be exercised in recognizing their
limitations. For example, the evolution of texture with progres-
sive strain can be predicted in many cases quite satisfactorily
[Kocks et al., 1998]. Predictions of flow stress are much less
reliable, in part because the latter depend on local dislocation
interactions, which are more uncertain and often influenced by
impurities. In addition, the work hardening behavior is not
usually known when different crystallographic systems interact.
The model that we use is empirical but contains the physics of
basic processes that are active during recrystallization, specif-
ically nucleation and boundary migration. The model that we
discuss in this paper is not microstructural and has no infor-
mation about topology, neighbor interaction, and local heter-
ogeneity. It treats each crystal as an inclusion in an average
medium. While the specific information is therefore limited,
useful results have been obtained that are pertinent to the
development of preferred orientation during deformation and
recrystallization. We emphasize in this paper the evolution of
texture, which is most pertinent for interpreting seismic aniso-

tropy.
2.1.

A real polycrystal that deforms by dislocation glide and
remains coherent has to maintain strain compatibility across
grain boundaries as well as stress equilibrium. From a mechan-
ical point of view, there is a unique solution; however, the
analytical solution of this problem is very difficult and requires
heterogeneity inside each grain. Computer intensive finite el-
ement methods (FEM) are most appropriate to approach this
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problem numerically and have been applied to a few examples
[e.g., Dawson and Beaudoin, 1998]. In many cases simpler
approximations that treat each crystal as a homogeneous unit
are adequate, and two extreme sets of assumptions have been
used. One approach assumes that each crystal deforms as an
isolated grain in a uniform stress field without knowledge
about its neighbors [Sachs, 1928]. The second approach as-
sumes that each grain is completely controlled by its neighbors
and undergoes the same strain as that of the aggregate, irre-
spective of orientation; this guarantees compatibility across
grain boundaries [ZTaylor, 1938]. More recently, self-consistent
models have been introduced that find an intermediate solu-
tion and satisfy stress equilibrium and strain compatibility in an
average way [Molinari et al., 1987; Lebensohn and Tomé, 1993].
(There are other models, not based on polycrystal plasticity,
that use continuum mechanics. The latter are questionable for
aggregates of crystals deforming on discrete slip systems, and
we are not going to discuss them in this paper.)

Most deformation models consider a component crystal (or
grain) as a homogeneous unit. In Taylor-type models where
deformation of all grains is uniform, an arbitrary deformation
of a grain requires activation of up to five slip systems (“de-
grees of freedom”). This may require activation of unfavorably
oriented systems or, if several slip modes occur, of those modes
with a higher critical shear stress. Flow stresses are therefore
high and Taylor-type models are known as “upper bound”
models [e.g., Kocks, 1998].

By contrast, Sachs-type models assume that when a stress is
applied to a polycrystal, the grain with the most favorably
oriented slip system deforms first, independent of its neigh-
bors. In such a model, differently oriented grains undergo
different degrees of deformations, contact is not maintained
across grain boundaries, and the flow stress is minimal. Thus
these are “lower bound” models; strain compatibility is vio-
lated, but stress equilibrium is satisfied.

If many equivalent slip systems are available (usually in
materials of high crystal symmetry) or, in the case of several
slip modes, if the different modes have a similar critical shear
stress, then the difference between upper and lower bound
simulations is small. This is the case for rolling of fcc metals.
However, in materials of low crystal symmetry and few slip
systems, there can be large differences between the upper and
lower bounds, and the assumption of homogeneous deforma-
tion is questionable. In these cases a viscoplastic self-consistent
model has proven to be very useful for many mineral systems
(for a review, see Wenk [1998, 1999]). In the context of dy-
namic recrystallization this model is particularly interesting
because it predicts differences in the degree of deformation for
different orientations. We have used such a model in this
study. There is also experimental evidence that an assumption
of lower bounds is more appropriate for minerals. For exper-
imentally deformed olivine aggregates, Karato and Lee [1999]
documented that grains favorably oriented for slip have higher
dislocation densities.

The viscoplastic self-consistent model considers each crystal
as an inclusion in a homogeneous but anisotropic medium (in
the sense of Eshelby [1957]) whose properties are given by the
average over all crystals. This inclusion then deforms, main-
taining compatibility and equilibrium with the enclosing
“equivalent medium.” However, orientation correlation effects
between grains are not accounted for by the model, and local
compatibility is not maintained. Under the externally imposed
deformation, favorably oriented grains deform more than oth-
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Input: single crystal deformation modes, hardening
parameters, initial texture and grain shape.
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Figure 2. Flow diagram illustrating schematically the proce-
dures in the viscoplastic self-consistent code, modified for re-
crystallization.

ers, while unfavorably oriented grains deform less. The aggre-
gate flow stress is lower than that in a Taylor model. The
formalism of the viscoplastic self-consistent theory has been
described in several publications, and the reader is referred to
those for details [e.g., Molinari et al., 1987; Lebensohn and
Tomé, 1993, 1994; Tomé and Canova, 1998]. Figure 2 displays
the main steps involved in the self-consistent calculation.

As a crystal deforms by slip in the self-consistent framework
it undergoes a lattice rotation. This rotation has three different
components. The first component is due to the macroscopic
(rigid body) rotation of the sample. The second component is
due to slip (plastic spin) and can be derived from the shears on
the various slip systems. A crystal deforms by slip to a new
shape, but it needs to rotate to fit into the provided inclusion
space. The third component is due to grain morphology and
applies to nonequiaxed crystals: for example, a platelet will
tend to become oriented perpendicular to the compression
direction. These three contributions to lattice rotation are the
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Table 1. Critical Shear Stresses, Hardening, and Rate
Sensitivity Parameters for Olivine Used in This Work

7 (I) 7 (II) 7 (I11)

1-2-2-2 1-1-2-2 1-1-1-2 h n
(010)[100] 1 1 1 01 4
(001)[100] 2 1 1 01 4
(100)[001] 2 2 1 01 4
(010)[001] 2 2 2 01 4
(110)[001]* 8 8 8 01 4
(100)[011]* 30 30 30 01 4
(111)[101]* 50 50 50 01 4

*Only used for numerical stability, not significantly activated.

cause of development of preferred orientations in aggregates
with many component crystals.

All polycrystal plasticity models (Taylor, Sachs, and self-
consistent) deal with a highly nonlinear system. A solution is
obtained by working with a finite number of discrete grains
(given as orientations), and deformation is applied in incre-
ments. The deformation is defined by a displacement gradient
tensor that may be constant (as in this study) or may change
with deformation (e.g., along a streamline during convection).
In the code the rotations of all grains are calculated after each
strain increment, and the orientations are then updated. In this
paper the nonrandom orientation pattern that evolves is rep-
resented as pole figures, either as distributions of individual
grains (sometimes with attributes to express volume fraction or
nucleation events) or as maps with contours of equal pole
density.

Potential slip systems need to be defined in terms of the slip
plane (hkl), slip direction [uvw], critical resolved shear stress 7,
strain rate sensitivity (stress exponent n), and the hardening
law. Values used for the olivine simulations are given in Table
1. They have been estimated from deformation experiments on
single crystals [e.g., Kohlstedt and Goetze, 1974; Bai et al., 1991,
Hanson and Spetzler, 1994] and cover a wide range to explore
how much the model depends on detailed assumptions.

Hardening, i.e., the increase in critical shear stress because
of the increase in dislocation density with strain, has contribu-
tions from “self” hardening due to dislocation interactions on
each active system and “latent” hardening due to interactions
of dislocations on an active system on other systems. In addi-
tion, the critical shear stress of a grain is influenced by recovery
and cell formation processes. A precise local description of the
microstructure and its evolution is beyond the aim of this work,
and therefore we assume isotropic hardening, i.e., hardening
coefficients 4° for self and latent hardening are the same.
Furthermore, we apply a linear hardening law, i.e., critical
shear stresses T increase linearly with strain *. Since the hard-
ening coefficients for all slip systems are assumed to be the
same, the critical shear stress after a finite deformation be-
comes a simple function of the accumulated shear in the grain
I

#(T) = 7(1 + X h*'y") = 75(1 + AT). (1)

If the hardening rate diminishes with strain, a more compli-
cated hardening law could be used [Kocks, 1976, 1998], but as
the effect of hardening on texture development is minimal, we
give only results for linear hardening.
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2.2. Recrystallization

While the reorientation associated with deformation can be
adequately modeled with polycrystal plasticity theory, there is
no general model for dynamic recrystallization. It is observed
that more highly deformed grains accumulate larger numbers
of dislocations and thus have a higher strain energy than less
deformed grains [Doherty, 1997; Haessner, 1978; Humphreys
and Hatherly, 1995]. Consequently, less deformed grains may
grow through boundary migration at the expense of more de-
formed grains. Alternatively, dislocation-free nuclei may form
in highly deformed grains, e.g., as a bulge in a grain boundary
or a sufficiently misoriented subgrain, and then grow at the
expense of other grains. Recrystallization is controlled by local
microstructural heterogeneities, rather than “macroscopic
stress and strain”. However, since these heterogeneities (such
as shear zones, dislocation tangles, misoriented subgrains,
grain boundaries) generally increase in number and degree
with deformation, the overall grain deformation provides a
bulk criterion to control the recrystallization process in the
model. If growth is controlling, “hard” grains with little defor-
mation dominate the texture and highly deformed grains will
disappear. If nucleation is prevalent, “soft” grains develop
nuclei that will ultimately grow and dominate the fabric.

The model was originally applied to recrystallization of ha-
lite [Wenk et al., 1997] and has since been used to explain
texture features in recrystallized calcite [Lebensohn et al., 1998;
Kunze et al., 1998] and quartz [Takeshita et al., 1999]. The
model used in this paper differs slightly from the original
version as explained below.

The basic premise of the model is very simple: as a polycrys-
tal deforms, grains favorably oriented for slip (“soft grains™)
deform more and accumulate dislocations. Soft grains are
therefore less stable and may be consumed by less deformed
grains through grain boundary migration. They are also likely
to form new nuclei which then grow. The microstructure and
the final texture that develop during dynamic recrystallization
are a balance between nucleation and growth. The viscoplastic
self-consistent theory is used to determine the deformation
state of individual grains in different orientations.

Hirth and Tullis [1992] have identified three regimes of dis-
location creep involving different mechanisms of dynamic re-
crystallization for quartz aggregates. With increasing temper-
ature and decreasing strain rate the mechanisms change from
(1) strain induced boundary migration to (2) progressive sub-
grain rotation and (3) subgrain rotation with rapid grain
growth. Similar features have been observed in other mineral
systems [e.g., Urai et al., 1986; Karato, 1988]. In the terminology
of our model boundary, migration corresponds to growth and
is controlled by the difference in strain energy between adja-
cent grains. The microstructure that develops by this mecha-
nism is generally characterized by an increase in grain size.
When climb is pervasive, recovery produces subgrains, sepa-
rated by low-angle boundaries. During deformation, misorien-
tations between subgrains increase. In metals, misorientations
rarely exceed 2°-5° [Engler, 1996], and this is not sufficient to
form a nucleus that grows. In anisotropic minerals, misorien-
tations may be considerably larger so that some subgrains have
sufficient misorientations to become active nuclei. This “sub-
grain rotation recrystallization” [Guillopé and Poirier, 1979;
Poirier and Guillopé, 1979] is equivalent to nucleation in our
model, though there can be other mechanisms to create nuclei.
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The microstructure consists of small grains, first along bound-
aries and ultimately replacing all original grains.

In our model, recrystallization is allowed after the polycrys-
tal has reached a certain amount of bulk strain which can be
specified. Growth and nucleation are defined by several pa-
rameters, which are described below. It must be emphasized
again that at this point the model is largely empirical but
plausibly captures some of the physical mechanisms that occur
during recrystallization. It relies on average properties, rather
than on the real local features of the microstructure. The
model is not scaled with respect to grain size or subgrain size,
and the sizes enter through the empirical constants. We plan to
refine the model in the future by using an N-site self-consistent
deformation model that includes grain morphology [Canova et
al., 1992; Solas et al., 1999] or a FEM approach [Dawson and
Beaudoin, 1998].

2.3. Growth

The boundary migration rate is controlled by a growth pa-
rameter C. The linear growth velocity v is proportional to the
difference in strain energy between adjacent grains AESrd,
Since the topology of the microstructure is not known, we
cannot determine in which direction a boundary moves be-
tween specific neighbors. Therefore we compare the strain
energy of each grain E¢ with the “average” E**™&° If it is
smaller than the weighted average, a grain grows; if it is larger,
it shrinks. If it reaches some defined minimal size C,;,, it
disappears, i.e., the associated volume fractions are set to zero:

o= CAEsmred — C(EL _ Eaverage)' (2)

While it is generally agreed that the stored energy drives
grain boundary migration, it is less clear how to determine the
stored energy. A general rule of thumb for metals is that 15%
of plastic work AEPsH =31°A~* (Ay* is the shear increment
in the slip system s) is stored energy [Loretto et al., 1964, 1965;
Hirth and Lothe, 1982]. The latter criterion, however, is incom-
patible with steady state flow, which corresponds to increasing
plastic work without an increase in the dislocation density.
From a more basic perspective it is safer to regard the stored
energy as being proportional to the dislocation density p, which
is in turn proportional to the square of the flow stress 7,

Estored — p(ubz)/Zovrz, (3)

where p is the shear modulus and b is the Burgers vector.
Dislocations occur as free dislocations in subgrain boundaries
and in grain boundaries. These complexities cannot be ad-
dressed with an effective medium model that does not contain
information about local heterogeneities. The details are buried
in the empirical constant C. We assume that in the initial state
all grains have zero energy and that the strain energy of the
original grains is due to the work hardening component of the
flow stress. Therefore we can determine the accumulated
strain energy in a grain as the sum over all slip systems s:

E‘=E) X (v m), )

where E, is a normalization factor to give units of energy,

7, is the initial threshold in the absence of dislocations, and the
sum is over all slip systems. Boundary migration with a linear
velocity results in a change of the grain’s volume fraction w:

Awgrow[h = vAtwe 23 — C(Eavcragc _ Ec)Atwc 2/3’ (5)
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where At is the time increment and w is the original volume
fraction. Implicit in the derivation is the assumption of growth
or shrinkage of a sphere at a velocity v. Volume fractions are
renormalized after each step so that the total volume fraction
remains constant.

As has been noted above, the bulk dislocation density may
not be too meaningful for describing boundary migration. Only
dislocations close to grain boundaries really influence bound-
ary migration. Also, it has been observed in several systems of
rock analogs that newly nucleated grains grow faster than orig-
inal grains, even if the latter are barely deformed [Drury and
Urai, 1990; Urai et al., 1986]. This difference may reflect dif-
ferences in the organization of dislocations, in surface energy,
or in the number of point defects or inclusions. In the model
we have introduced two growth parameters, C°! for original
grains and C"™" for new grains that have nucleated. The
shrinking parameter is the weighted average of the two. In the
model for olivine the two growth parameters and therefore the
shrinking parameter are all equal.

2.4. Nucleation

Nucleation is less understood than boundary migration. It is
heterogeneous and depends on local structures such as shear
bands, twins, or particles. At low temperature (cold working)
the increase in dislocation density due to hardening and the
corresponding increase in shear stress may primarily control
nucleation events. In this case the accumulated stored energy
or the flow stress could provide a criterion to control nucle-
ation, and we have used this in the previous model [Wenk et al.,
1997]. At high temperatures, deformation reaches a steady
state with no continued hardening. Recovery produces a sub-
grain structure, and particularly in minerals it has been ob-
served that the subgrains become increasingly misoriented with
strain (subgrain rotation recrystallization). If misorientations
are large enough, subgrain boundaries become mobile, and
some subgrains act as nuclei that can grow. In this case, nu-
cleation depends on local strain increments that must be large
enough to produce misorientations. An equivalent strain in-
crement, given by the equivalent strain rate of a grain times At
of the step, is the criterion we use in the present study to
control nucleation. In the computer code the user also has a
choice to select between a stress or a strain rate criterion.

In the original recrystallization model [Wenk et al., 1997,
nucleation was assigned a probability

P = exp (—A/E**")>. (6)

This probability was related to the accumulated strain energy,
and when it exceeded the outcome (between 0 and 1) of a
random number generator, nucleation took place. The nucleus
entirely replaced the old grain, becoming strain-free and as-
suming its orientation. For a large value of the nucleation
constant 4, nucleation is unlikely.

In the modified model we are instead using a continuous
nucleation rate. For a steady state the number AN of nuclei
produced in a time period At is proportional to the strain
increment or, equivalently, the nucleation rate is proportional
to the strain rate

I = dN/dt = B(o, T)(de/dt), 7

where B is an unknown function of stress and temperature. In
our model we introduce such mechanism as follows: we assume
that the volume fraction of the grain that nucleates is propor-
tional to the nucleation rate, times the time increment:
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Figure 3. In the calculation, each grain is divided into two
parts, a parent and a nucleus, with different weights. The sum
of the two weights is unity. If nucleation occurs, weight is
transferred from the parent to the nucleus. The parent changes
its shape and critical shear stresses. The nucleus does not
harden and has a spherical shape. When a threshold is reached,
the nucleus is transferred back into the parent and deforms
accordingly. Parent and nucleus have the same orientation.

A"V:-.n,mlcation = B‘éCAtWC’ (8)

where w€ is the current volume fraction of the grain, £¢ is its
equivalent deformation rate during the incremental deforma-
tion step, and we assume that the function B(o, T) is a con-
stant and give it a value B,.

The general scheme is as follows: the volume fraction of
each grain (with a given orientation) is partitioned into a “par-
ent” and a “nucleated” part, such that w¢ = wPert +
we-nuelews (Rioyre 3). Initially, all the volume fraction is as-
signed to the parent, but it becomes modified by growth,
shrinking, and nucleation. The volume fraction of the “nucle-
us” is initially zero but increases as nucleation proceeds. Nu-
cleation takes place in a grain if the strain increment exceeds a
specified threshold value, which is a percentage B, of the
maximum strain increment in all grains. At that point, volume
(i.e., weight) is transferred from the parent grain to the nucleus
according to (8) (see also Figure 3). The nucleus has the same
orientation as the parent but is strain-free (initial critical shear
stresses), assumes initial shape (spherical), and does not
harden. Both, nucleus and parent grain, grow or shrink accord-
ing to growth criteria discussed in section 2.3. The nucleus
generally grows faster because, since it does not harden, its
accumulated energy is null. In consecutive deformation steps,
nucleation (and weight transfers) may continue. When the
nucleus has grown to a certain size (B, relative to the parent
grain) it combines with the parent, that is, its volume is trans-
ferred back into the parent cell where the grain deforms and
hardens accordingly. These transfers may occur several times.
With such a scheme the total effective number of “grains” is
twice as large as the number of orientations but remains con-
stant, even though some grains may have zero weight. This
simplifies the numerical procedure greatly.

Each grain in the model is characterized by an orientation, a
volume fraction, a grain shape, and critical resolved shear
stresses of slip systems. The volume fraction is not to be con-
fused with the grain size. For example, an original grain that
divides into subgrains of similar orientations will be repre-
sented as a single grain in the model. Also, for now, we assume
that “nuclei” have the same orientation as the host which is not
true in the case of subgrain rotation where nuclei show some
dispersion of orientations. Such a dispersion would attenuate
texture development slightly.

In the computer program we use three parameters to de-
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scribe nucleation. Nucleation is allowed if an individual grain
has reached a deformation threshold B,. The fraction of the
parent that is transferred to the nucleus in a deformation step
is also prescribed (B,), and the relative size of the new grain
beyond which it combines with the parent grain is yet another
parameter (B5). The most critical parameter is B;.

Using the strain rate (or strain increment) as a criterion for
nucleation not only conforms to kinematic considerations of
high-temperature creep but also to microstructural arguments.
Nuclei may form in dislocation tangles, at boundaries with high
misorientations, at mechanical twins, etc. All these microstruc-
tures are characteristic of high local deformation. In a general
way, flow stress, strain, and strain increment are all related in
a similar way to orientations and slip systems, though this
relationship is not linear and not simple. Therefore the results
from using either one of these three criteria are qualitatively
similar but quantitatively not identical.

In summary, the computer program for polycrystal plasticity,
augmented to include dynamic or static recrystallization, works
as follows (see Figure 2): Input data are a set of initial orien-
tations, slip systems and their critical shear stresses, and the
deformation history prescribed by an incremental displace-
ment gradient tensor. The program first performs for each step
and each grain a self-consistent deformation. In case of recrys-
tallization this is followed by growth and nucleation. At the end
of each step, orientations, grain shapes, volume fractions, and
critical shear stresses are updated, and the program proceeds
with the next step. For static recrystallization the deformation
step is omitted.

3. Results for Olivine

There have been several studies that simulate development
of texture in olivine during deformation. Olivine, with its low
orthorhombic symmetry, has only limited slip systems, and the
Taylor model is therefore not directly applicable. Takeshita et
al. [1990] have used a relaxed Taylor model in which some
strain components are assumed to be accommodated by diffu-
sion (climb). Several studies have applied various versions of
the self-consistent model [Wenk et al., 1991; Tommasi et al.,
1997), Chastel et al. [1993] used the lower bounds model, and
Parks and Ahzi [1990] used a related hybrid model. All these
simulations arrive at similar texture results with minor varia-
tions, mainly due to differences in assumed critical shear
stresses for slip systems.

In this study we use three sets of critical shear stresses (Table
1). In set I (which we call 1-2-2-2 denominating CRSS ratios of
the slip systems), (010)[100] slip dominates; in set II (labeled
1-1-2-2), (010)[100] slip and (001)[100] slip are equally active
(approaching a pencil glide condition); and in set III (labeled
1-1-1-2), three slip systems are equally active: (010)[100],
(001)[100], and (100)[001]. As we will document, the results for
all three combinations are similar, indicating that as far as
texture development is concerned, the model is robust and not
very sensitive to exact choice of critical shear stresses. Linear
hardening with a hardening coefficient # = 0.1 is applied and
the stress exponent n = 4. The strain increment per step is
2%; 500 initially random orientations with the same volume
fraction are used.

In this study, using the most recent version of the one-site
viscoplastic self-consistent (VPSC) code (Lebensohn and Tomé
[1993], with minor modifications), we obtain at 60% (y = 1.0)
shear deformation a texture with characteristic asymmetric
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Figure 4. Deformation textures for olivine simulated with the one-site self-consistent polycrystal plasticity
code for critical shear stress sets 1-2-2-2, 1-1-2-2, and 1-1-1-2 (Table 1). Pole figures are after 60% equivalent
strain (y = 1.0), with 500 grains; projections are equal-area.

maxima in (100) and (010) pole figures, displaced about 30°
against the sense of shear (Figure 4). For 1-2-2-2 conditions,
texture development is somewhat slower than for 1-1-2-2 and
1-1-1-2. The observed maximum agrees well with component 4
(Figure 1a) in the experiments of Zhang and Karato [1995].
With increasing strain this maximum does not rotate apprecia-
bly and corresponds to orientations where rotation rates are
smallest.

In this deformation texture there are hard and soft orienta-
tions, depending on the orientations of slip systems relative to
the applied stress, and this has a direct effect on the strain rate.
Figure 5 shows with symbol sizes on [100] pole figures the
equivalent strain rate after 40% deformation. The equivalent
strain rate ranges from 0 for hard orientations (small symbols)
to 0.05 for soft orientations (large symbols) in arbitrary units.
In Figures 5a-5c we see extremely slow strain rates in the

Figure 5. Equivalent strain rate in grains represented by symbol size on [100] pole figures for critical shear
stress sets (a) 1-2-2-2, (2)1-1-2-2, and (c) 1-1-1-1 (Table 1). There are 200 grains after 40% equivalent shear

deformation.
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Table 2. Recrystallization Parameters

Nucleation Growth

Definition Model Model
C growth velocity 800 50
C min minimum size 10% 10%
B, nucleation threshold 75% 95%
B, nucleus size 15% 15%
B transfer size 80% 80%

diagonal directions, particularly in the directions of the asym-
metric texture maximum 4. Those grains barely deform. High-
est strain rates are for orientations near the N-S poles and E-W
points. For clarification, it should be stated that a pole figure
representation is incomplete for orientation parameters. It is
possible to have soft and hard [100] symbols close together,
e.g., in the center of the pole figures, depending on the full
crystallographic orientation.

From such representations we can qualitatively estimate
what may happen during dynamic recrystallization. If growth is
prevalent, we expect orientations with small symbols (hard and
therefore fewer dislocations and less stored energy) to grow at
the expense of softer grains with higher stored energy and to
dominate the recrystallization texture. Such a texture is likely
to be similar to the deformation texture because the hard
grains coincide with the texture maximum. If nucleation dom-
inates, orientations with large symbols (higher stored energy)
will prevail, and the texture may be quite different.

In the model we allow for dynamic recrystallization begin-
ning after 20 deformation steps of 2.0% (equivalent strain
e,m = 0.4, shear vy = 0.68). Recrystallization parameters are
given in Table 2. The texture evolution is illustrated with [100]
and [010] pole figures with symbols illustrating growth and
nucleation (Figures 6 and 7.) Soft orientations nucleate (cross-
es), whereas hard orientations grow (increasing size of pluses).
Grains that have vanished during the last step are indicated by
diamonds. Out of many simulations we only illustrate one
growth-dominated case (Figure 6) and one nucleation-
dominated case (Figure 7), each for 1-2-2-2- and 1-1-1-2 crit-
ical shear stress ratios.

The simulations for growth are as expected. In this case the
pole figure is quickly depleted of soft orientations, and orien-
tations in the asymmetric (30°) maximum have an advantage
and grow (Figure 6). A few orientations nucleate but cannot
compete and ultimately disappear. In this case a very strong
texture develops that is similar to the deformation texture but
much sharper. All three sets of critical shear stress models give
similar results. Implicit in the growth model is that ultimately
only one orientation survives.

In the nucleation-dominated case, grains that are interme-
diate in plastic strength disappear first (Figure 7). Hard orien-
tations in the position of the asymmetric deformation texture
maximum A grow. Many soft orientations nucleate, largely in
two main concentrations, one with [100] near the shear direc-
tion (component B) and a second asymmetric one at high
angles to the slip direction (component C). In the next strain
steps, nuclei have an advantage over relatively hard original
grains because their critical shear stresses (and so their stored
energies) have been reset. The size of nucleated grains in-
creases, and harder grains that have not nucleated disappear
(diamonds) because their residual strain energies are still
higher than those of new nuclei. After 55 steps all old grains
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have disappeared. The nucleated grains at high angles (com-
ponent C) rotate with the sense of shear toward the 30° ori-
entation (component A) and slowly disappear. The soft orien-
tations near the shear direction (component B) concentrate,
grow, and nucleate several times. After 80 steps (e, = 1.6,
vy = 2.7) those latter orientations which represent the easy slip
orientation for (010)[100] slip dominate the texture.

In the simulation the transition from a deformation to a
recrystallization texture is quite rapid, and once the easy slip
recrystallization texture has been established, it does not
change during further straining. In the model the deformation
texture (component 4) transforms at intermediate strains to a
bimodal texture (components B and C) and ultimately stabi-
lizes in a single component (component B) during dynamic
recrystallization. Even though assumed critical shear stress ra-
tios 1-2-2-2 and 1-1-1-2 are quite different, the texture evolu-
tion in both cases is rather similar.

For easier comparison with experiments we have also pre-
pared contoured pole figures (at 20 steps for deformation and
75 steps after nucleation dominated dynamic recrystallization).
This was done by entering individual orientations into discrete
orientation distribution cells, smoothing with a 15° Gauss filter
and recalculating pole figures (all with the software BEAR-
TEX [Wenk et al., 1998]). Figure 8 confirms the similarity of
the simulated deformation texture with that from the experi-
ments of Zhang and Karato [1995] (Figure la) and also illus-
trates a close similarity of the experimental and simulated
recrystallization texture (Figure 1b).

In order to better understand the behavior during deforma-
tion and recrystallization we illustrate the rotation trajectory of
four individual grains on [100] pole figures (Figure 9). The first
grain (Figure 9a) is initially in the easy slip orientation, i.e., slip
plane and slip direction coincide with the shear plane and
shear direction, respectively, for the dominant slip system
(010)[100]. The second grain (Figure 9b) is perpendicular to it,
i.e., shear plane and shear direction exchanged. Since the stress
is a symmetric tensor, both grains are initially subject to the
same stress and are in an optimal orientation for simple shear
deformation (assuming again that (010)[100] slip is active).
Both grains rotate toward the 30° texture maximum. The first
grain (Figure 9a) nucleates due to a high incremental strain,
then reverses its path and increases in size, the second grain
(Figure 9b) does not nucleate and disappears. The third and
fourth grains (Figures 9c¢ and 9d, respectively) are two that
ultimately (after dynamic recrystallization) end up in the easy
slip orientation. One of them was initially close to that orien-
tation (Figure 9d) and the other underwent larger rotations
(Figure 9c). It should be noted that all orientations that end up
in component B were already initially in the vicinity and have
not undergone large rotations.

During the deformation stage an average number of 3—4 slip
systems are active in each grain (a system is counted as active
if it contributes more than 5% to the overall strain) and strain
is distributed over all 4 systems (Figure 10). However, most of
the shear is on the (010)[100] system. The texture evolution
and slip system activity is also reflected in the flow stress;
during deformation the systems harden and the flow stress
increases, but during nucleation-dominated recrystallization
and with increasing importance of the easy slip component B,
there is geometric softening, reaching a steady state (Figure
11).
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Figure 8. Contoured pole figures corresponding to set 1-1-2-2. For (a) deformation y = 0.4 (20 steps) and

(b) nucleation-dominated recrystallization after y =

1.5 (75 steps). Individual orientations have been

smoothed with a 15° Gauss filter. Projections are equal-area; logarithmic contours are 0.5, 0.7, 1.0, 1.4,
2 m.r.d,, etc.; dot pattern is below 1 m.r.d. Compare with the experimental data in Figure 1.

4. Discussion

The present polycrystal plasticity simulations of olivine de-
formed by slip in simple shear geometry are largely consistent
with previous modeling results which all predicted the devel-
opment of an asymmetric deformation texture (componentA4).
This texture is fairly insensitive to the exact values for the
critical resolved shear stresses on the various systems and to
hardening coefficients, as long as the slip system (010)[100] is

(©) (d)

[
-«

Figure 9. The [100] rotation trajectories of four individual
grains. Starting orientations are given by dot. Strain increments
are 5%. Symbol size is proportional to grain volume.

at least equally active as (001)[100] and (100)[001]. From the
individual grain rotation trajectories (Figures 9 and 8 of Wenk
et al. [1991]) we observe different rotation increments for dif-
ferent initial orientations. Rotations are minimal for orienta-
tions near the asymmetric texture component A4.

As the asymmetric deformation texture evolves, crystals be-
come less favorably oriented for slip, and this causes geometric
hardening. In addition, slip systems harden due to accumula-
tion of dislocations. Both factors lead in the model to an
increase in the flow stress (Figure 11). For very high strains and
a strong texture the few slip systems in olivine cannot accom-
modate the strain in a polycrystal plasticity model, even in a
relaxed self-consistent framework, and for numerical stability it
is necessary to introduce additional artificial hard slip systems
that are not realistic. In the present model where pure defor-
mation only proceeds to a strain of 40%, activation of these
systems marked with asterisks in Table 1 is not significant, and
at larger strains, recrystallization alleviates incompatibility.
However, they were activated in the growth simulations as the
hard asymmetric single-component texture was approached.
Therefore the sum of activity of slip systems for the four modes
in Figure 10 for large strains (beyond 50 steps) is not unity, and
the flow stress becomes unrealistically large (Figure 11). This
has no physical meaning.

In high-temperature deformation of rocks, diffusive mecha-
nisms such as climb may accommodate strain incompatibilities
between grains but are not included in our polycrystal plasticity
model. Diffusive mechanisms greatly influence the mechanical
behavior but have a much smaller effect on preferred orienta-
tion. Therefore we have less confidence in details of the sim-
ulated stress-strain curves than in texture patterns. However,
the softening and steady state during nucleation recrystalliza-
tion is realistic as the easy slip orientation is approached.

For nucleation-dominated recrystallization the final texture
is the easy slip orientation of the softest slip system. Easy slip
is confined to simple shear deformation because it implies that
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Figure 10. Activity of slip systems for models of deformation, growth, and nucleation with different critical
shear stress ratios listed in Table 1. The abscissa gives the number of deformation steps.

the microscopic slip direction is parallel to the macroscopic
shear direction and the microscopic slip plane is parallel to the
macroscopic shear plane. Only for simple shear can a single-
slip system accommodate a macroscopic strain. In all other

20 — , R 1-1-1-2
- . TP
18 |- i
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16 Growth .t

Von Mises Stress

0.0 0.2 0.4 0.6 08 10 12
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Figure 11. Stress-strain curves for models of deformation,
growth, and nucleation with different critical shear stress ratios
(Table 1).

cases, at least two slip systems are needed. If a crystal is in that
orientation and is deformed in a Taylor-type framework (ho-
mogeneous strain), it will deform on a single-slip system and
does not rotate. In a self-consistent framework with a random
orientation distribution those crystals will rotate because of
overall compatibility with the medium (Figure 8a). However, if
all crystals are in easy slip orientations, then in a self-consistent
sense those orientations are also stable, which is the reason
why these orientations remain during dynamic recrystallization
to very large strains. It is as if a microcrystal deforms in a
macrocrystal by single slip. In the recrystallization model, nu-
cleation selects these orientations because they correspond to
the most highly deformed grains.

Easy slip has been documented as a final orientation in
several mineral systems investigated experimentally in simple
shear. In quartz [Dell’Angelo and Tullis, 1989], olivine [Zhang
and Karato, 1995], ice [Bouchez and Duval, 1982; Burg et al.,
1986, calcite [Kunze et al., 1998], and norcamphor [Herwegh
and Handy, 1996] a single stable texture component developed
that can be interpreted as an easy slip orientation of the most
active slip system. In all these experiments, rocks are recrys-
tallized by subgrain rotation and with a reduction in grain size,
a situation very similar to the case illustrated here.

A major concern has always been how recrystallized grains
arrive at this easy slip orientation. From polycrystal plasticity
simulations it has been clear that grains could not have rotated
into those orientations by slip. The dynamic recrystallization
simulations in this study may provide an answer: These very
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Figure 12. Normalized P velocity surfaces of olivine polycrystals deformed in simple shear for sets 1-2-2-2
and 1-1-1-2, deformation, growth, and nucleation after y = 1.2 (60 steps). Highest velocity is 1000, contour
interval is 20 with dot pattern indicating velocities below 900. Projections are equal-area.

special orientations have not rotated much but originated as
components of the deformation texture. They represent grains
that were most heavily deformed, nucleated repeatedly, and
grew. In the model, and for simple shear deformation, other
orientations rotate toward component B to minimize compat-
ibility problems in a self-consistent sense, as the easy slip com-
ponent starts to dominate the texture. In the simulations there
is a second component with [100] at high angles to the shear
plane (C). Contrary to the easy slip component B, component
C is not stable but with increasing strain its importance dimin-
ishes because it also rotates slowly with the sense of shear.

Even though the model has no topologic or size information,
the simulations provide some information on microstructures.
In the model, as it stands, a uniform initial weight is given to all
grains. These weights change during growth and shrinking, but
because the model does not consider the grain topology a
detailed size evolution during boundary migration is not pos-
sible. In a growth-dominated process, starting with a uniform
grain size, first a bimodal distribution develops, then the
smaller unstable grains disappear, and a few large grains ulti-
mately dominate.

For dominant nucleation the model gives the impression
that after recrystallization only a few large grains are left,
contrary to the experiment where grain size is reduced [Zhang
and Karato, 1995, Figure 2b]. This apparent contradiction
comes from the fact that in the model we have to keep the total
number of grains constant, also counting those that disap-
peared. With a constant nucleation rate B,, all nuclei are
collected in the same orientation and appear as a single point
in the pole figures. In reality, each represents many nuclei that
may have slightly different orientations. The model also sim-
plifies in assigning the nucleus exactly the same orientation as
the host, whereas in reality, nuclei do have misorientations.
Therefore the model exaggerates the texture strength.

Textures are related to polycrystal physical properties, and
seismologists, concerned with anisotropy in the upper mantle,

have been particularly interested in the influence of preferred
orientation of olivine on the elastic properties, including the
effect of recrystallization. Recrystallization may produce a ran-
dom orientation pattern with weak anisotropy, but this is rare
for strongly deformed materials, and Ben Ismail and Mainprice
[1998] have shown that most mantle-derived peridotites, with
evidence for recrystallization, display strong preferred orien-
tation of olivine. We have explored the effects of the different
models (deformation, growth, and nucleation) on the anisot-
ropy of seismic wave propagation. Elastic properties of the
simulated aggregates were calculated by averaging single-
crystal properties of olivine over all orientations, using an
elastic self-consistent model [Tomé, 1998]. Next, we calculated
P wave velocity surfaces for models 1-2-2-2 and 1-1-1-2 simu-
lations to a strain a = 1.2 for pure deformation, nucleation,
and growth-dominated recrystallization (Figure 12). The P ve-
locity surfaces are normalized so that the highest values in all
of them are 1000, and in all of them this maximum is near the
shear direction. As expected, there is a slight asymmetry rela-
tive to the shear plane and shear direction, except for the
nucleation-dominated texture, but the overall patterns and
magnitudes of anisotropy are similar, 10% for deformation and
15% for recrystallization. So far, models predicting anisotropy
due to olivine deformation in the upper mantle relied on de-
formation by slip only [Chastel et al., 1993; Dawson and Wenk,
1999; Wenk et al., 1999], and these models need to be refined
to include recrystallization. With these simulation results, the
general conclusion still holds that much of the observed seis-
mic anisotropy patterns in the upper mantle [e.g., Anderson
and Dziewonski, 1982; Morris et al., 1969; Silver, 1996] are due
to development of preferred orientation during convection.
However, the general concept to associate fast velocities with
the “flow direction” is misleading and inaccurate: in a hetero-
geneous convection system the displacement gradient tensor
changes along a flow line and the flow direction does not
coincide with the shear direction [Dawson and Wenk, 1999].
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Olivine does not flow along [100] like a log in a stream. Olivine
crystals in mantle peridotites are largely equiaxed and recrys-
tallized. They grow in such an orientation that [100] is close to
parallel to the shear direction.

5. Conclusions

The viscoplastic self-consistent polycrystal plasticity theory,
modified to include recrystallization, simulates textural fea-
tures that have been observed in simple shear experiments on
olivine aggregates. Different textures are simulated for defor-
mation, for nucleation-dominated recrystallization, and for
growth-dominated (boundary migration) recrystallization. De-
formation textures and boundary migration textures are simi-
lar, with [100] axes in an asymmetric maximum inclined 20°-
30° to the shear direction. For nucleation the main texture
component has a [100] maximum parallel to the shear direc-
tion, corresponding to a (010)[100] easy slip orientation. As in
many geological systems, though this is not universal, it ap-
pears that also in simple shear experiments of olivine the most
strongly deformed orientation components dominate the re-
crystallization texture. The components are selected from de-
formation texture components, depending on the deformation
state of different orientations.

While there are distinct differences between deformation
and recrystallization textures, the effects on seismic wave prop-
agation appear minor. Particularly, since [100] is the fast di-
rection in single crystals, the simulations suggest that a poly-
crystal deformed in simple shear will have a fast direction near
the shear direction [Hess, 1964; Christensen, 1984; Silver, 1996].
For the nucleation model it is almost perfectly aligned with the
shear direction.

In the future, it will be necessary to experimentally deter-
mine for olivine the fields of boundary migration recrystalliza-
tion and subgrain rotation in a similar way as has been done for
quartz [Hirth and Tullis, 1992]. By comparison of experimental
results with textures and microstructures in naturally deformed
peridotites of mantle origin the deformation and recrystalliza-
tion mechanisms of rocks in the upper mantle can be assessed.
At that point it will become possible to produce realistic mod-
els of texture and anisotropy development in the Earth by
including dynamic recrystallization. This contribution is a first
step.
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