The Cascadia Subduction zone off the west coast of Northern California, Oregon, Washington, and Britich Columbia is where the Juan de Fuce tectonic plate collides with, and sinks below, the North American tectonic plate. Subduction zones host the largest earthquakes in the world, and the Cascadia subdiction zone in particular experienced an earthquake owith an estimated magnitude of 9.0 earthquake on January 26, 1700. The expected recurrance interval for large earthquakes in this region is 300-500 years.
In beween large earthquakes, the Cascadia subduction zone is not dormant. Rather, it's home to two recently discovered phenomena: slow slip events and tectonic tremor. In a slow slip event, the deeper extent of the interface between the two tectonic plates slips, as in an earthquake, but does so more slowly. While earthquake slip occurs over the course of seconds, slow slip occurs over the course of days to weeks. The vast majority of this slip is "silent", meaning it cannot be detected with seismic instruments. But, slow slip events in Cascadia do move the surface of the earth up to 1 cm, and this movement can be detected using GPS and other instruments (Figure 1). A small percentage of the slip during slow slip events is fast enough to generate seismic waves; this is called tectonic tremor. Tectonic tremor sources can be detected and located seismically. While slow slip and tremor are not dangerous to humans or the environment, they provide a window into the physics of subduction zones. Additionally, by characterizing and monitoring slow slip events, scientists may be able to detect changes leading up to a future large earthquake.
Dr. Bartlow has carried out GPS-data based studies of multiple Slow Slip events in Cascadia using the Network Inversion Filter (NIF) software package (see the software page). The actively slipping region during a slow slip event migrates along the subduction zone over the course of a few weeks, and this can be imaged by the NIF method. Dr. Bartlow showed that tectonic tremor sources and the actively slipping area track together (Fig. 2), implying that tectonic tremor sources are stuck patches within the slowly slipping region that are loaded to failure by the surrounding slip. This is illustrated schematically in Figure 3.
Together with collaborator Dr. Aaron Wech of the U.S. Geological survey, Dr. Bartlow identified the first known example of slow slip without tremor in the Cascadia subduction zone. This tremorless, truly "silent" slip occurred in a region with known tremor sources, but at a lower slip-rate than usual (Fig. 4). This implies a minimum slip-rate for tremor generation.